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The main purpose of this paper is to establish the weighted (L?, L9) inequalities of the
oscillation and variation operators for the multilinear Calderén-Zygmund singular
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1 Introduction and results
Let K be a kernel on R x R\ {(x,x) : x € R}. Suppose that there exist two constants § and
C such that

’K(x,y) < ¢ for x # y; 1.1)
lx =yl
8
Koy =K ()| = T Clx - rfjs (1.2)
[KGe) =K ()] = 3% Cly- |yl+'5 for |x -y > 2y - y/|. (1.3)

We consider the family of operators T = {7} given by
Tf0= [ Koo 1.4
[x—y|>€

A common method of measuring the speed of convergence of the family T is to consider
the square functions

0 1/2
(Z'Tfﬁf_ T€t+1f|2) ’

i=1

where ¢; is a monotonically decreasing sequence which approaches 0. For convenience,
other expressions have also been considered. Let {t;} be a fixed sequence which decreases

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13660-017-1568-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1568-8&domain=pdf
mailto:huu3y3@163.com

Hu and Wang Journal of Inequalities and Applications (2017) 2017:292 Page 2 of 14

to zero. Following [1], the oscillation operator is defined as

o]

1/2
O(Tf)(x) = (Z sup }Teiﬂf(x)—n.f(x)P)

=1 Livl=€is1<€i=t;

and the p-variation operator is defined as

00 1/p

V,(Tf)() = sup (2; Tef (%) - Tef(x)|p> :
€O\ 5

where the sup is taken over all sequences of real number {¢;} decreasing to zero.

The oscillation and variation for some families of operators have been studied by many
authors on probability, ergodic theory, and harmonic analysis; see [2—4]. Recently, some
authors [5—8] researched the weighted estimates of the oscillation and variation operators
for the commutators of singular integrals.

Let m be a positive integer, let b be a function on R, and let R,,;1(b; x, y) be the m + 1th
Taylor series remainder of b at x expander about y, i.e.

Ry (b3%) = o)~ 3~ 590) )",

a<m

We consider the family of operators 7% = {Tf }es0, where Teb are the multilinear singular
integral operators of T,

m+ b; )
Tf () = / Rt B59) e i) . (15)

[x—y|>€ |x_y|m

Note that when m = 0, T? is just the commutator of T, and b, which is denoted by T, 5,
that is to say

Toaf () = f (bx) — b)) K () 0) dy. (L6)

[x—y|>€

However, when m > 0, Tf is a non-trivial generation of the commutator. It is well known
that multilinear operators are of great interest in harmonic analysis and have been widely
studied by many authors (see [9-13]).

A locally integrable function 4 is said to be in Lipschitz space Lip(R) if

1
614, = SUP T [|b(x) — by| dx < o0,
where
1
by=— /b(x) dx.
1| J;
In this paper, we will study the boundedness of oscillation and variation operators for the

family of the multilinear singular integral related to a Lipschitz function defined by (1.5)
in weighted Lebesgue space. Our main results are as follows.
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Theorem 1.1 Suppose that K(x,y) satisfies (1.1)-(1.3), b e Ag, 0 < B <8<1, where$ is
the same as in (1.2). Let p > 2, T = {T¢}es0 and T? = {T?} .o be given by (1.4) and (1.5), re-
spectively. If O(T) and V,(T) are bounded on LP°(R,dx) for some 1 < py < oo, then, for
any 1 <p <1/B with 1/g = 1/p — B, w € A,4(R), O(T?) and V,(T?) are bounded from
LP(R, ? dx) into L1(R, w1 dx).

Corollary 1.1 Suppose that K(x,y) satisfies (1.1)-(1.3), b € Ag, 0 < B < & <1, where § is
the same as in (1.2). Let p > 2, T = {Te}es0 and Ty = {The}es0 be given by (1.4) and (1.6),
respectively. If O(T) and V,(T) are bounded on L*°(R,dx) for some 1 < py < 00, then,
forany1<p<1/B with1/q=1/p - B, w € Ap4(R), O(T}) and V,(T,) are bounded from
LP(R, ? dx) into L1(R, w1 dx).

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A < CB. A = B
means that A < Band B S A.

2 Some preliminaries
2.1 Weight
A weight  is a nonnegative, locally integrable function on R. The classical weight theories
were introduced by Muckenhoupt and Wheeden in [14] and [15].
A weight w is said to belong to the Muckenhoup class A,(R) for 1 < p < 00, if there exists

a constant C such that

1 1 A\
(m /Ia)(x)dx> (m /Iw(x) P- dx) <C

for every interval I. The class A; (R) is defined by replacing the above inequality with
1 .
m / w(x)dx Sess 1Inf w(x) for everyball I C R.
I XE.

When p = 0o, we define A (R) = U1§p<oo A,(R).
A weight w(x) is said to belong to the class A, ,(R), 1 < p < g < 00, if

1 1/q 1 i 1/p’
(m /Iw(x)qu) (m /Iw(x) 4 dx) <C.

It is well known that if w € A4, 4(R), then w? € A (R).

2.2 Function of Lipg(R)
The function of Lips(R) has the following important properties.

Lemma 2.1 Let b € Lip4(R). Then
(1) 1sp<oo

L L bx)-b ?d v b
sup— | — Xx) — X < C||b|| pa;
1p|1|ﬂ<|1| /I| | > = ¢l
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(2) forany L C b,

1

|I2 | Iy

L]
|b(y) — by, | dy < ﬁwﬁnbmﬂ.

2.3 Maximal function
We recall the definition of Hardy-Littlewood maximal operator and fractional maximal

operator. The Hardy-Littlewood maximal operator is defined by

M) = sup — [1£0)] dy.

=2 U1 J;

The fractional maximal function is defined as

1 . 1/r
My, (f)x) = sup(—l,ﬂ / If dy)
mx \ M| I

for 1 <r < oo. In order to simplify the notation, we set Mpg(f)(x) = Mg, (f)(x).
Lemma 2.2 Let1<p< o0 and w € Ax(R). Then

IMfllr ) S ”Mjf“uﬂ(w)
for all f such that the left hand side is finite.
Lemma 2.3 Suppose0< B <1,1<r<p<1/B,1/qg=1/p-B.Ifw € Ap4(R), then

Mpof 9wty S W llzeor)-

2.4 Taylor series remainder
The following lemma gives an estimate on Taylor series remainder.

Lemma 2.4 [10] Let b be a function on R and b e L*(R) for any s > 1. Then

1 s 1/s
IRm(b;x,y)I,Slx—yI’”<@ /Iylb(’”)(Z)I dZ) :

where I, is the interval (x — 5|x — y|,% + 5|x — y|).

2.5 Oscillation and variation operators
We consider the operator

oo 1/2
O'(Tf)(x) = (Z sup |Tti+1f(x)—T5f(x)|2) .

=1 Lis1<8i<t;

It is easy to check that

O'(Tf) =~ O(TY).
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Following [4], we denote by E the mixed norm Banach space of two variable function 4
defined on R x N such that

N\ 172
lhllg = (Z(sup|h(s,i)|) ) < 00.

Given T = {T¢}es0, where T, defined as (1.4), for a fixed decreasing sequence {¢;} with
t; \( 0, let J; = (t;11,¢;] and define the E-valued operator U(T) : f — U(T)f by

U0 = Tsf - TS O { [ K1)

ir1<|x-yl<s} sej;,ieN

Then
O(TNE) = [UTY @) | = 1T f @~ T )]y

= H { / K(x,y)f () dy}
{tiv1<lx—yl<s} sej;,ieN

Ontheotherhand, let ® = {8 : 8 = {¢;},€; € R,¢; \ 0}. We denote by F, the mixed norm
space of two variable functions g(i, 8) such that

E

1/p
lgllr, = stgp<2|g(i,ﬂ)|"> :

We also consider the F,-valued operator V(T) : f — V(T)f given by

VTY () = { T f @)~ Tuf 0} 5 cor

Then

Vo(D)f @) = [V(TY )], -

Next, let B be a Banach space and ¢ be a B-valued function, we define the sharp maximal
operator as follows:

@) - i ¢(2)dz

1
ft _

@*(x) = sup —

1l J;

xel M1 Jr

1
dyzsupmf—/“‘ﬂ()’)—cngdy'
B xel € |1| 1

Then

MHO'(TF)) < 2UT)f ) (x)
and

M (V,(TF)) < 2(V(T)F) ().

Finally, let us recall some results about oscillation and variation operators.
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Lemma 2.5 ([5]) Suppose that K(x,y) satisfies (1.1)-(1.3), p > 2. Let T = {T¢}es0 be given by
(1.4). If O(T) and V,(T) are bounded on L0 (R) for some 1 < po < 00, then, for any1 < p < oo,
weA,R),

”OI(Tf)Hl}’(w) = HO(Tf)HU’ () ~ S W)

and

Vo ZO iy S W)

3 The proof of main results
Note that if w € A,4(R), then w? € A(R). By Lemma 2.2 and Lemma 2.3, we only need

to prove
MO (T)f) @) S 8], (M (1)) + My (F) () (3.1)
and
MV, (T))@ < 67, (Mpr (F)) + My (£) () (3.2)

hold for any 1 < r < oo.
We will prove only inequality (3.1), since (3.2) can be obtained by a similar argument.
Fix f and &y with an interval I = (xo — I, % + ). Write f = fi + fo = f xs1 + f xr\s1, and let

CI={ /{ | }quxo,y)fz(y)dy} =U(T")fs o).
tiv1<lxo—yl<s

o — yI™ sefpieN

Then

U(T")f (%) = { f Bt Bi%3) g ) dy}
(ta<lvyles) X =y1"

m+1(b X, )
Wf) +U(T")fo(w)

s€jjieN

=U(T) (
Therefore

1
o [lurtye - as

1 m1(D; %, -) b b
< JJun (B2 | v g [l -u(r ] s
= M1 + Mz.

Forxel, k=0,-1,-2,...,let Ex = {y: 2k .6l < |y—x| <2K- 60}, let Iy = {y: |y —x| <
2k . 61}, and let by (2) = b(z) - mi!(b(m))lkzm. By [10] we have R,,,1(b;%,¥) = Ryi1(bi; %, y) for
any y € E.
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By Lemma 2.5, we know O'(T) is bounded on L*(R) for u > 1. Then, using Holder’s
inequality, we deduce

u 1/u
( m+1(b x’)ﬁ) dx)
|m E

1 Rm+ b;', u 1/u
< (= / fea® D) ay)
1 Jyaly—xi<eny | 17—
(b 1/r
< m+1\Ok;> ;)/f(y))
Pt ly -

A

Il

e /= CI\ /N N
~| =
F

FE (o)
ﬁg@?“w\)

(mz

= My + My

of

A

"b;
Mf@

u )1/M

By Lemma 2.4 and Lemma 2.1,

1 . s 1/s
Ratbisz| 1=yt (o [ 6070 a2)

1 1/s
< |x — y|™ M) (2 _ (MY |*
~ =l <2k -301 b’—x\<2k~301|b (y) (b )Ik| dz)

Sle=p1" (@076 -

Then

1 0 1/u
b lﬂ kbu “d
M 5], (||k§2 [ rora)
1 0 1/u
<o, (5 3 [ rotas
| |k:700 Ej
1/u
51,2 (5 [ rotay)
| Jor

. 1 . 1/r
<o >||Aﬂlﬂ(m [ o a)

< 671 ;, Mp.r(f) o)-
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Since b}(m) () = B"(y) — ('), then, applying Hélder’s inequality and Lemma 2.1, we get
1 0 1/u
My S <|I| Z (b(m))lk)f(y ‘ dy)
(|1| (/ ol dy) </ |b”’)(y) )
1/u
<11, (o 32 ([ ror ) wee)

1/u
1 0
< [e ||A,5Mﬁ,r(f><xo>(m 2 |1k|)
k=—00

< 6], Mp. ) ko)

)1 M/r> 1/u

We now estimate M. For x € I, we have

[ (T )foee) = U(T*)fox0) |

Ry (b;x; )
- H{ / 2 K w0 dy
(tia<lx—yl<s) %=

m1 (D3 %0,9)
_/ H—”K(xo,y)fz(y)dy}
{tir1<lxo—yl<s}

o — yI™”

s€jiieNIlE

Rm b; y Rm b; )
< {/ <—+1( xy)l((x,y)— R (bio.y) y)K(xo,y))/z(y)dy}
{tiy1<lx—yl<s} |x _y|m |.7C() _y|m s€J;ieNIIE
m+1(b X0, )
+ {/(X{ti+l<x—y|<5}(y) - X{tt+1<|x0—y\<sl(y ) K(xo,_)/)fz()/ }
R loco — | sefpieN |l E
= Nl + Ng.

For k=0,1,2,...,let Fy = {y: 2K - 4] < |y — xo| < 2% - 40}, let T, = {y : |y — x0| < 2 - 41},
and let Zk(z) =b(z) - —( "‘))Ikz . Note that

Ryyi1(b;x, m1 (D3 %0,
Bt 0% 9) ) - Rt Bx00) g
[ =yl oo — ¥
Rm+ E; s Rm+ E; )
_ 1(bk :y)l((x,y) _ 1(bx x,(,)q y)K(xo,y)
lx =yl [0 — ¥l
1 ~ -
= — (R (b1 %,9) = Ron(br; %0, 7)) K (x, )
o =yl
+Ru(b )( ! 1 )K( )
k;x ’ - xr
mORTOTI =y Too =y ’

1 <km>(y) ((x—y);” _ (xo —y);”) K(oy)
lx =yl o —
m+1(ber07 )

P (K(x,) = K(x0,))-
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By Minkowski’s inequalities and ||{ x(s;,, <x—yl<s} }seJiien|lE < 1, we obtain

Nl < /1‘{” {X{ti+1<|x—y|<s}}seli,iEN ”E

Rm+1(zk;x0:y)
o — y|™

X(),

)| [20)| dy

Rm Z; »
% ‘M[((x, ) —
% — y|™

= Z/F v — y|m|Rm(zk?x»)’)—Rm(Zk;xo,y)\]1((x,y)|[f2(y)’dy
k

|K @, 9)||0)| dy

= ~ 1
Rmb» ’
+k2:0: Fk| (bi; %0 y)|‘|x—y|m yl’”
(x—p)" (0
) B e S e

m+1 bk’xo,y) ‘|1< X,y - K( xO’ Hfz ‘ dy
[xo — y|™

+Z f
= NH +N12 +N13 +N14,.

From the mean value theorem, there exists 1 € I such that

Ru(Bis %,9) = Ron(bi %0,) = (¢ = %0)Ryu1 (B m, ).

For n,x € I, y € Fy, we have |y — x| = |y — x| = |y — n| and 5|y — n| &~ 5|y — xo| < 2¥*1 - 20L.

By Lemma 2.4 and Lemma 2.1 we get

1/s
!Rm_l(l;’k;n,y)\Sln—ylm‘l(uy /Ib(m )\st>
1/s
50 - (6 )

<|x— m-1{ =
Sl <2k+1'201 |z—x0|<2k+1.201

S[e], @) -y

Then
R (bt %,3) = R (i xo, )| < 6 (20)" e = ol = 1.

Since [K(x,y)| < Clxo —y17,
s /
Nu < |6 (2¢1) / a0
e ” /\ﬂ kX:: K.al<|xg-yl<2k+1.41 (2 - 41)? V(y)| y

1 (2kps
S Ly e 76)| dy
k

— 2k 2kl |x0—y|<2k+1-4l

S 161, Mp(F) o).
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For Ny, sincex €1,y € Fy,

- 1 1/s
mwmwmuﬂw<Lﬂm@m@ < o], (@0 -5

L]
and
1 1 [ — x|
le—ylm o =yl |~ -yt
Thus
o0
Ny < || 2k] / o) dy < ||p"| . Mg(f)(x0).
12 || HA;; k;( ) 2k4l<\x0—y|<2k+14l 21( 412V | || || Ag B 0
As for Nj3, due to
(=)™ (%o —y)"| _ 2=l
e N e L R P T

and noting Z,i”’)(y) =b"(y) - (b");, , we have

M<Z/w ) - () |25 |1ty ay

lxo — yI?

A

i_ (m) (m)
2k2 ,/;0 y|<2k-41’b - (b )Hf(ﬂdy

A

5

1 1/r
— ) "d )
k (2k 4l lxg—y|<2k-41 [f()/ | )

1 y 1/
(m) (2 _ (M)
. <2k -4l \xo—)’|<2k~4lib 0) (b )Ik| dy)

o0
1
SN6x Mep (Do) D o < 6 | Mpr(F) (xo).
k=0

Notice
[Rus Bis 0] = [RBseon)| + B 0) o ~ )"
S8, (2507 1o = 1™ + [B79) = (6 1o — 1™
and by (1.2),

lx — %o
|[K(,5) = K(x0,9)] < W
0 —

Similar to the estimates for Nj;, we have

[Ron(bi; %0, 9)| 1% = xo0]?
B lx=ylm o lxo -y

O dy < |6, M5 () ex0).

k=0
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Similar to the estimates for N3, we have

Z B lx- ;I’” I%o (|)1+3 ol dy S 167, Mar(Hxo)-
Then

Nus S [6] 5, (Mp(N)x0) + M, ()(x0))-
Finally, let us estimate N,. Notice that the integral

_/R(X[t”1<\xfyl<s}()’) - X{tt+1<|x0*y\<8l(y ) %0 —}’|

K(xo:)’)f2(3’

will be non-zero in the following cases:
() i1 <lx -yl <sand |xo —y| < ti1;

(ii) fia <lx—yl<sand |xo -y >s;

(iif) i1 < lxo =yl <sand |x -y < tiy1;

(V) tis1 < %0 -y <sand [x =] = s.
In case (i) we have £;,1 < |x — y| < |xo — x| + |x0 — | <[ + t;41 as |x — xp| < . Similarly, in
case (iii) we have t;,; < |xg — y| < [ + £ as |x — xo| < [. In case (ii) we have s < |xg —y| < [ +s
and in case (iv) we have s < |x — y| <[ + 5. By (1.1) and taking 1 < ¢ < , we have

Riui1(b;x0,y)
lxo — yI™
m1 (D3 X0,

J/|m
m+1(b;xo,y)
oo — y|™

L),
oo — 1
£0)
%o — ¥l
m+1bx07y) Vé(y)|
%o — yI™ Ixo—yl
Rm+1(b;x0’y) IfZ(y)l

[xo = 1™ | lxo =yl

t t 1/t
FOL )

o — yIt

/R (X1 <ley1<s 0) = Xttzsr<bwo—y1<s) ¥))

S [ Hresora Ot ydﬂm}@)‘

+ / X{ri+1<|x—y|<s}(y)X{s<xo—y<l+s}(y)‘
R

+ / Xlti<lxo—yl<s} (Y)X{t,'+1<|xo —yl<l+ti} ()/)
R

+/ X{ti+1<|x0y<s}(y)X{s<|xy|<l+s}(y)‘
R
’ R 1(17;950»37)
s ( / X{r,-+1<x—y<s}0’)‘ =
R

lco — y|™
+ 1 (/R X{ti+1<\xo—3'|<s}(y)

Riui1(b;%0,9)
|xo — y|™

t t 1/t
O )

o — yIt

Then

Rm+1(b;x0’y)
oo — ¥

N, < ll/t’

t 1/t
LW ) }
i+1<|X—=Y|<S d
{</H‘§ Xitw<laoyi<s ) lco =yl Y senieN | E

Rua(B350,9) |* (6O )m}
X i+1<lx0—yl<s )‘ d
{([R {tir1<lx0~y! }(y lxo — ¥t 4 sejpieN Il E

’
+ ll/t

locg — y|™

= N21 + N22.
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Notice
|Rm+1(5k;x0,y)| < B A (2"1)ﬁ|xo — 91"+ |6 (y) ~ (b(m))Tk |10 — 1.

Choosing 1 < r < p with £ = /7, we have

Rm (b;x , ) t )|[ 2/ty1/2
Ny 5[1“ ZSUp(/ X{5i+1<|x*y|<5}(y) N (i,,y lf2()/ i dy
N s %0 — %o — ¥l
<ll/t’ Z/ ()/) Ryi1(B;%0,9) ! lf20’)|t dy}m
- ieN Mt siel<el lxo = y1" | lxo =yl
< pit / Ry1(b;x0,9) " 1)1 dy}w
~ Rl o =y1" | lxo -yl
~ Ut
5ll/t/ i/ Rm+l(bk;x0ry) ! [f2()’)|[ dy
P R 2 e A B R
oo ¢ 1/t
swwmwﬂipmﬁfﬁmﬁw}
k=0 Fe X0~y
¢ m) B ¢ FO)IF
+1 {Z/P |b (j/ )N |) %0 — ylt dy

But

— vt
k=0 Fr |x0 J’|

oS pore)
- k=1 (2 - 4lyt lxo—yl<2k+1.4 i’
1/t
=1 (2kpee / ;
d
(Z KD 2k 51 |xo—y\<2k»51v(y)| Y
1/t
1 (2kl)ﬂt2 2 1/t
d
( k(t—l)(zk,5l [xoy<2k-51v@)| J’)
( 1

k(-1
00 Lf(y) |t 1/t
ll/t’ b m) m _ t d
{;L‘” L)

| — yI?

00 ¢ 1/t
ll/t [Z 2kl ﬂt/ [f(y)| dy}

A

N

A
&)

A

7 2

N

1t
) Mp,(f)(x0) S Mp,(f)(x0)

T
o)

and

o) 1/t
<(Taraa o0 -6n o)

=0 lxo—yl<2k-al

Page 12 of 14
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1 1 2 1t
< _ d
~ kXZO: 2k(t-1) (2k .4l gl <24l lf(Y)i y)

N 1/t

1 (m) A
«( 5760~ (6" )

2k 4l lxg—y|<2k-41

< 1 © 1 (2k . 48 t2d e\ Mt
<l ”Aﬂ kXO:zk(t—l)( 2k . 4] Ixo—y\<2k~4llf(y)‘ 3’)

© 1t
<[], Mer Do) | D S

k=0

S 161, Mar(f) o).

Therefore

Nt S [B] M) o)

Similarly,

Ny < || o ”;\BMﬂ,r(f)(x0)~

This completes the proof of (3.1). Hence, Theorem 1.1 is proved.
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