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Abstract
In this paper, we prove the operator inequalities as follows: Let A,B be positive

operators on a Hilbert space with 0 <m≤ A,B ≤ M and
√

M
m ≤ 2.314. Then for every

positive unital linear map �,

�2
(A + B

2

)
≤ (M +m)2

4Mm
�2(A � B)

and

�2
(A + B

2

)
≤ (M +m)2

4Mm
(�(A) � �(B))2.

Moreover, we prove Lin’s conjecture when
√

M
m ≤ 2.314.
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1 Introduction
LetB(H) be the C∗-algebra of all bounded linear operators on a Hilbert spaceH. Through-
out this paper, a capital letter denotes an operator in B(H), we identify a scalar with the
identity operator I multiplied by this scalar. We write A ≥  to mean that the operator A
is positive. A is said to be strictly positive (denoted by A >  ) if it is a positive invertible
operator. A linear map � : B(H) → B(K) is called positive if A ≥  implies �(A) ≥ . It is
said to be unital if �(I) = I . For A, B > , the geometric mean A � B is defined by

A � B = A


(
A– 

 BA– 

) 

 A

 .

Let  < m ≤ A, B ≤ M. Tominaga [] showed that the following operator reverse AM-
GM inequality holds:

A + B


≤ S(h)A � B, (.)
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where S(h) = h


h–

e log h


h–
is called Specht’s ratio and h = M

m . Indeed,

S(h) ≤ (M + m)

Mm
≤ S(h) (h ≥ ) (.)

was observed by Lin [, (.)].
Let � be a positive linear map and A, B > . Ando [] gave the following inequality:

�(A � B) ≤ �(A) � �(B). (.)

By (.), (.) and (.), it is easy to obtain the following inequalities:

�

(
A + B



)
≤ (M + m)

Mm
�(A � B) (.)

and

�

(
A + B



)
≤ (M + m)

Mm
(
�(A) � �(B)

)
. (.)

Lin [] proved that (.) and (.) can be squared:

�
(

A + B


)
≤

(
(M + m)

Mm

)

�(A � B) (.)

and

�
(

A + B


)
≤

(
(M + m)

Mm

)(
�(A) � �(B)

). (.)

Meanwhile, Lin [] conjectured that the following inequalities hold:

�
(

A + B


)
≤ S(h)�(A � B) (.)

and

�
(

A + B


)
≤ S(h)

(
�(A) � �(B)

). (.)

For more information on operator inequalities, the reader is referred to [–].
In this paper, we will present some operator reverse AM-GM inequalities which are re-

finements of (.), (.) and (.). Furthermore, we will prove (.) and (.) if the condition
number

√
M
m is not too big.

2 Main results
We begin this section with the following lemmas.

Lemma  ([]) Let A, B > . Then the following norm inequality holds:

‖AB‖ ≤ 


‖A + B‖. (.)
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Lemma  ([]) Let A > . Then for every positive unital linear map �,

�
(
A–) ≥ �–(A). (.)

Theorem  If  < m ≤ A, B ≤ M for some scalars m ≤ M, then

A + B


≤ M + m

√

Mm
A � B. (.)

Proof Put C = A– 
 BA– 

 . Since m
M ≤ C ≤ M

m , it follows that

[
C


 –




(√
m
M

+
√

M
m

)]

≤ 


(√
M
m

–
√

m
M

)

,

and hence

C +  ≤
(√

M
m

+
√

m
M

)
C


 .

This implies

B + A ≤
(√

M
m

+
√

m
M

)
A � B.

Thus

A + B


≤ M + m

√

Mm
A � B.

This completes the proof. �

Remark  By (.), it is easy to know that (.) is tighter than (.).

Theorem  If  < m ≤ A, B ≤ M and
√

M
m ≤ . for some scalars m ≤ M, then

(
A + B



)

≤
(

M + m

√

Mm

)

(A � B). (.)

Proof Inequality (.) is equivalent to

∥∥∥∥
A + B


(A � B)–

∥∥∥∥ ≤ M + m

√

Mm
. (.)

If  < m ≤ A, B ≤ M+m
 , we have

A +
M + m


mA– ≤ M + m


+ m (.)

and

B +
M + m


mB– ≤ M + m


+ m. (.)
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Compute

∥∥∥∥
A + B


M + m


m(A � B)–

∥∥∥∥ ≤ 


∥∥∥∥
A + B


+

M + m


m(A � B)–
∥∥∥∥

 (
by (.)

)

≤ 


∥∥∥∥
A + B


+

M + m


m
A– + B–



∥∥∥∥


≤ 


(
M + m


+ m

) (
by (.), (.)

)
.

That is,
∥∥∥∥

A + B


(A � B)–
∥∥∥∥ ≤ ( M+m

 + m)

 M+m
 m

.

Since  ≤
√

M
m ≤ ., it follows that

(√
M
m

– 
)[(√

M
m

)

–
M
m

+
√

M
m

– 
]

≤ . (.)

It is easy to know that ( M+m
 +m)

 M+m
 m

≤ M+m

√

Mm is equivalent to (.).
Thus,

∥∥∥∥
A + B


(A � B)–

∥∥∥∥ ≤ M + m

√

Mm
.

If M+m
 ≤ A, B ≤ M, we have

A +
M + m


MA– ≤ M + m


+ M (.)

and

B +
M + m


MB– ≤ M + m


+ M. (.)

Similarly, we get

∥∥∥∥
A + B


(A � B)–

∥∥∥∥ ≤ ( M+m
 + M)

 M+m
 M

≤ ( M+m
 + m)

 M+m
 m

≤ M + m

√

Mm
.

If m ≤ A ≤ M+m
 ≤ B ≤ M, we have

∥∥∥∥
A + B


M + m


√

Mm(A � B)–
∥∥∥∥ ≤ 



∥∥∥∥
A + B


+

M + m


√
Mm(A � B)–

∥∥∥∥
 (

by (.)
)

=



∥∥∥∥
A + B


+

M + m


[(
mA–) �

(
MB–)]

∥∥∥∥


≤ 


∥∥∥∥
A + B


+

M + m


mA– + MB–



∥∥∥∥


≤ 


(M + m) (
by (.), (.)

)
.
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That is,

∥∥∥∥
A + B


(A � B)–

∥∥∥∥ ≤ (M + m)

 M+m


√
Mm

=
M + m

√

Mm
.

If m ≤ B ≤ M+m
 ≤ A ≤ M, similarly, by (.), (.) and (.), we have

∥∥∥∥
A + B


(A � B)–

∥∥∥∥ ≤ M + m

√

Mm
.

This completes the proof. �

Theorem  Let � be a positive unital linear map. If  < m ≤ A, B ≤ M and
√

M
m ≤ .

for some scalars m ≤ M, then

�
(

A + B


)
≤ (M + m)

Mm
�(A � B) (.)

and

�
(

A + B


)
≤ (M + m)

Mm
(
�(A) � �(B)

). (.)

Proof Inequality (.) is equivalent to

∥∥∥∥�

(
A + B



)
�–(A � B)

∥∥∥∥ ≤ M + m

√

Mm
.

If  < m ≤ A, B ≤ M+m
 , compute

∥∥∥∥�

(
A + B



)
M + m


m�–(A � B)

∥∥∥∥

≤ 


∥∥∥∥�

(
A + B



)
+

M + m


m�–(A � B)
∥∥∥∥

 (
by (.)

)

≤ 


∥∥∥∥�

(
A + B



)
+

M + m


m�
(
(A � B)–)

∥∥∥∥
 (

by (.)
)

=



∥∥∥∥�

(
A + B


+

M + m


m(A � B)–
)∥∥∥∥



≤ 


∥∥∥∥�

(
A + B


+

M + m


m
A– + B–



)∥∥∥∥


≤ 


(
M + m


+ m

) (
by (.), (.)

)
.

By  ≤
√

M
m ≤ . and (.), we have

∥∥∥∥�

(
A + B



)
�–(A � B)

∥∥∥∥ ≤ M + m

√

Mm
.
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If  < M+m
 ≤ A, B ≤ M, similarly, by (.), (.), (.), (.), (.) and ( M+m

 +M)

M ≤ ( M+m
 +m)

m ,
we have

∥∥∥∥�

(
A + B



)
�–(A � B)

∥∥∥∥ ≤ M + m

√

Mm
.

If m ≤ A ≤ M+m
 ≤ B ≤ M, we have

∥∥∥∥�

(
A + B



)
M + m


√

Mm�–(A � B)
∥∥∥∥

≤ 


∥∥∥∥�

(
A + B



)
+

M + m


√
Mm�–(A � B)

∥∥∥∥
 (

by (.)
)

≤ 


∥∥∥∥�

(
A + B



)
+

M + m


√
Mm�

(
(A � B)–)

∥∥∥∥
 (

by (.)
)

=



∥∥∥∥�

(
A + B


+

M + m


√
Mm(A � B)–

)∥∥∥∥


≤ 


∥∥∥∥�

(
A + B


+

M + m


(
mA– � MB–)

)∥∥∥∥


≤ 


∥∥∥∥�

(
A + B


+

M + m


mA– + MB–



)∥∥∥∥


≤ 


(M + m) (
by (.), (.)

)
.

That is,
∥∥∥∥�

(
A + B



)
�–(A � B)

∥∥∥∥ ≤ M + m

√

Mm
.

If m ≤ B ≤ M+m
 ≤ A ≤ M, similarly, by (.), (.), (.), (.), we have

∥∥∥∥�

(
A + B



)
�–(A � B)

∥∥∥∥ ≤ M + m

√

Mm
.

Thus (.) holds.
A and B are replaced by �(A) and �(B) in (.), respectively, we get (.).

This completes the proof. �

Remark  Since  < m ≤ M, then (M+m)

Mm ≤ [ (M+m)

Mm ]. Thus (.) and (.) are refine-

ments of (.) and (.), respectively, when
√

M
m ≤ ..

By (.) and Theorem , we know that Lin’s conjecture (.) and (.) hold when
√

M
m ≤

..

Corollary  Let � be a positive unital linear map. If  < m ≤ A, B ≤ M and
√

M
m ≤ .

for some scalars m ≤ M, then

�
(

A + B


)
≤ S(h)�(A � B)
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and

�
(

A + B


)
≤ S(h)

(
�(A) � �(B)

),

where S(h) = h


h–

e log h


h–
, h = M

m .
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