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Abstract
As new applications of Schrödinger type inequalities obtained by Jiang (J. Inequal.
Appl. 2016: Article ID 247, 2016) in the Schrödingerean Hardy space, we not only
obtain the representation of Schrödingerean harmonic functions but also give a
sufficient and necessary condition between the Schrödingerean distributional
function and its derivative in the Schrödingerean Hardy space.
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1 Introduction
The Schrödingerean Hardy spaces Hp(C+) ( < p < ∞) are defined to consist of those func-
tions f , Schrödingerean holomorphic in the upper half-plane C+ = {z = x + iy : y > } with
the property that Mp(f , y) is uniformly bounded for y > , where

Mp(f , y) =
(∫ +∞

–∞

∣∣f (x + iy)
∣∣p dx

) 
p

.

Since |f |p is Schrödingerean subharmonic for f ∈ Hp(C+) with respect to Scha, the func-
tion Mp(f , y) decreases in (,∞),

‖f ‖Hp(C+) = sup
{

Mp(f , y) :  < y < ∞}
= lim

y→
Mp(f , y).

If f (x) is the non-tangential boundary limits of the Schrödingerean function f ∈ Hp(C+),
then f (x) ∈ Lp(R) and

‖f ‖p =
(∫ +∞

–∞

∣∣f (x)
∣∣p dx

) 
p

= ‖f ‖Hp(C+).

A function φ(t) defined on R belongs to the space DLp ,  < p < ∞, iff
() φ(t) ∈ C∞;
() φ(k)(t) ∈ Lp for all k ∈N, where N is the set of nonnegative integers.
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The space D consists of infinitely differentiable complex-valued functions defined on R.
In the sequel, for  < p < ∞, we will write

p′ =
p

p – 

and denote by D′
Lp the dual of the space DLp′ , that is, D′Lp = (DLp′ )′. We also denote by D′

the dual of the space D. So we can get D ⊆DLp and D′
Lp ⊆ D′.

Definition . (see []) Let f ∈ D′. An analytic representation of f is any function F(z)
defined and analytic on the complement of the support of f such that for all test functions
φ ∈D,

lim
y→+

∫ +∞

–∞

[
F(x + iy) – F(x – iy)

]
φ(x) dx =

〈
f (x),φ(x)

〉
.

Definition . Let f ∈D′
Lp ( < p < ∞) and assume that Df is the operator of distributional

differentiation defined on D′
Lp by

〈Df ,φ〉 = 〈f , –Dφ〉

for all φ ∈DLp′ .

Then

Df ∈D′
Lp .

Since f ∈ D′
Lp ,Dϕ ∈ DLp′ , Df defined as above is a functional on DLp′ . Linearity of Df is

trivial. Assume that {ϕv} → ϕ in DLp′ . Then

〈Df ,ϕv〉 = 〈f , –Dϕv〉 → 〈f , –Dϕ〉 = 〈Df ,ϕ〉.

2 Main results
In , Jiang (see []) proved Schrödinger type inequalities for stabilization of discrete
linear systems associated with the stationary Schrödinger operator. As applications, Jiang
and Uso (see []) obtained boundary behaviors for linear systems of subsolutions of the
stationary Schrödinger equation. Almost at the same time, Huang (see []) considered a
new type of minimal thinness with respect to the stationary Schrödinger operator. As an
application, Huang and Ychussie (see []) solved the Dirichlet-Sch problems on smooth
cones with slow-growth continuous data. Recently, Lü and Ülker (see []) gave the exis-
tence of weak solutions for two-point boundary value problems of the Schrödingerean
predator-prey system. Motivated by their results, by using Schrödinger type inequalities
proved by Jiang (see []), we obtain the integral representation of Schrödingerean har-
monic functions in the Schrödingerean Hardy space.

Theorem . Suppose that  < p < ∞ and f ∈D′
Lp . Then

F(Z) =


π i

〈
f (t),


t – z

〉
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is one of the analytic representations of f , which satisfies

sup
–∞<x<∞,y≥δ>

∥∥F(x + iy)
∥∥ = Aδ < ∞

and

sup
–∞<x<∞

∥∥F(x + iy)
∥∥ = O

(
y– 

p
)
,

where y → ∞.
There exist functions Fk(z) ∈ Hp(C+), so that

F(z) =
r∑

k=

∂k–

∂zk– Fk(z)

and

F (j)(z) =
r∑

k=

∂k+j–

∂zk+j– Fk(z),

where r and j are nonnegative integers.

Theorem . If  < p < ∞, Fk ∈ Hp(C+) and

F(z) =
r∑

k=

∂k–

∂zk– Fk(z),

then there exists a distributional function f (x) ∈ D′
Lp such that F(z) is one of analytic rep-

resentations of f (x).

Corollary . If  < p < ∞ and f (x) ∈D′
Lp , then

F(Z) =


π i

〈
f (t),


t – z

〉

satisfies

sup
–∞<x<∞,y≥δ>

∥∥F(x + iy)
∥∥ = Aδ < ∞

and

sup
–∞<x<∞

∥∥F(x + iy)
∥∥ = O

(
y– 

p
)
,

where y → ∞.
There exist functions Fk(z) in Hp(C+) so that

F(z) =
r∑

k=

∂k+j–

∂zk+j– Fk(z),

where j > , r, j are nonnegative integers.
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3 Lemmas
In this section we need the following lemmas.

Lemma . (see [, ]) If  < p < ∞, u(t) ∈ Lp(R) and the function G(u)(t) is defined as
follows

G(u)(t) =


π i

∫ ∞

–∞
u(t)
t – z

dt,

then

G(u)(t) ∈ Hp(C+).

Lemma . (see []) Let F(z) be an analytic complex-valued function of the complex vari-
able z = x + iy in the open upper half-plane satisfying

() for fixed y > , p′ = p
p+ ,  < p < ∞, F(x + iy) ∈ Lp;

()

lim
y→+

F(x + iy) = f +(x)

in D′
Lp (weakly)

sup
–∞<x<∞

∥∥F(x + iy)
∥∥ → O,

where y → ∞ and

sup
–∞<x<∞,y≥δ>

∥∥F(x + iy)
∥∥ = Aδ < ∞.

Then

F(z) =


π i

〈
f +(t),


t – z

〉
,

where Im z > .

4 Proofs of the main results
4.1 Proof of Theorem 2.1
In view of the structure formula in [], for f ∈D′

Lp ,

F(z) =


π i

〈
f +(t),


t – z

〉
,

there exists a nonnegative integer r and fk ∈ Lp such that

F(z) =


π i

r∑
k=

∫
R

fk(t)
(

–
∂

∂t

)(k–)( 
t – z

)
dt

=


π i

r∑
k=

∫
R

fk(t)(–)k– (k – )!
(t – z)k dt.
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So

∣∣F(x + iy)
∣∣ ≤ 

π

r∑
k=

∫
R

∣∣fk(t)
∣∣ (k – )!
|t – z|k dt.

By using Holder’s inequality, we have

∣∣F(x + iy)
∣∣ ≤ 

π

r∑
k=

(k – )!
(∫

R

∣∣fk(t)
∣∣p dt

) 
p
(∫

R


|t – z|kp′ dt

) 
p′

.

Define

I =
∫

R


|t – z|kp′ dt.

So

I =
∫
R



[(t – x) + y]
kp′


dt

=
∫
R



ykp′[( t
y ) + ]

kp′


dt

=


ykp′–

∫
R



( + t)
kp′
y

dt.

Further, k >  and p′ >  imply that kp′ >  for y ≥ δ > , there exists a constant C satisfy-
ing

I ≤ C
δkp′– < ∞.

Since fk ∈ Lp, there exists a constant M such that

sup
–∞<x<∞,y≥δ>

∥∥F(x + iy)
∥∥ = Aδ < ∞,

where

Aδ =


π

r∑
k=

(k – )!
MC


p′

k′–
δp′

,

∣∣y 
p F(x + yi)

∣∣ ≤
r∑

k=

(k – )!‖fk‖p
L



ykp′–– 
p

∫
R



( + t)
kp′
y

dt

and

kp′ –  –

p

= p( – k) –  < .

So

lim
y→∞ sup

–∞<x<∞

∣∣F(x + yi)
∣∣ = O

(
y– 

p
)
.
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In view of the structure formula (see [])

F(z) =


π i

r∑
k=

∫
R

fk(t)
(

–
∂

∂t

)(k–)( 
t – z

)
dt

=


π i

r∑
k=

∫
R

fk(t)
(

∂

∂z

)(k–)( 
t – z

)
dt

=
r∑

k=

(
∂

∂z

)(k–) 
π i

∫
R

fk(t)
t – z

dt

=
r∑

k=

(
∂

∂z

)(k–)

Fk(z),

where

Fk(z) =


π i

∫
R

fk(t)
t – z

dt.

According to Lemma ., we know that Fk(z) ∈ Hp(C+), which gives that

F (j)(z) =
r∑

k=

(
∂

∂z

)(k+j–)

Fk(z),

where j is a nonnegative integer.

4.2 Proof of Theorem 2.2
Since Fk(z) ∈ Hp(C+), there exist functions fk(t) ∈ Lp, where fk is the non-tangential limit
of F(z), where Fk(x + iy) ∈ Lp for fixed y.

Since DLp′ ∈ Lp′ , we see that fk(t) ∈ D′
Lp . By using the property of a subharmonic function,

we get

∣∣Fk(x + iy)
∣∣p ≤ 

πy

∫
D(x+iy,y)

∣∣Fk(ξ + iη)
∣∣p dλ

≤ 
πy

∫ x+y

x–y

∫ y



∣∣Fk(ξ + iη)
∣∣p dη dζ

≤ 
πy

‖Fk‖p
Hp .

So

∣∣Fk(x + iy)
∣∣ ≤

(

πy

‖Fk‖p
Hp

) 
p

= y

p

(

π

‖Fk‖p
Hp

) 
p

,

which gives that

Fk(x + iy) = O
(


y 

p

)
,
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where y >  and

sup
–∞<x<∞,y≥δ>

∥∥F(x + iy)
∥∥ ≤ 

πδ
‖Fk‖p

Hp = Aδ < ∞.

According to Lemma ., we know that Fk(z) can be written as

Fk(x) =


π i

〈
fk(t),


t – z

〉
.

So

F(z) =
r∑

k=

(
∂

∂z

)k–

Fk(z)

=
r∑

k=

(
∂

∂z

)k– 
π i

〈
fk(t),


t – z

〉

=


π i

r∑
k=

〈
fk(t),

(
∂

∂z

)k– 
t – z

〉

=


π i

r∑
k=

〈
D(k–)fk(t),


t – z

〉

=


π i

〈 r∑
k=

D(k–)fk(t),


t – z

〉
,

which gives that

F(z) =
r∑

k=

(
∂

∂z

)k–

Fk(z)

=
r∑

k=

(
∂

∂z

)k– 
π i

〈
fk(t),


t – z

〉

=


π i

r∑
k=

〈
fk(t),

(
∂

∂z

)k– 
t – z

〉

=


π i

r∑
k=

〈
D(k–)fk(t),


t – z

〉

=


π i

〈 r∑
k=

D(k–)fk(t),


t – z

〉
.

Let

f (x) =
r∑

k=

D(k–)fk(t),

where f (x) ∈ D′
Lp , which implies that F(z) is one of the analytic representations of f (x).
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4.3 Proof of Corollary 2.3
In view of the structure formula (see [])

F(z) =


π i

〈
f (t),


(t – z)j

〉

=


π i

r∑
k=

∫
R

fk(t)
(

–
∂

∂t

)(k–)( 
(t – z)j

)
dt

=


π i

r∑
k=

∫
R

fk(t)
(k + j – )!

(j – )!(t – z)k+j– dt.

Similar to the proof of Theorem ., we can see the corollary holds.

5 Conclusions
In this paper, we not only obtained the representation of Schrödingerean harmonic func-
tions but also gave a sufficient and necessary condition between the Schrödingerean dis-
tributional function and its derivative in the Schrödingerean Hardy space.
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