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Abstract

In this paper, the authors establish the sharp maximal estimates for the multilinear
iterated commutators generated by BMO functions and multilinear singular integral
operators with generalized kernels. As applications, the boundedness of this kind of
multilinear iterated commutators on the product of weighted Lebesgue spaces and
the product of variable exponent Lebesgue spaces can be obtained, respectively.
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1 Introduction

The multilinear singular integral operator theory plays an important role in the singular
integral operator theory of harmonic analysis. On the one hand, many researchers have
put plenty time and energy into this topic. Kenig and Stein did many works on the multi-
linear fractional integral operator in [1]. Grafakos and Torres established the multilinear
Calderén-Zygmund theory in [2]. The boundedness of multilinear Calderén-Zygmund
operators with kernel of Dini’s type was studied by Lu and Zhang in [3].

On the other hand, more and more researchers have been interested in multilinear com-
mutators. The multilinear commutator was given by Pérez and Trujillo-Gonzélez in [4].
The weighted estimate for multilinear iterated commutators of multilinear fractional in-
tegrals was studied by Si and Lu in [5].

Some useful conclusions of multilinear singular integral operators with generalized ker-
nels were given by Lin and Xiao in [6]. With more weaker conditions for the kernel, they
got the conclusion on sharp maximal estimates of the multilinear singular integral opera-
tors and their multilinear commutators with BMO functions. Moreover, the boundedness
of the multilinear commutators with BMO functions on the product of weighted Lebesgue
spaces and the product of variable exponent Lebesgue spaces was acquired in [6] as well.

Pérez, Pradolini, Torres and Trujillo-Gonzalez studied the multilinear iterated commu-
tators of multilinear singular integrals with Calderén-Zygmund kernels in [7]. They first
established the sharp maximal estimates, then the end-point estimates were acquired.

Based on these studies above, we will focus on the multilinear iterated commutators
of multilinear singular integrals with generalized kernels in this paper. And we will con-
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sequently establish three theorems as conclusions in Section 2. First, the sharp maximal
estimates of multilinear iterated commutators generated by BMO functions and multilin-
ear singular integral operators with generalized kernels will be established in Theorem 2.1.
Then, the boundedness of this kind of multilinear iterated commutators on the product of
weighted Lebesgue spaces and the product of variable exponent Lebesgue spaces will be
put forward by Theorems 2.2 and 2.3, respectively. In addition there are some necessary
lemmas in Section 3. The proof of the main results will be given in Section 4.

Let us recall some necessary definitions and notations firstly before starting our main
results.

Definition 1.1 ([6]) Let m € N, and K(yo,y1,¥2,...,¥m) be a function away from the di-
agonal Yo = y1 = - - - = ¥, in (R”)"*1. T stands for an m-linear singular integral operator
defined by

T(ﬁ”fm)(x) = /Rﬂ ce /I;n K(x:yl»y%”"ym) l_[f/(y]) dyl ce dym;
j=1

where f; (j =1,...,m) are smooth functions with compact support, and x ¢ ﬂjmzl supp ;.
If the kernel K satisfies the following two conditions:
(C1): For some C >0 and all (yo,y1,¥2,.-.,¥m) € (R")"*! defined away from the diagonal,

C

K 0 Y1 Y255 ) ) =< H (1)
| (Y Iy " | (ZZ?]:() ¥k —yzl)’””
(C2): Whenever i =1,...,m, C, are positive constants for any (ki, ks, ..., k) € N,

(/ / I((yo,yl,...,ym)

2k |yo—yy | <lym—yo |<2Km*1|yo—y) | 21150 -y <ly1-yol<2K1*L[yo -y |

/ q g
—K(yo,yl,...,ym)| dyy - - dym>
mn m ﬂk
<Clyo-yp| 7 Hck,.z 7 (2)

i=1

where (g,4’) is a fixed pair of positive numbers satisfying % + % =1land 1< g < oo, then we
call T an m-linear singular integral operator with generalized kernel.

If the kernel K satisfies condition (1) and the following condition:

|I((y0,...,yj,...,ym)—I((yo,...,y},...,ym)|
Cly; - yl*

< , 3)
(X ks=o [y = yul)m+e

forsomee > 0, |y; —y/’.l < % maxo<k<m |y;—yx| whenever 0 <j < m, thenwe call T'astandard
m-linear Calderén-Zygmund kernel.

If K(¥o,91,...,Ym) is defined away from the diagonal yo = y; = - - - = y,,, in (R")"*}, then
it is called an m-linear Calderén-Zygmund kernel of type x when it satisfies condition (1)
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and the following condition:

|I((y0,...,yj,...,ym)—I((yo,...,y},...,ym)|

- C ( W y,l ) @)
o =71 + -+ o —2mD™ \yo =311+ + Yo — 7]
where «(f) is a non-negative and non-decreasing function on R* and |y; — y;l < % X
maxi<ig<m |Yo — yx| whenever 0 <;j < m.

It is obvious that condition (4) becomes condition (3) when «(¢) = t¢ for some ¢ > 0
and condition (4) implies condition (2) by putting C, = K(Z‘ki)%, i=1,...,m, and any
1 < g < 0co. Therefore, the standard m-linear Calder6n-Zygmund kernel is a special case
of the m-linear Calderén-Zygmund kernel of type . And the multilinear singular integral
with the kernel of type « can be taken as a special situation of the multilinear singular
integral operator with generalized kernel defined in Definition 1.1. These facts illustrate
that our results obtained in this paper will improve most of the earlier conclusions by

weakening the conditions of the kernel.

Definition 1.2 Let T be an m-linear singular integral operator with generalized kernel,
b= (by,...,b,,) € BMO™ is a group of locally integrable functions and f (fis---+fm)- Then
the m—linear iterated commutator generated by 7" and b is defined to be

-

Tegfireofi) = [0, [b2s o os [birts 1o T, -+ L1 -

If T is connected in the usual way to the kernel K studied in this paper, then we can

write

Tz fn) )

/Rn) 1_[ b (x b; (yj )K(x:yl: Ym0 -+ fn ) dyr - - - dy,

We also denote

T, (f) T (Fs e s fun)®) = T(frs oo firs biff fisns o fin) ().

Definition 1.3 Take positive integers j and m satisfying 1 <j < m, and let C" be a family
of all finite subsets 0 = {6 (1),...,0(j)} of {1,...,m} with j different elements. If k < /, then
o(k)<o(l).Foranyo € Cj"‘, leto’ ={1,...,m}\o be the complementary sequence. In par-
ticular, Cj' = @. For an m-tuple b and o € Cj"‘, the j-tuple b, = (bsq), ..., bs()) is a finite
subset of b = (by,...,b,,).

Let T’ be an m-linear singular integral operator with generalized kernel, o € C/", by =
(bs)s---»bs(j)) € BMO, the iterated commutator is given by

THZa(fl’ +fom) =[ 1)'[b( "’[bo(j_l)’[ba(/)’T]‘T(/)](r(j—l)...]0(2)]0(1)(}?)'
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It can also be written as
Tnba (fi; le )

j
) /< I (T R IS A (AR AL
RO™ im1
where dy = dy; - - - dy,,. Obviously, Ty = Ty wheno = {1,2,...,m},and Ty = T ~when
o ={j}.

Definition 1.4 The Hardy-Littlewood maximal operator M is given by

M) =sup / 1£6)| dy,

where the supremum is taken over all balls which contain x. We define the operator M(f)
by M;(f) = M(|f]*)**, 0 < s < 0.

The sharp maximal operator M* is defined by

M (f)(x) —sggﬁfvw fﬂdy*vsupme/Lf(y)—a’dy.

Denote the /-sharp maximal operator by Mljj (f) = MH(fIHY, 0 <l < 1.

Definition 1.5 ([8]) Let w be a non-negative measurable function. For 1 <p <00, w € 4,
if there exists a positive constant C independent of every Q in R” such that

1 - )1’1
<|Q|/“’(")dx><|Q|/“’(x) ) =G

where Q represents a cube with the side parallel to the coordinate axes, 1/p + 1/p’ = 1.
When p =1, w belongs to A;, if there exists a constant C > 0, and for any cube Q such that

L/w(y)dygcw(x), aexeQ.
1Rl Jo

Definition 1.6 Let p(-) : R” — [1,00) be a measurable function. Define the variable expo-
nent Lebesgue space I”)(R") by

) (n lf(x)| P
I (R") = {f measurable : n dx < oo for some constant A >0 ¢.
R”

By associating with the norm

px)
oo (42 a1}

the set L”*)(R") comes to be a Banach space.
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Definition 1.7 Let P(R") represent the set of measurable functions p(-) : R” — [1,00)
satisfying

l<p_:=essinfp(x) and p, :=esssupp(x) < oo,
xeR” xeR"

and B(R”) represent the set of all p(-) € P(R"”) for which the Hardy-Littlewood maximal
operator M is bounded on L*)(R").

2 Main results

In this part, we will give the main results in this paper.

Theorem 2.1 Let m > 2, T be an m-linear singular integral operator with generalized
kernel defined by Definition 1.1 and Z};O:l kiCy, < 00, i =1,...,m. Assume for fixed 1 <
Tyeeortm < q with1/r=1/r1 + -+ + 1/ry, that T is bounded from L' x --- x L' into L">°.
IfZJ € BMO™,0<4< %, 3 <e<ooandq <s<oo,then there is a constant C > 0 such that

Am%ﬁMMSQTMMmﬁ}%W®+%U®WO
k=1

j=1 -

m-1 j
+CY ST 160 )l r0Me (Triz,, (F) (%))

j=L oec i=1

for all m—tuples]‘ = (fi,....fm) of bounded measurable functions with compact support.

Theorem 2.2 Let m > 2, T be an m-linear singular integral operator with generalized
kernel defined by Definition 1.1 and Z,fle kiCy, < 00, i =1,...,m. Assume for fixed 1 <
Poeoostm < q with 1/r =1/ry + -+ + 1/ry, that T is bounded from L' x --- x L' into
L7, Ifl; € BMO™, then for any q' < p1,...,pm < 00 with 1/p = 1/p1 + -+ + 1py, Tyj is
bounded from LPY(wy) X - -- x LP"(wy,) into LP(w), where (W1,..., W) € (Apiqs s Apiq)
)4

and w =[], w;’/.

Theorem 2.3 Letm > 2,p(-),p1(-), ..., pm(-) € BR") with1/p(-) = 1/p1(-) +- - - +1/p,,(-). Let
q{) begiven asin Lemma 3.8 for p(-),j = 1,...,m. T is an m-linear singular integral operator
with generalized kernel defined by Definition 1.1,1 < ' < miny<j<,, qf) and Z,fle ki Cy, < 00,
i=1,...,m.Assumeforfixed1 <ry,...,ry < q withl/r =1/r+---+1/r,, that T is bounded
from L't x --- x L' into L. Ifl; € BMO™, then Ty, is bounded from LP1{O(R") x - -+ x
LPnO(R) into LPO(RY).

3 Preliminaries

Next, we give some requisite lemmas.

Lemma 3.1 ([9, 10]) Suppose 0 < p < g < 00, then there exists a constant C = C, ;> 0 such
that for any measurable function f,

1QI™PIIf 2 (@) < CIQI™||f |l za0(Q)-
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Lemma 3.2 ([11]) Letf € BMOR"),1<p<o00,r >0,r,>0andx € R". Then

1

1/p
(— V()/) —fBars) ’p dy) < C<1 +

|B(x’ rl)| B(x,r1)

rn

In— D If Il smo>
)

where C is a positive constant independent of f, x, r, and r,.

Lemma 3.3 ([10, 12]) Suppose 0 < p,8 < 00 and w € A. There is a positive constant C
depending on the A, constant of w such that

/ [Ms()(x) ] wx)dx < C / [Mi(F)(x) ] wlx) dx
for every function f such that the left-hand side is finite.

Lemma 3.4 ([13]) Let (Wi,..., W) € (Ap,s...,Ap,) with 1 < p,.

O1,...,0p < 1satisfying 0 + - - + 0,, = 1, then wfl W€ Aaxiprrpm)-

corPm < 00, and 0 <

Lemma 3.5 ([6]) Let m > 2, T be an m-linear singular integral operator with general-
ized kernel defined by Definition 1.1 and ZZ:’ZI Ci, < 00, i =1,...,m. Suppose for fixed
1<r,...,rm <q withl/r=1/ry + --- + 1/r,, that T is bounded from L't x --- x L' into
L. If0 <8 <1/m, then

M(T(H)) @) < C[ [ My (h)@)

j=1
for all m—tuplesj? =(fi,....fm) of bounded measurable functions with compact support.

Lemma 3.6 ([8]) Forw € A,, 1< p <00, there are w € A, for all r > p and w € A, for some
l<g<p.

Lemma 3.7 ([6]) Let m > 2, T be an m-linear singular integral operator with generalized

kernel defined by Definition 1.1 and 213,11 kiCy, < 00, i = 1,...,m. Suppose for fixed 1 <

Tyt < g withl/r=1/r + --- +1/rm that T is bounded from L™ x --- x L' into L.
Ifbje BMO forj=1,...,m,0<8 < ~,8 <& <00 and q <s< o0, then

M(T), (F)) ) < Clibyllamo (Mg(T(?))m + HMs(ﬂ)(x)>

i=1
for all m—tuples} =(fi,....fm) of bounded measurable functions with compact support.

The above result can be obtained from the proof of Theorem 2.2 in [6].

Lemma 3.8 ([14]) Suppose p(-) € P(R"). M is bounded on LPV)(R) if and only if for some
1 < qo < 00, My, is bounded on LPO(RY), where Mgy () = M(|f|10)] V40,
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Lemma 3.9 ([3]) Let p(-),pi(-), ..., pm(:) € PR") satisfying 1/p(x) = 1/p1(x) + - - - + 1/p(x).
For any f; € LPOR"), j=1,...,m, there is

m m
-1
[15 <2"'] WGl 210 oy
j=t lPO®m) j=1

Lemma 3.10 ([15]) Given a family of ordered pairs of measurable functions F, for some
fixed 0 < pg <00, any (f,g) € F and any w € Ay,

[f(x) !po w(x)dx < CO/ ’g(x) ’po w(x) dx.
R" Rn

Suppose p(-) € P(R") satisfying po < p-. If(’%)’ € B(R"), then there exists a constant C > 0
such that for any (f,g) € F, |If | oo gny < Clgl o0 meny-

Lemma 3.11 ([14]) Ifp(-) € P(R"), then the following four conditions are equivalent.
@) p(-) € BR).
(2) p'(-) € BIRY).
(3) Forsomel<py<p_, ’% € B(R").
(4) Forsomel<pgy<p_, (%)/ € B(R").

Lemma 3.12 ([15]) For p(-) € P(R"), C5°(R") is dense in LPO(R™).

4 Proof of the main results
We will give the proof of the three theorems in the following article.

Proof of Theorem 2.1 For the sake of simplicity, we only consider the case m = 2. The proof
of other cases is similar.
Let f1, f> be bounded measurable functions with compact support, b1, b, € BMO. Then,

for any constant A; and A,,

T () = (b1(x) = 1) (b2(%) = A2) T, f) @) — (Bi(w) = 21)
x T (fi, (by — 22)fa) (%) — (b2 (x) = A2) T ((by — M1, f2) (%)
+ T((b1 = M)fi, by = M2)fo) ()
= —(bl(x) - Al) (bz(x) - Az) T(fi.f2)(x) + (bl(x) - /\1)
X Tp, 3, ) @) + (b2(x) = 22) T, ;. (A fo) ()
+ T((bl - M)A, (by — Az)fz)(x).

Let Cy be a constant determined later. Fixed x € R”, for any ball B(x, r5) containing x

and 0 <4 < %,wehave

(i [t - e az)

< <% /};|Tm;(f)(z)- C0|6dz>8
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IA

C(% /I;I(bl(Z) — 1) (b2(2) —)\z)T(fl,fz)(z)Pazz>X

+C<|;T|»/I;|(bl(2)_)\'l)TZ2)nz(fl’fZ)(Z)rsdz)ﬁ

' C(&ﬁ /B| (b2(0) = 22) T4, (o o)) dz)

+C(li?'/BU"((bl—)ul)flt(bz—)\2)f2)(z)_co|8dz>8
=1+ [+ +1V.

Then we analyze each part separately.

Let B* =16B and A; = (b))« = ﬁ Jipbi(®) dx,j=1,2.Since 0 <8 < ; and 0 < § < & < 00,
there exists / such that 1<I< min{‘g, L 51- Then I§ < ¢ and /'§ > 1. Choose g1, 42 € (1,00)
such that atnc z/' then 1 a7t q— + =1and 416 > 1, g28 > 1. By Holder’s inequality and
Lemma 3. 2 we have

I§C<|B| /|b1(Z) )n1| |b2(Z A.2|6|T(fi’ 2)(Z)|5dz>g

s\ o\
= (|B|/|bl(z) | > <|B|/|b2(z) & dz)

1

<|B| f 7)) |8le>

< Clib1llsmollb2 | smoMsi (T (fi. f2)) (%)
< Clbilismollb2 lsmoMe (T (fi, f)) (x)

It follows from Holder’s inequality that

1

1156( /’bl(z ~n[" ) <|B|/| 2 L uh)e \‘”dz)l

< Clib1llaastoMsi(T;, 5, (fi.f2)) (%)
< Cllb1llsstoMe (T;,_y, (i fo)) ()
= Cllb1llsmoM. (T}, (f1,/2)) ().

Similarly,
11 < C||by |l smoMe (T}, (fi./2)) (%)

In the next, we analyze IV. We split f; into two parts, f; = f° + f°, where f = f,.. and
[ =fi—f2, i=1,2. Choose zy € 3B\2B and Cy = T((b1 — 21);°, (b2 — 12)f;°)(20), then

IV < C(liﬁ/gm(bl -, (ba —)Lz)fzo)(z)|5dz)6

' C<|;T| /B|T((”1 1), (b2 —)Lz)fzoo)(Z)sz)g
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+ C(;ﬁ /BIT((bl =M, (b2 = 22)f)) @) dz>5

+ C(;T' /B| T((bl - )\.l)floo, (bz - )¥2)fzoc)(z) - CO |(S dZ) S

= 1V1 +IV2 +IV3 +1V4.

Then we estimate each part respectively.
It follows from 0 < § < r < 0o and Lemma 3.1 that

Vi < CIBI 8| T((by = 2)f, (b = 22)fY) | 1o

< CIBI | T((by = 2)f2 (bs = 1o)fY)

L®(B)*

Notice that 7 is bounded from L x L' into L"*°, 1 < ry,r, < q with 1/r =1/ry + 1/r5.

Lett = %.Sinceq’<s<oo, thenl<t<ooandrt <s,i=1,2. Thus,

1 n ry %
= C(m /163“71(3/1) = 1| i) dy1>
1 2 r %
X (m /16Bib2(3/2)—k2| [0m)] dyz)

1 r1t # 1 rt #

sc<|16B| 2100 24 1) (M/ G| dyl)
1 ot e\ 72
X(@ s 202 =2 dy) (|16B|/ 02 d”)

1 s s
Clb b —_— d
=< Cll&1llsamoll 2||BMO(|16B|/ 0| yl)

<|16B| 0ol 2)

< Cllb1llmo b2 | Bato M (1) ()M (f2) (%).

Since y; € 16B, y, € (16B)°, x9 € B and z € B, then by Lemma 3.2,

1
1V, < C(@ /B(/(mB)C /163|1<(Zzy1>)’2)“b1()’1) = 2|00 [82(r2) - 22|

8 §
X [fz(yz)|dy1 dyz) dz)

-l (L (Lo -t

 10202) =l )5dz>§

|z — ya |

- 1b2(y2) = 22|[f2(32)]
C([@|h(}’1)-h|[ﬂ(3’1)|¢b’1)kZ‘;/ dy,

2k+1B\2k B [xo — 2|2
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1

1 = —kn
5C(M/I6B|b1()/1)—)»1|lﬁ(3/1)|dyl)kZ‘;z |2k+1B
x/kﬂ 152(32) — 3o |fo )| s

C A d
= <|168| MRLIDEE ”) (|16B|/ Aonl" ”)
xi‘zf"" ! / |b2(y2) = A2 |" dy 6
kel |2k+lB| 2k+lB 2V2 2 2

1
1 7 \7
(8 Lo 09 42)

< Clibllsmollb2 | saoMy () @)My (f)(x) Y 27"k
k=4

_ =

< Cllb1llzmo 162 | ato M (fi) (%) M (f2 ) (x).
Similarly,
1V3 < Cllb1 | smo | b2 |l saroMis (i) () M (f2) (%).

Since zg € 3B\2B, z € B, y; € (16B)¢, y; € (16B)¢, then |y; — z9| > 2|z — zo| and |y, — 2| >
2|Z—Zo|.

1
v, < C(-/(/ / |K(z,y1,72) — K(20,y1,32) | |b1(1) = 4]
|Bl J\JasB) J 6By

N
X Vl(}’l)“bz(J’z)—)»2|Vz()/2)|dy1dy2> dz)

- ( |B] fB (Z Z /2k2 lz—zo|<ly2—z01<2%2 1 |z—z0

k1=1ky=1

X / |K(z,51,2) — K (20,31, %2) || b1(01) — 14|
K |zz0| <|y1~z0 <21+ |2~z |

1
]

s
x [0 [b202) = Aa||fa(92)| dy d)’z) dZ)

1 e
<C| — b s
B (|B| /B<ZZ-/2/<2z—z0|<y2_10|<2k2+1|2_20| 2(')/2) 2|V‘2(y2)|

k1=1 ka=1

1

X </ |K(Z’yhy2)—K(Zo,y1,y2)|qdy1>q
2K 229 | <|y1 201 <2K1 1 |z—20|
Y
(/k g |B101) )‘1|q Vl(yl)’q dy1>q dyz> dz)
2kt
<|B| f(ZZU ,, /2100 =[G dyl)

k1=1ky=1

1
7
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1
’ ’ q
X </ |62 (32) = 2| " [ (32)|* d}’z)
22|22 | <lyp~20|<2¥2* |22

x (/ / |K(z,91,2)
2k2|z—z9 | <lya~z01<2k2 1 |2z | J 2K1 220 | <[y1~20 |<2F1+! 22|

1

1\ 8 5
q
—K(Zoyy1,y2)|qdy1dy2> ) dZ)

C(IBI -/B<ZZ< P Jyyeay 10V Ml ion|" dyl)

ki1=1kp=1

1
7

IA

1
1 / / 7
Ny N ——

8

x|

1
q/t/ q/t,
= <|B| /;(ZZ<|2](1+4-B| okt 43’ l(yl)—)xl‘ dyl)

k1=1kp=1

1
1 q't q't
_— d
x (|2k1+4B| /2k1+43v1(y1)| j/1>
1 1
’ e
S — ba(ya) — 2o | dys )"
X (|2k2+4B| 2/(2%B| 2(92) 2‘ )’2)
1 L/ ?
[ — q/t
. (|2k2+4B| 2k2+43[f2()’2)| dyg) C/qu2> dz)

< Cllb1llsmo b2 || Bao M (fi) (%) M(f2) (%) (Zklckl) (Z/QC/Q)
kp=1

k=1

§
7lz—zol 7 Cu2 ¥ ckzz‘?kz) dz)

1
]

< Cllb1llsmo b2 || Baro M (fi) () M (f2) (x).

Thus,

IV < Cllbyllsamo b2 | so M (f1) () M (f2) (x).

Therefore,

Mg(Tni;(f))(x)

- (| T ) )
1 - 5
=ye{(g [T -1 )
< Cl\b1llsaol1 b2l Bato (M (i) )M () (%) + M (T (f1, £2)) (%))

+ C(1b1llsmoM. (T}, (1, £2)) &) + 11b2 || oM. (T, (fi,/2)) (%)),

which completes the proof of Theorem 2.1. d
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Proof of Theorem 2.2 We have w € A pmy C Ao from Lemma 3.4. By Lemma 3.6,
for every i =1,...,m, since w; € A,,/y, there g:ists l; satisfying 1 < [; < p;/q’ and w; € A;,.
Since g’ < pill;, there exists s; satisfying g’ < s; < pi/l; < p;. Let s = minj<;<, 5;, then we have
q <s<p;. Sincel; <pils; <pils,thenw; € A, CA, s, i=1,...,m.

Chooseé,¢1,€2,...,&y satisfying0 < § <y <y <+ <&y < % It follows from Lemma 3.3
and Lemma 3.5 that

max{ﬂ

.....

m

HMq’(fi)

i=1

|Me (TO) | 1y < CIVE(TD) |y < €

LP(w)

By Theorem 2.1, we have
“M(IS:(THI;(]?)) ”L!’(w)

< CH ”b/'”BMO(

j-1

[ [Mm:50)

k=1

+ ||M61 (T(?)) ||LP(W))

LP (w)

m-1 j
+CY Y TTbewlsmo|Me (Trg, )|

j=L oeCy i=1

<c[] ||bj||BMo<

Jj=1

HMs(fk) + ||M€1 (T(?)) ||U’(w))
k=1

LP(w)

m-1 j
+ CZ Z l_[ ”ba(l) ”BMO HMgl (Tl_ll;n/ (f)) ||U’(w)'

j=1 oeC i=1

In order to reduce the dimension of BMO functions in the commutators, we apply The-
orem 2.1 again to ||M§1(Tm;o, NN e o)

Let 0 = {0(1),...,0()} and ¢’ = {o(j + 1),...,0(m)}, Ay = {01 : any finite subset of o’
with different elements} and o] = ¢’ — 07.

It follows from Theorem 2.1 that
||M£1 (Tnég/ (7?)) HM(W)

<cJ] ||ha(k)||BMO<

k=j+1

[ [0

=1

Mo (1) ||Lp(w))

LP(w)

m—j—1 h

rCY N 1_[”bal(i)”BMO”MSz(THZU{ ) | vy

h=1 o1€4y i=1

By putting the formula above into ||M§(TH5(}? N7 (w), we can reduce the dimension of
BMO functions.

Repeating the process above and using Lemma 3.7, we can get
S
175 (T (O) 1

[ [M:(0)

k=1

<C[ llsmo (Amu(m,”)

Jj=1

LP(w)
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+ Ay(m, )| M, (T(;)) ||l}’(w) + Ay (m, m) | M, (T(I?)) “LP(W)

+-+ A, (m,n) ||Msm (T(f)) ”LI’(W))’

where A1(m, n),Ay(m,n),...,A,,.1(m,n) are finite real numbers related to m and n.

Then, by Lemma 3.3 and Lemma 3.5,

1705 )y < 15Tz )|

< C|M(Tep ) 1oy

[ [Mm:()

k=1

< C[I5lzmo (Am+1(m, )

j=1

LP(w)

+ A1 m, 1) [ Mo, (TH)) | gy + A2 )| My (T) [

oot A (m, )| M, (T(/?)) ”Lﬂ(w))

< C[15lsmo (Am+1<m, )| [ ]M:(f)
j=1 k=1 LP(w)
+Am+2(m; I’l) l_[Mq’(ﬁ) )
Jj=1 LP(w)
< [ T1Blamo| [ TM:(5)
j=1 j=1 LP(w)
< CI Tupliso [ TIA]
j=1 j=1
= CI Ti5sllsaco [ TN L2
j=1 j=1
which completes the proof of Theorem 2.2. d

Proof of Theorem 2.3 Let go = minj<j<, qf), then ¢’ < go < 0. It follows from p(-) € B(R")
and Lemma 3.11 that there exists p¢ satisfying 1 < po < p— and (’%)/ € B(R").

Choose §,¢1,€2,...,&m satisfying 0 < § <1 < gp <+ - <&y < % For any w € A;, we have

f {Tnh(f)(x)}p"w(x)dx = | TI'lb(f)}U’O(w
=< [M5(Tez D) 350
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=< C“M§ (Tné(f)) lego (w)

m m
< C{ [T 18illsmo | Ame(m,m) | ] Moo ()
j-1 j=1 170 (w)
+ Ay (m, m)| M, (T(f)) “LPo(W) + A (m, m) | M, (T(f)) ||L1’0 w)
bo

oot A, )| M, (T(F)) o)

m m
< C( [T 18illsmo | Ame(m,m) | T ] Moo ()
j=1

j=1 170 (w)
m bo
+Am+2(m1 l’l) HMq’(ﬂ)
j=1 170 (w)
m m po
<C l—IHijBMO l_[M,/O(ﬁ)
j=1 j=1 LPO (w)

po po

- c([Tetavo) [ ([T, 000) wiwras
j-1 LAV

for all_]? = (fi,...,fm) which are bounded measurable functions with compact support,
where A;(m, n),A>(m, n),...,A,,.-(m, n) are finite real numbers related to m and .
Applying Lemma 3.10 to (TH;J(/?), [T M, (fj)), we have
0

|75 oy < €| T T4, )

j=1 LPO(RM)

Then it follows from Lemma 3.9 and Lemma 3.8 that
N m m
” Tl‘[l;(f) ||1}7(~)(Rn) = Cl_[”Mq/O (ﬁ)||LP/(')(Rn) < Cl_[ ”ﬁ”Lp/(')(R")’
j=1 =1

which completes the proof of Theorem 2.3. d
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