RESEARCH

Open Acc<u>ess</u>

CrossMark

Some refinements of operator reverse AM-GM mean inequalities

Jianming Xue*

Correspondence: xuejianming104@163.com Oxbridge College, Kunming University of Science and Technology, Kunming, Yunnan 650106, P.R. China

Abstract

In this paper, we prove the operator inequalities as follows: Let A, B be positive operators on a Hilbert space with $0 < m \le A, B \le M$ and $\sqrt{\frac{M}{m}} \le 2.314$. Then for every positive unital linear map Φ ,

$$\Phi^{2}\left(\frac{A+B}{2}\right) \leq \frac{(M+m)^{2}}{4Mm} \Phi^{2}(A \ \sharp B)$$

and

$$\Phi^{2}\left(\frac{A+B}{2}\right) \leq \frac{(M+m)^{2}}{4Mm} \left(\Phi(A) \not \equiv \Phi(B)\right)^{2}.$$

Moreover, we prove Lin's conjecture when $\sqrt{\frac{M}{m}} \le 2.314$.

MSC: 47A63; 47A30

Keywords: operator inequalities; reverse AM-GM means inequalities; positive linear maps

1 Introduction

Let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators on a Hilbert space \mathcal{H} . Throughout this paper, a capital letter denotes an operator in $\mathcal{B}(\mathcal{H})$, we identify a scalar with the identity operator I multiplied by this scalar. We write $A \ge 0$ to mean that the operator A is positive. A is said to be strictly positive (denoted by A > 0) if it is a positive invertible operator. A linear map $\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ is called positive if $A \ge 0$ implies $\Phi(A) \ge 0$. It is said to be unital if $\Phi(I) = I$. For A, B > 0, the geometric mean $A \ddagger B$ is defined by

$$A \sharp B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\frac{1}{2}} A^{\frac{1}{2}}.$$

Let $0 < m \le A, B \le M$. Tominaga [1] showed that the following operator reverse AM-GM inequality holds:

$$\frac{A+B}{2} \le S(h)A \ \sharp B,\tag{1.1}$$

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

where
$$S(h) = \frac{h^{\frac{1}{h-1}}}{e \log h^{\frac{1}{h-1}}}$$
 is called Specht's ratio and $h = \frac{M}{m}$. Indeed,

$$S(h) \le \frac{(M+m)^2}{4Mm} \le S^2(h) \quad (h \ge 1)$$
 (1.2)

was observed by Lin [2, (3.3)].

Let Φ be a positive linear map and A, B > 0. Ando [3] gave the following inequality:

$$\Phi(A \ \sharp B) \le \Phi(A) \ \sharp \ \Phi(B). \tag{1.3}$$

By (1.1), (1.2) and (1.3), it is easy to obtain the following inequalities:

$$\Phi\left(\frac{A+B}{2}\right) \le \frac{(M+m)^2}{4Mm} \Phi(A \ \sharp B) \tag{1.4}$$

and

$$\Phi\left(\frac{A+B}{2}\right) \le \frac{(M+m)^2}{4Mm} \left(\Phi(A) \ \sharp \ \Phi(B)\right). \tag{1.5}$$

Lin [2] proved that (1.4) and (1.5) can be squared:

$$\Phi^2\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^2 \Phi^2(A \ \sharp B) \tag{1.6}$$

and

$$\Phi^2\left(\frac{A+B}{2}\right) \le \left(\frac{(M+m)^2}{4Mm}\right)^2 \left(\Phi(A) \not \equiv \Phi(B)\right)^2.$$
(1.7)

Meanwhile, Lin [2] conjectured that the following inequalities hold:

$$\Phi^2\left(\frac{A+B}{2}\right) \le S^2(h)\Phi^2(A \ \sharp B) \tag{1.8}$$

and

$$\Phi^2\left(\frac{A+B}{2}\right) \le S^2(h) \left(\Phi(A) \not \equiv \Phi(B)\right)^2.$$
(1.9)

For more information on operator inequalities, the reader is referred to [4–7].

In this paper, we will present some operator reverse AM-GM inequalities which are refinements of (1.1), (1.6) and (1.7). Furthermore, we will prove (1.8) and (1.9) if the condition number $\sqrt{\frac{M}{m}}$ is not too big.

2 Main results

We begin this section with the following lemmas.

Lemma 1 ([8]) Let A, B > 0. Then the following norm inequality holds:

$$\|AB\| \le \frac{1}{4} \|A + B\|^2.$$
(2.1)

Lemma 2 ([9]) Let A > 0. Then for every positive unital linear map Φ ,

$$\Phi(A^{-1}) \ge \Phi^{-1}(A). \tag{2.2}$$

Theorem 1 If $0 < m \le A$, $B \le M$ for some scalars $m \le M$, then

$$\frac{A+B}{2} \le \frac{M+m}{2\sqrt{Mm}} A \ \sharp B.$$
(2.3)

Proof Put $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$. Since $\frac{m}{M} \le C \le \frac{M}{m}$, it follows that

$$\left[C^{\frac{1}{2}} - \frac{1}{2}\left(\sqrt{\frac{m}{M}} + \sqrt{\frac{M}{m}}\right)\right]^2 \le \frac{1}{4}\left(\sqrt{\frac{M}{m}} - \sqrt{\frac{m}{M}}\right)^2,$$

and hence

$$C+1 \leq \left(\sqrt{\frac{M}{m}} + \sqrt{\frac{m}{M}}\right)C^{\frac{1}{2}}.$$

This implies

$$B + A \le \left(\sqrt{\frac{M}{m}} + \sqrt{\frac{m}{M}}\right) A \ \sharp \ B.$$

Thus

$$\frac{A+B}{2} \le \frac{M+m}{2\sqrt{Mm}}A \ \sharp B.$$

This completes the proof.

Remark 1 By (1.2), it is easy to know that (2.3) is tighter than (1.1).

Theorem 2 If $0 < m \le A, B \le M$ and $\sqrt{\frac{M}{m}} \le 2.314$ for some scalars $m \le M$, then

$$\left(\frac{A+B}{2}\right)^2 \le \left(\frac{M+m}{2\sqrt{Mm}}\right)^2 (A \ddagger B)^2.$$
(2.4)

Proof Inequality (2.4) is equivalent to

$$\left\|\frac{A+B}{2}(A \sharp B)^{-1}\right\| \le \frac{M+m}{2\sqrt{Mm}}.$$
(2.5)

If $0 < m \le A$, $B \le \frac{M+m}{2}$, we have

$$A + \frac{M+m}{2}mA^{-1} \le \frac{M+m}{2} + m$$
(2.6)

and

$$B + \frac{M+m}{2}mB^{-1} \le \frac{M+m}{2} + m.$$
(2.7)

Compute

$$\left\|\frac{A+B}{2}\frac{M+m}{2}m(A \ \sharp \ B)^{-1}\right\| \leq \frac{1}{4} \left\|\frac{A+B}{2} + \frac{M+m}{2}m(A \ \sharp \ B)^{-1}\right\|^2 \quad (by \ (2.1))$$
$$\leq \frac{1}{4} \left\|\frac{A+B}{2} + \frac{M+m}{2}m\frac{A^{-1}+B^{-1}}{2}\right\|^2$$
$$\leq \frac{1}{4} \left(\frac{M+m}{2} + m\right)^2 \quad (by \ (2.6), \ (2.7)).$$

That is,

$$\left\|\frac{A+B}{2}(A \ \sharp \ B)^{-1}\right\| \le \frac{(\frac{M+m}{2}+m)^2}{4\frac{M+m}{2}m}.$$

Since $1 \le \sqrt{\frac{M}{m}} \le 2.314$, it follows that

$$\left(\sqrt{\frac{M}{m}}-1\right)^2 \left[\left(\sqrt{\frac{M}{m}}\right)^3 - \frac{2M}{m} + \sqrt{\frac{M}{m}} - 4\right] \le 0.$$
(2.8)

It is easy to know that $\frac{(\frac{M+m}{2}+m)^2}{4\frac{M+m}{2}m} \le \frac{M+m}{2\sqrt{Mm}}$ is equivalent to (2.8). Thus,

$$\left\|\frac{A+B}{2}(A \ \sharp B)^{-1}\right\| \leq \frac{M+m}{2\sqrt{Mm}}.$$

If $\frac{M+m}{2} \le A, B \le M$, we have

$$A + \frac{M+m}{2}MA^{-1} \le \frac{M+m}{2} + M$$
(2.9)

and

$$B + \frac{M+m}{2}MB^{-1} \le \frac{M+m}{2} + M.$$
(2.10)

Similarly, we get

$$\left\|\frac{A+B}{2}(A \ \sharp \ B)^{-1}\right\| \le \frac{(\frac{M+m}{2}+M)^2}{4\frac{M+m}{2}M} \le \frac{(\frac{M+m}{2}+m)^2}{4\frac{M+m}{2}M} \le \frac{M+m}{2\sqrt{Mm}}.$$

If $m \le A \le \frac{M+m}{2} \le B \le M$, we have

$$\left\|\frac{A+B}{2}\frac{M+m}{2}\sqrt{Mm}(A \ddagger B)^{-1}\right\| \leq \frac{1}{4} \left\|\frac{A+B}{2} + \frac{M+m}{2}\sqrt{Mm}(A \ddagger B)^{-1}\right\|^2 \quad (by (2.1))$$
$$= \frac{1}{4} \left\|\frac{A+B}{2} + \frac{M+m}{2}\left[\left(mA^{-1}\right) \ddagger \left(MB^{-1}\right)\right]\right\|^2$$
$$\leq \frac{1}{4} \left\|\frac{A+B}{2} + \frac{M+m}{2}\frac{mA^{-1} + MB^{-1}}{2}\right\|^2$$
$$\leq \frac{1}{4}(M+m)^2 \quad (by (2.6), (2.10)).$$

That is,

$$\left\|\frac{A+B}{2}(A \ \sharp \ B)^{-1}\right\| \le \frac{(M+m)^2}{4\frac{M+m}{2}\sqrt{Mm}} = \frac{M+m}{2\sqrt{Mm}}$$

If $m \le B \le \frac{M+m}{2} \le A \le M$, similarly, by (2.1), (2.7) and (2.9), we have

$$\left\|\frac{A+B}{2}(A \ \sharp B)^{-1}\right\| \leq \frac{M+m}{2\sqrt{Mm}}.$$

This completes the proof.

Theorem 3 Let Φ be a positive unital linear map. If $0 < m \le A, B \le M$ and $\sqrt{\frac{M}{m}} \le 2.314$ for some scalars $m \le M$, then

$$\Phi^2\left(\frac{A+B}{2}\right) \le \frac{(M+m)^2}{4Mm} \Phi^2(A \ \sharp B) \tag{2.11}$$

and

$$\Phi^2\left(\frac{A+B}{2}\right) \le \frac{(M+m)^2}{4Mm} \left(\Phi(A) \ \sharp \ \Phi(B)\right)^2. \tag{2.12}$$

Proof Inequality (2.11) is equivalent to

$$\left\|\Phi\left(\frac{A+B}{2}\right)\Phi^{-1}(A \ddagger B)\right\| \le \frac{M+m}{2\sqrt{Mm}}.$$

If $0 < m \le A$, $B \le \frac{M+m}{2}$, compute

$$\begin{split} \left\| \Phi\left(\frac{A+B}{2}\right) \frac{M+m}{2} m \Phi^{-1}(A \ \sharp B) \right\| \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2}\right) + \frac{M+m}{2} m \Phi^{-1}(A \ \sharp B) \right\|^2 \quad (by \ (2.1)) \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2}\right) + \frac{M+m}{2} m \Phi\left((A \ \sharp B)^{-1}\right) \right\|^2 \quad (by \ (2.2)) \\ &= \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} m (A \ \sharp B)^{-1}\right) \right\|^2 \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} m \frac{A^{-1}+B^{-1}}{2}\right) \right\|^2 \\ &\leq \frac{1}{4} \left(\frac{M+m}{2} + m \right)^2 \quad (by \ (2.6), \ (2.7)). \end{split}$$

By $1 \le \sqrt{\frac{M}{m}} \le 2.314$ and (2.8), we have

$$\left\|\Phi\left(\frac{A+B}{2}\right)\Phi^{-1}(A \ \sharp B)\right\| \leq \frac{M+m}{2\sqrt{Mm}}.$$

$$\left\|\Phi\left(\frac{A+B}{2}\right)\Phi^{-1}(A \ \sharp B)\right\| \leq \frac{M+m}{2\sqrt{Mm}}.$$

If $m \le A \le \frac{M+m}{2} \le B \le M$, we have

$$\begin{split} \left\| \Phi\left(\frac{A+B}{2}\right) \frac{M+m}{2} \sqrt{Mm} \Phi^{-1}(A \ \sharp B) \right\| \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2}\right) + \frac{M+m}{2} \sqrt{Mm} \Phi^{-1}(A \ \sharp B) \right\|^2 \quad (by \ (2.1)) \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2}\right) + \frac{M+m}{2} \sqrt{Mm} \Phi\left((A \ \sharp B)^{-1}\right) \right\|^2 \quad (by \ (2.2)) \\ &= \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} \sqrt{Mm}(A \ \sharp B)^{-1}\right) \right\|^2 \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} (mA^{-1} \ \sharp MB^{-1})\right) \right\|^2 \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} \frac{mA^{-1} + MB^{-1}}{2}\right) \right\|^2 \\ &\leq \frac{1}{4} \left\| \Phi\left(\frac{A+B}{2} + \frac{M+m}{2} \frac{mA^{-1} + MB^{-1}}{2}\right) \right\|^2 \\ &\leq \frac{1}{4} (M+m)^2 \quad (by \ (2.6), \ (2.10)). \end{split}$$

That is,

$$\left\|\Phi\left(\frac{A+B}{2}\right)\Phi^{-1}(A \ddagger B)\right\| \le \frac{M+m}{2\sqrt{Mm}}$$

If $m \le B \le \frac{M+m}{2} \le A \le M$, similarly, by (2.1), (2.2), (2.7), (2.9), we have

$$\left\|\Phi\left(\frac{A+B}{2}\right)\Phi^{-1}(A \ddagger B)\right\| \le \frac{M+m}{2\sqrt{Mm}}.$$

Thus (2.11) holds.

A and B are replaced by $\Phi(A)$ and $\Phi(B)$ in (2.4), respectively, we get (2.12). This completes the proof.

Remark 2 Since $0 < m \le M$, then $\frac{(M+m)^2}{4Mm} \le \left[\frac{(M+m)^2}{4Mm}\right]^2$. Thus (2.11) and (2.12) are refinements of (1.6) and (1.7), respectively, when $\sqrt{\frac{M}{m}} \le 2.314$.

By (1.2) and Theorem 3, we know that Lin's conjecture (1.8) and (1.9) hold when $\sqrt{\frac{M}{m}} \le 2.314$.

Corollary 1 Let Φ be a positive unital linear map. If $0 < m \le A, B \le M$ and $\sqrt{\frac{M}{m}} \le 2.314$ for some scalars $m \le M$, then

$$\Phi^2\left(\frac{A+B}{2}\right) \le S^2(h)\Phi^2(A \ \sharp B)$$

and

$$\Phi^2\left(\frac{A+B}{2}\right) \le S^2(h) \left(\Phi(A) \not \equiv \Phi(B)\right)^2,$$

where
$$S(h) = \frac{h^{\frac{1}{h-1}}}{e^{\log h^{\frac{1}{h-1}}}}, h = \frac{M}{m}.$$

Acknowledgements

This research was supported by the Scientific Research Fund of Yunnan Provincial Education Department (No. 2014Y645).

Competing interests

The author declares that she has no competing interests.

Authors' contributions

The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 September 2017 Accepted: 31 October 2017 Published online: 14 November 2017

References

- 1. Tominaga, M: Specht's ratio in the Young inequality. Sci. Math. Jpn. 55, 583-588 (2002)
- 2. Lin, M: Squaring a reverse AM-GM inequality. Stud. Math. 215, 187-194 (2013)
- 3. Ando, T: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203-241 (1979)
- 4. Xue, J, Hu, X: A note on some inequalities for unitarily invariant norms. J. Math. Inequal. 9, 841-846 (2015)
- Xue, J, Hu, X: Some generalizations of operator inequalities for positive linear maps. J. Inequal. Appl. 2016, 27 (2016)
 Zou, L: An arithmetic-geometric mean inequality for singular values and its applications. Linear Algebra Appl. 528,
- 25-32 (2017) 7. Hu, X: Some inequalities for unitarily invariant norms. J. Math. Inequal. **6**, 615-623 (2012)
- 8. Bhatia, R, Kittaneh, F: Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. **308**, 203-211 (2000)
- 9. Bhatia, R: Positive Definite Matrices. Princeton University Press, Princeton (2007)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com