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1 Introduction

In 1988, Hilger introduced the theory of time scales in order to unify and extend the dif-
ference and differential calculus in a consistent way (see [1]). Since then, more and more
researchers are getting involved in this fast-growing field, for example, [2-10] and the ref-
erences therein. Among various aspects of the theory, we notice that dynamic inequalities
on time scales is an object of long standing interest [11-29]. However, to the best of our
knowledge, there are few results dealing with Volterra-Fredholm type integral inequalities
on time scales. Recent results in this direction include the works of Gu and Meng [16] and
Meng and Shao [20].

The purpose of this paper is to investigate some new retarded Volterra-Fredholm type
integral inequalities on time scales, which not only generalize and extend the results of
[16, 20] and some known integral inequalities but also provide a handy and effective tool
for the study of qualitative properties of solutions of some complicated Volterra-Fredholm
type dynamic equations.

The paper is organized as follows. In Section 2, some necessary definition and lemmas
are presented. In Section 3, some new retarded Volterra-Fredholm type integral inequali-
ties on time scales are investigated. Finally, Section 4 is devoted to applying our results to
a retarded Volterra-Fredholm type dynamic integral equation on time scales.

2 Preliminaries

Throughout this paper, knowledge and understanding of time scales and time scale nota-
tion is assumed. For an excellent introduction to the calculus on time scales, we refer the
reader to [30] and [31].
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List of abbreviations. In what follows, we always assume that R denotes the set of real
numbers, R, = [0, 00), Z denotes the set of integers, T is an arbitrary time scale (nonempty
closed subset of R), R denotes the set of all regressive and rd-continuous functions, R* =
peR: 1+ u@)p) >0forallt € T} and I = [, T] N T*, where tp € T, T € T, T >
to. The set T* is defined as follows: If T has a maximum m and m is left-scattered, then
T* = T — {m}. Otherwise T* = T. The graininess function px : T — [0, 00) is defined by
u(t) := o(t) — t, the forward jump operator o : T — T by o (¢) := inf{s € T : s > ¢}, and the
“circle plus” addition @ is defined by (p @ q)(t) := p(t) + q(t) + (£)p()q(¢) for all £ € T*.

The following lemmas and definition are useful in the proof of the main results of this

paper.

Lemma 2.1 ([30, Theorem 1.16]) Assume that f : T — R is a function and let t € T. If f is
differentiable at t, then

Fo®) =f@) + n@)f*(@).
Lemma 2.2 ([30, Theorem 1.98]) Assume that v:T — R is a strictly increasing function

and T := v(T) is a time scale. Iff : T — R is an rd-continuous function and v is differen-

tiable with rd-continuous derivative, then for a,b € T,

b v(b) .
/ fOve )AL= / (f oY) (s)As.
a v(a)

Lemma 2.3 Let o : I — I be a continuous and strictly increasing function such that o(t) <

t, and a® is rd-continuous. Assume that f : I — R is an rd-continuous function, then

a(t)
g(t) = fls)As, tel, (2.1)
a(to)
implies
O =f(a®))a™®), tel (2.2)

Proof From (2.1), we get, forany ¢ € I,

103

) a(t)
gt) = f(s)As = / fla(e™(9))As.

a(to) (to)

By Lemma 2.2, we obtain

g(t) = /tf(a(s))aA(s)As, tel,
so we get

&0 =f(a®)a®©. O



Liu Journal of Inequalities and Applications (2017) 2017:293 Page 3 of 15

Lemma 2.4 ([30, Theorem 1.117]) Suppose that, for each ¢ > 0, there exists a neighborhood
U of t, independent of T € [ty,0 ()], such that

|w(o(t),t) —w(s,T) - wf(t,r)(o(t) —s)| < 8|a(t) -

, sel, (2.3)

where w: T x T — R, is continuous at (t,t), t € T with t > to, and w(t,-) are rd-

continuous on [ty, o (t)]. Then
t
g(t):= / w(t, T)At
to
implies
t
g = / th(t, T)AT + w(o(t),t), teT~. (2.4)
£

0

Lemma 2.5 ([30, Theorem 6.1]) Suppose that y and f are rd-continuous functions and
pER* Then

yA(8) < p(O)y(t) +f(t) forallteT

implies

y() < y(to)ey(t, o) + /tep(t,d(f))f(T)AT forallteT.

Lo

Definition 2.1 A function x:/ — I is said to belong to the class T if
(1) xis continuous and strictly increasing, and
(2) x(t) < tand x® is rd-continuous.

3 Main results
Theorem 3.1 Assume thato € Y and u,a,b,f1,f>,g: I — R, are rd-continuous functions,
a is nondecreasing, ). > 0 is a constant, a®(t) > 0, b>(t) > 0, u(t)A(t) < 1. Suppose that u

satisfies
al(t) s
u(t) < a(t) + b(t) o |:f1(s)u(s) +f2(S)/( )g(r)u(r)Ar]As
o(T) s
+ Ab(T)/ |:f1(s)u(s) +f2(s)/ g(r)u(t)Ar:| As, tel. (3.1)
alty) a(to)
If
1
B:=epoc(T,to) <1+ = (3.2)
then
M(t) < %QB@C(L t()), te I, (33)
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where we use the convention that % = 400,

s

a(o(t)
A= b (0) / N [fl(s)+f2(s) g(‘L’)A‘C]As, B(t) i= — D)

S 1-p@A®R) (34

a(to)
a(t)

C(t):=b(t) |:f1 (a(t)) +f2(a(t))/ g(r)At]aA(t). (3.5)

(to)
Proof Denote

a(t) s

z(t) := a(T) + b(t)/

a(to)

[fl(S)M(S) +f(s) / g(r)u(r)At} As

(t0)

a(T) s
+ Ab(T)/ |:f1(s)u(s) +f2(s)/( )g(f)u(r)Ar]As, tel (3.6)

(to)

Then z is nondecreasing on I,
u(t) <z(), tel, (3.7)

and

s

o(T)
z(ty) = a(T) + Ab(T) /( : |:f1(s)u(s) +f2(s)/ )g(r)u(r)Ar] As. (3.8)

(to
From Lemma 2.3 and (3.4)-(3.7), we have

a(o (1)
Z8(8) = b2 (¢)

a(to)

£ b [fl (@®)u(e®) + () /

[ﬁ(s)u(s) +f2(S)/( )g(t)u(r)Atj|As

alt

)
g(t)u(r)Ar:|aA(t)

(to)
S

a(o(t)
< b / N [ﬁ(s)z(s)+fz(s) / g(z)z(r)Ar]As

(o)
a(t)

+b(t) |:f1 (a()z(c(®)) + fo((2)) / g(t)z(r)Ari|aA(t)

(to)
a(o(t)

< z(a(t))bA(t)/

alto)

[fl(S) +/2(8) /: )g(t)Ar:| As

a(t)

+z(t)b(t)[f1(a(t)) +fo(a(t)) / “

= A()z(o (1)) + C)z(t), tel (3.9)

g(r)Ar]aA(t)

Note that from (3.4) we get

B(t)

AD = 0B
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and from (3.9) we have

R B()
0= 1 0B0

0
1+ pu()B()

z(a(t)) + C(t)z(2)
[2(2) + ()22 ()] + C(0)z(2),

which yields

1 A 5[ B(¢)

1+ M(t)B(t)Z 1+ n()B(2) ' C(t)]Z(t)’

ie.,

28(t) < [B(@) + (1 + n(®)B(1)) C(1)]2(2)

= (B@ C)(t)z(2).

Page 5 of 15

(3.10)

Note that z is rd-continuous and B@® C € R*, from Lemma 2.5 and (3.10), we obtain

Z(t) =< Z(t())EB@C(t, t())) te 1

From (3.6) and (3.8), we get

(e(to) — a(1)) 22

+a(T) =2(T),

ie.,

%z(to) - %a(T) =z(T).

From (3.2), (3.11) and (3.12), we have

22 alto) — 5 alT) = 2(T) = 2lto)enc(T, o) = 2(t)P.

In view of (3.2) and (3.13), we get

a(T)
z(ty) < m

Substituting (3.14) into (3.11), we obtain

z( egoc(t,to), tel

T)
)< ———
A+l B
Noting u(t) < z(t), we get the desired inequality (3.3). This completes the proof.

If welet A = ﬁ in Theorem 3.1, then we obtain the following corollary.

(3.11)

(3.12)

(3.13)

(3.14)
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Corollary 3.1 Assume that o, u, a, b, fi, f», g, A, B, C are the same as in Theorem 3.1 and
b(T) #0. Suppose that u satisfies

a(t) s
ult) < a(t) + b(e) / ( )[fl(s)u(s) +h(6) f ( )g(r)u(r)Ar}As

o(T) s
+/a [fl(S)M(S) +f2(s) /Q(to)g(t)u(t)Ar}As, tel

(t0)
If
/3 = eBEBC(Tr tO) <1+ b(T)7

then

a(T)b(T)

=T s

epac(t to), tel
Remark 3.1 If we take a(t) = ug, b(t) =1, a(t) = t and A = 1, then Theorem 3.1 reduces
to [16, Theorem 3]. If we take a(t) = up, b(¢) =1, a(t) = ¢, fi(t) = fo(t) and A =1, then
Theorem 3.1 reduces to [20, Theorem 2.3].

Theorem 3.2 Assume that o, u, a, b, \ are the same as in Theorem 3.1 and u(t)Z(t) <1.
Let v(t,s) and w(t,s) be defined as in Lemma 2.3 such that v2(t,s) > 0, w2 (t,s) > 0 fort > s
and (2.3) holds. Suppose that u satisfies

t a(s)
u(t) < a(t) + b(t)/ [v(t,s)u(s) + w(t,s)/ g(r)u(t)Ar:| As
to a(to)
T a(s)
+ kb(T)/ [V(T,s)u(s) + w(T,s)/ g(r)u(r)At]As, tel (3.15)
to alto)
If
1
B :=epae(T o) <1+ = (3.16)
then
T
M(t) = %eﬁeaé(t; tO)! tel, (317)
where
~ al(t) a(s)
A(t):= bA(t)/ |:v(a(t),s) + w(a(t),s)/ g(r)Ati| As,
e (o (3.18)
B(t) := Lt)ﬁv,
1-u()A(2)
- alt)
C(t) := b(t) [v(o(t),t) + w(a(t),t) / g(n)AT
(0 (319)

t a(s)
+ /to |:VtA(If,S) + wf(t,s)/a(to)g(r)Ar] Asi|.
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Proof Denote

t a(s)
z(t) := a(T) + b(t)/ [V(t,S)M(S) + w(t,s)/ g(r)u(r)Ar] As

a(to)

T a(s)
+ kb(T)/ |:V(t, T)u(s) + w(T,s)/ g(t)u(r)Ar] As, tel.
to a(to)
Then z is nondecreasing on I,
u(t) <z(t), tel,

and

als)

T
z(ty) = a(T) + Ab(T)/ [V(T, s)u(s) + w(T,s) g(t)u(r)Ati|As

a(to)
From Lemma 2.3 and (3.15)-(3.21), we have

a(s)

a(t)
Z2() = bA(t)/ [v(a(t),s)u(s) + w(o(t),s)/

a(to)

g(r)u(r)Ar]As

a(t)

+ b(t) [v(a(t), t)u(t) + w(a(t), t) / g(n)u(r)At

(t0)

/ |:Vt (t,8)u(s) + wt (t, S)/ g(™)u( 'C)A‘L':| As]

a(s)
< bA(t)f [ o(t) s z(s) + w(a(t) )f g(‘L’)Z(T)A‘L’:| As
a(to)
a(t)
+b(t) [v(o(t), t)z(t) + w(o (t), t) / g(r)z(r)At
a(to)
a(s)

+ /t[vt (t,5)z(s) + w; A(t,s) g(T)Z(l')AT:| As]

a(to)

a(s)
o(t)) bA(t)/ [ (o(2),s) + w(o(®), )/ g(r)At]As
a(to)

a(t)

+z(t)b(t) |:v(a(t), t) + w(a(t), t) / g(n)AT

(to)

/t0t|: (t,s) + wi(t, s)/ g(1) Ar] :|

= A(t)z(a(t)) +C)z(t), tel.

Similar to the proof of Theorem 3.1, we get (3.17). This completes the proof.

If welet A = ) in Theorem 3.2, then we obtain the following corollary.

Page 7 of 15

(3.20)

(3.21)

(3.22)

(3.23)
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Corollary 3.2 Assume that u, a, b, v, w, A, B, C are the same as in Theorem 3.2 and
b(T) # 0. Suppose that u satisfies

s

)
g(t)u(t)Ar:| As

a(to)

u(t) < a(t) + b(t) /t[v(t, s)u(s) + w(t,s)

to

T a(s)
+ /;0 |:V(T,S)M(S) +w(T,s) ‘/;(to) g(r)u(r)At]As, tel

If
B = epqe(T,ty) <1+ b(T),
then
a(T)
u(t) < me§®5(t, t), tel.

Theorem 3.3 Assume that u, a, f, k. are the same as in Theorem 3.1. Let g(t, s) be defined
as in Lemma 2.4 such that gl (t,s) > 0 for t > s and (2.3) holds. Suppose that u satisfies

u(t) < a(t) + /tf(s) [u(s) + /Sg(s,t)u(t)Ar:| As

Lo

T s
+A/ f(s)[u(s)+/ g(s,r)u(r)Ar]As, tel (3.24)
If
T 1
pim | FOea A<, (325)
then
u(t) < 1“_(2 [1+ /t:f(s)eA(s,to)As:|, tel, (3.26)
where
A@):=f(0) +g(o(0),8) + /tgf(t, T)AT. (3.27)

Proof Denote

z(t) := a(T) + / f(s)[u(s) + /Sg(s,t)u(t)Ar]As

to

T s
+k/ f(s)[u(s)+/ g(s,t)u(r)At:|As, tel. (3.28)

Lo

Then z is nondecreasing on I,

u(t) <z(t), tel, (3.29)
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and

T

z(tg) = a(T) + A/

Lo

f(s) |:u(s) + /Sg(s, r)u(r)Ar:|As. (3.30)

0

From Lemma 2.4 and (3.26)-(3.29), we get

A0 = FOult) + £ / gt Dyult) At

<£(t) [z(t) + /t t g(t,r)z(r)At], tel (3.31)
Let
V(t) = 2(0) + /t et 0)en)AT, el (3.32)
Obviously,
V(to) =2(ty),  2)<V(®),  2°@) <fOV(Q). (3.33)

From Lemma 2.4, (3.27) and (3.32), we obtain

VAL = 22(t) + g(o(8), £)z(0) + /tgtA(t,t)z(r)Ar

to

< [f(t) +g(o(t),t) + /tgf(t,r)m]\/(t)

to

=A@)V(E), tel
It is easy to see that A € R*. Therefore, from Lemma 2.5 and the above inequality, we have
V(t) < V(to)ea(t to) = z(to)ea(t to), tel (3.34)
Combining (3.33) and (3.34), we get
Z22(t) <f@)z(to)ealt, to). (3.35)
Setting ¢ = T in (3.35), integrating it from £, to ¢, we easily obtain
t
200 < 2(t0) + 2(0) | feals o) (3.36)
to

From (3.28) and (3.30), we have

A+l

(2(to) — a(T)) +a(T) = z(T),

ie.,

%z(to) - %a(T) =z(T). (3.37)
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From (3.25), (3.36) and (3.37), we have

A+l

2 olto) — 5 a(T) = 2(T) = () + () / F(S)ea(s ) As = 2(to) + 2(t0) .

In view of (3.25), we get

a(T)
t 3.38
z(t) < T (3.38)
Substituting (3.38) into (3.36), we have
s bo) A .
() < 2 m[ / Fls)eals,to) s} (3:39)
Noting u(t) < z(t), we get the desired inequality (3.26). This completes the proof. O

If we let A =1 in Theorem 3.3, then we obtain the following corollary.

Corollary 3.3 Assume that u, a, f, g and A are the same as in Theorem 3.3. Suppose that

u satisfies
ult) < alt) + ft:f(s) [u(s) + /t:gm r)u(r)Ar}As
+/ton(s)[u(s)+/tosg(S’T)M(T)AT]AS’ tel.
If
B = /t:f(s)ms, f)As <1,
then
u(t) < —[1+/f(s)eA(s to)As], tel.

Remark 3.2 If we take a(t) = uo, g(s,t) = g(¢) and A = 0, then Theorem 3.3 reduces to
[27, Theorem 1]. If we take T = R, a(t) = up and A = 0, then Theorem 3.3 reduces to [32,
Theorem 2.1 (a1)]. If we take T = Z, a(t) = ug and A = 0, then Theorem 3.3 reduces to [32,
Theorem 2.3 (c1)].

4 Applications

In this section, we will present some simple applications for our results.
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Example 4.1 Consider the following retarded Volterra-Fredholm type dynamic integral

equation on time scales:
a(f)

u(t) = a(t) + b(t)/

alto)

F(s,u(s),/: )H(r,u(r))Ar)As

a(T) - s
+ / F(s,u(s), / H(r,u(t))Ar)As, tel, (4.1)
o a(to)

(to)

where u,a,b : I — R are rd-continuous functions, |a| is nondecreasing, b(T) #0, « € T,
F,IT":I xR xR — Rand H,ﬁ[ :I x R — R are continuous functions.

The following theorem gives an estimate for the solutions of Eq. (4.1).

Theorem 4.1 Suppose that the functions F, H ,F and H in (4.1) satisfy the conditions

|F(t,u,v)| <fi@®)lul + oDV, telLuveR, (4.2)
H(t,u)| <gt)lul, teluekR, (4.3)
| |
Et,u,v)| <i@Olul + OV, teluveR, (4.4)
Htu)| <g@®)|u|, telLueR, (4.5)
| (e, )|

where fi,f2,¢ : 1 — R, are rd-continuous functions. If

B :=epaoc(T,ty) <1+ |b(T)

’

then all solutions of Eq. (4.1) satisfy

lu(t)| < 1|a(T)b(T)| esoc(t,ty), tel, (4.6)

+1b(T)| - B
where B(t) and C(t) are defined as in Theorem 3.1.

Proof By (4.1)-(4.3), we get

S

a(t)
()] < |at)] + |b<t>|/
al(ty)
a(T)
of
alty)

al(t) s
< Jato] + o0 [ ( )[fl<s>|u<s>| o0 [ ( )g<r>|u<r)|m]m

F(s, u(s), H(t,u(r))Ar) ‘As

a(to)

F(s,u(s),/s ﬁ(t,u(f))At)‘AS

(t0)

o(T)
+/ |:f1(S)|M(S)| +f2(S)f g(t)]u(r)]Ar]As, tel

S
(to) (to)

Using Corollary 3.1, we obtain the desired inequality (4.4). d

The next result deals with the uniqueness of solutions of Eq. (4.1).
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Theorem 4.2 Suppose that the functions F, H, F and H in (4.1) satisfy the conditions

|F(t,u1,v1) = F(t,u2,v2)| i)ty — x| + o(O)lvi = val, t€Lu,veR, (4.7)
|H(t, w) — H(z, u2)| <g@®)|m —uy|, telLu,u;eR, (4.8)
|E(t, u1,v1) = E(t, 2, )| < fi(O)lta — o] + o)1 = val, telu,veR, (4.9)
\H(t,u1) - H(t, )| < g0l — 3], t€Lug,up €R, (4.10)

where fi,f2,g : I — R, are rd-continuous functions. If

H

B:=eppc(T,to) <1+ |b(T)

then Eq. (4.1) has at most one solution on I, where B(t) and C(t) are defined as in Theo-
rem 3.1.

Proof Let u(t) and v(¢) be two solutions of Eq. (4.1) on /. From (4.1) and (4.7)-(4.10), we
have

|u(2) = v(2)|

a(t) s
< |b(t)| /(t ) [ﬁ(s)|u(s) - v(s)| +f2(s)/(t )g(t)|u(t) - v(r)fAr:| As

o(T) s
+ /( ) |:f1(s)|u(s) —v(s)| +f2(s)/( )g(r)|u(r) —V(‘L')|A‘L':|AS, tel. (4.11)
a(ty alty

Applying Corollary 3.1 to (4.11), we get |u(t) — v(t)| <0, t € I. Therefore u(t) = v(t), that
is, there is at most one solution to Eq. (4.1). O

No _

Example 4.2 Assume T = g {1,,4%...} with ¢ > 1 and consider the following

Volterra-Fredholm type g-difference equation:

u(t) = a(t) + b(t) Z[fx(s)u(s) +3(s) Zg(r)u(r)}

s=tp =10

T s
+ Z[ﬁ(s)u(s) +f2(S)Zg(f)M(T)}, tel, (4.12)

s=to T=to

where u,a,b,fi,f,,g: I — R, are functions, £y, T € g, T > tyand I = [ty, T] N g™,

Theorem 4.3 Assume that a is nondecreasing and (q — 1)tA(t) < 1. If

Tlq
B = 1_[ [1 +(g- l)r(B(t) +C(t)+ (g - l)TB(‘C)C(‘C))] <1+ b(T),

T=to
then the solution u(t) of Eq. (4.12) satisfies the following inequality:
tlq

H[1+(q—l)r(B(r)+C(r)+(q—1)rB(t)C(r))], tel, (4.13)

T=£0

a(T)b(T)

=T s
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where

blqt) - b(t) & °
T Z[fl(s) a Zg(r)} B =

7=ty

C(t) = b(t) [fl(t) +fo(8) Zg(r)}.

T=tp
Proof Note that o (¢) = gt, ju(t) = (g — 1)t for any ¢ € "0 and

tlq

eyt to) = [ [[1+ (g - Drp()]

T=to

for t > ty, where t,ty, T € ¢"°. Let u(t) be a solution of Eq. (4.12), we get

|ut)| < a(®) + b(t) Z[ﬁ<s>|u<s>| +(s) Zg(r>|u(r>|}

s=to T=tg

T s
+ Z[fl(s)fu(s)y +£(s) Y g(0)|u(x)

s=to

}, tel (4.14)

7=t

Then a suitable application of Corollary 3.1 to (4.14) yields the desired result (4.13). O

Example 4.3 Assume T = R and consider the following retarded Volterra-Fredholm type

integral equation:

a(t) s
u(t) = a(t) + b(t)f [ﬁ(S)M(S) +f2(8)/ g(f)u(f)dr} ds
alty) a(to)
o(T) s
+ A/ [fl(s)u(s) +f2(s)/ g(t)u(r) df] ds, tel, (4.15)
a(to) a(to)

where u,a,b,a,f,f,g: I — R, are continuous functions, £y, T € R, T > ¢y and I = [£o, T].

Theorem 4.4 Assume that a is nondecreasing, A > 0 is a constant, o'(t) > 0, «(t) <t and
b'(t)=0.If

T
B = exp(/ (A+ C)(r)dr) <1+ @,

then the solution u(t) of Eq. (4.15) satisfies the following inequality:

u(

a(T)b(T) exp(

to

Page 13 of 15
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where we use the convention that % = 400,

al(t) s
A(t) = b’(t)/( ) [fl(s) +f2(s)/( )g(r)dr] ds and

a(t)

C(t) := b(t) [ﬁ(a(t)) +f2(a(t))/ g(t)dr:|o/(t).

(to)

Proof Note that o(¢) = t, u(t) = 0 for any ¢t € R, and

eyt to) = exp(/ p(r)dt)

for t > ty. Let u(¢) be a solution of Eq. (4.15), we have

a(t) s
|u(@)| Sa(t)+b(t)/( )[ﬁ(S)Iu(S)| +fz(S)/( )g(f)lu(f)ldf] ds

o(T) s
+ )»/ |:f1(s)’u(s)’ +f2(s)f g(t)|u(t)’ dr] ds, tel (4.17)
o a(to)

(to)

Then a suitable application of Theorem 3.1 to (4.17) yields the desired result (4.16). O

5 Conclusions

In this paper we have established some new retarded Volterra-Fredholm type integral in-
equalities on time scales. Unlike some existing results in the literature (e.g., [16, 20]), the
integral inequalities considered in this paper involve the retarded term, which results in
difficulties in the estimation on the explicit bounds of unknown functions u(z). These in-
equalities generalize and extend some known inequalities and can be used as tools in the
qualitative theory of certain classes of retarded dynamic equations on time scales.
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