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Abstract
This work is further focused on analyzing a bound for a reachable set of linear
uncertain systems with polytopic parameters. By means of L-K functional theory and
novel inequalities, some new conditions which are expressed in the form of LMIs are
derived. It should be noted that novel inequalities can improve upper bounds of
Jensen inequalities, which yields less conservatism of systems. Consequently, some
numerical examples demonstrate that the authors’ results are somewhat more
effective and advantageous compared with the previous results.
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1 Introduction
It is well known that reachable set estimation was first researched in the late s for
state estimations. The reachable set is a hot issue since the time due to its important and
wide application in the design of controller and aircraft collision avoidance and peak-to-
peak gain minimization problems. The reachable set of dynamic differential systems with
delay and disturbance is a set that contains all the reachable trajectories from origin by
outside peak input values [–]. In the real world, as for dynamic systems, there are two
phenomena that cannot be avoided: time delays and uncertainties [–]. In fact, delays
and the coefficients of differential equations in modeling progresses are obtained only ap-
proximately [–]. There are already some relevant outstanding results about reachable
set estimation of dynamic systems. However, we think it is necessary to obtain a more
tighter bound for a reachable set.

As pointed out in [–], an equation of one class can be transformed to an equation
belonging to the external form of the other class. Thus, it is natural to classify the equa-
tions according to the properties of operators generated by the equations. In this paper,
uncertain polytopic delayed linear systems with disturbances will be studied.

All the results about reachable set bounding are in the term of linear matrix inequali-
ties (LMIs). The authors give an ellipsoid condition of the reachable set for linear systems
without any delay []. The authors Fridman and Shaked improved the model []. They
studied the linear systems with varying delays with peak inputs and got LMIs conditions
of an ellipsoid by using the Razumikhin theory. After that, Kim got a more exact condition
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by constructing the modified Lyapunov-Razumikhin functionals []. Combining the de-
composition technique, Nam derived a modified reachable set bound []. Actually, the
reachable set is not an ellipsoid and it is only a closed set. Zuo et al. gave a non-ellipsoidal
bound of a reachable set for linear time-delayed systems by the means of the maximal
Lyapunov functionals and the Razumikhin method [].

It should be noted that discrete delay is varying  ≤ τ (t) ≤ τ in most previous literature.
That is, the lower bound of discrete delay is . In fact, τ (t) varying τm ≤ τ (t) ≤ τM may
describe the delay more exactly. In order to control the behavior of the system better, we
hope to propose tighter reachable set estimation. Park, Lee and Lee proposed some novel
inequalities which can be used to estimate integrations []. Therefore, those inequalities
can be employed to estimate some integration terms of Lyapunov functionals for dynamic
systems. Motivated by the above mentioned discussions, we consider the linear time-
varying delay systems with polytopic uncertainties. Using novel inequalities, we derive
a modified reachable set bound for the linear system with discrete delay τm ≤ τ (t) ≤ τM .
Moreover, four examples are given to demonstrate the effectiveness and advantage of our
results.

In this paper, the used notations are listed as follows. Real matrix P >  (≥ ) denotes
that P is a symmetric positive definite matrix (positive semi-definite). Superscript ‘T’ is
transposition of a vector and a matrix; ∗ means the elements below the main diagonal in a
symmetric block matrix; I is an identity matrix; ‘–’ in tables means that there is no feasible
solution for linear matrix inequalities.

2 Preliminaries
Consider uncertain polytopic delayed linear systems with disturbances in the form

ż(t) = (A + �A)z(t) + (D + �D)z
(
t – τ (t)

)
+ (B + �B)w(t),

z(t) = , t ∈ [–τM, ],
()

where z(t) ∈ Rn is a state vector; w(t) ∈ Rm is outside disturbance. A,�A ∈ Rn×n, D,�D ∈
Rn×n, B,�B ∈ Rn×m. A, D, B are known matrices. �A, �D, �B are uncertain matrices. τ (t)
is time delay.

Discrete delay τ (t) and disturbance w(t) are assumed to be as follows:

τm ≤ τ (t) ≤ τM,  ≤ τ̇ (t) ≤ μ < ,

wT (t)w(t) ≤ w
m,

where μ, wm are constant.
The uncertainty parameter matrices are expressed by a linear convex-hull of matrices

Ai, Bi and Di

�A =
N∑

i=

θi(t)Ai, �B =
N∑

i=

θi(t)Bi, �D =
N∑

i=

θi(t)Di

with θi(t) ∈ [, ] and
∑N

i= θi(t) = , ∀t > . Ai, Bi and Di are known matrices.
In order to obtain reachable set bounds for a linear dynamic system, we state some useful

lemmas and some novel inequalities firstly.
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Lemma  ([]) As for the well-defined integral
∫ b(t)

a(t) f (t, s) ds, the following relation known
as the Leibniz rule holds:

d
dt

∫ b(t)

a(t)
f (t, s) ds = ḃ(t)f

[
t, b(t)

]
– ȧ(t)f

[
t, a(t)

]
+

∫ b(t)

a(t)

∂

∂t
f (t, s) ds.

Lemma  ([]) For a positive definite matrix R >  and a differentiable function {z(u)|u ∈
[a, b]}, the following inequalities hold:

(b – a)
∫ b

a
zT (s)Rz(s) ds ≥ ξT



[
R –R
∗ R

]

ξ,

(b – a)
∫ b

a
żT (s)Rż(s) ds dθ ≥ ξT



⎡

⎢⎢
⎢
⎣

R –R R –R
∗ R –R R
∗ ∗ R –R
∗ ∗ ∗ R

⎤

⎥⎥
⎥
⎦

ξ,

∫ b

a

∫ b

θ

żT (s)Rż(s) ds dθ ≥ ξT


⎡

⎢
⎣

R R –R
∗ R –R
∗ ∗ R

⎤

⎥
⎦ ξ,

where

ξT
 =

(


b – a

∫ b

a
zT (s) ds,


(b – a)

∫ b

a

∫ b

θ

zT (s) ds dθ

)
,

ξT
 =

(
zT (b), zT (a),


b – a

∫ b

a
zT (s) ds,


(b – a)

∫ b

a

∫ b

θ

zT (s) ds dθ

)
,

ξT
 =

(
zT (b),


b – a

∫ b

a
zT (s) ds,


(b – a)

∫ b

a

∫ b

θ

zT (s) ds dθ

)
.

Lemma  ([]) Let V be a Lyapunov function for system () with wT (t)w(t) ≤ w
m. If

V̇ + αV –
α

w
m

wT (t)w(t) ≤ ,

then V ≤ .

3 Main results
In this section, we will firstly consider a reachable set for uncertain parameter matrices
�A = , �D = , �B =  in system (), namely,

ż(t) = Az(t) + Dz
(
t – τ (t)

)
+ Bw(t), z(t) = , t ∈ [–h, ]. ()

After that, we will consider a reachable set for uncertain system ().
If τm ≤ τ (t) ≤ τM , τ̇ (t) ≤ μ < , we get the reachable set bounding for dynamic system

() in Theorem .

Theorem  If there exist appropriate dimension matrices P > , R > , R > , Q > ,
Q > , M > , M > , M > , appropriate dimensions matrices N, N, and a scalar
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α >  such that the following inequality holds:

� =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

� � �  � �  � �  �  � 
∗ �         �  � 
∗ ∗ � � �  � �  �,  
∗ ∗ ∗ �   �   �,  
∗ ∗ ∗ ∗ �   �    
∗ ∗ ∗ ∗ ∗ �   �   
∗ ∗ ∗ ∗ ∗ ∗ �   �,  
∗ ∗ ∗ ∗ ∗ ∗ ∗ �    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �  � 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � 

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ , ()

where

� = αP + PA + AT P + R + M – e–ατm Q – e–ατm M

– e–ατM M + NA + AT NT
 + AT NA + AT NT

 A,

� = PD + ND + AT ND + AT NT
 D, � = e–ατm Q,

� = –e–ατm Q – e–ατm M, � = –e–ατM M,

� = e–ατm Q + e–ατm M,

� = e–ατM M, �  = –N – AT NT
 – AT N,

�  = PB + NB + AT NB + AT NT
 B,

� = –( – μ)e–ατM M + DT ND + DT NT
 D,

�  = –DT NT
 – DT N, �  = DT NB + DT NT

 B,

� = e–ατm R – e–ατm R – e–ατm Q – e–ατM Q,

� = e–ατM Q, � = e–ατm Q, � = –e–ατM Q,

� = –e–ατm Q, �  = e–ατM Q,

� = –e–ατM R – e–ατM Q, � = e–ατM Q, �  = –e–ατM Q,

� = –e–ατm Q – e–ατm M, � = e–ατm Q + e–ατm M,

� = –e–ατM M, � = e–ατM M,

� = –e–ατM Q, �  = e–ατM Q,

� = –e–ατm Q – e–ατm M,

� = –e–ατM M, �  = –e–ατM Q,

�  = (τm)Q + (τM – τm)Q + N + NT
 , �  = –NB – NT

 B,

�  = –
α

w
m

+ BT NB + BT NT
 B.
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Then the reachable sets of system () are bounded in a ball B(, r) = {z ∈ Rn|‖z‖ ≤ r} with

r =
√

λmin(P)
. ()

Proof Construct the Lyapunov-Krasovskii functional

V (zt) =
∑

i=

Vi(zt),

where

V(zt) = zT (t)Pz(t),

V(zt) =
∫ t

t–τm

eα(s–t)zT (s)Rz(s) ds +
∫ t–τm

t–τM

eα(s–t)zT (s)Rz(s) ds,

V(zt) =
∫ t

t–τ (t)
eα(s–t)zT (s)Mz(s) ds,

V(zt) = τm

∫ 

–τm

∫ t

t+θ

eα(s–t)żT (s)Qż(s) ds,

V(zt) = (τM – τm)
∫ –τm

–τM

∫ t

t+θ

eα(s–t)żT (s)Qż(s) ds,

V(zt) =
∫ t

t–τm

∫ t

θ

∫ t

λ

eα(s–t)żT (s)Mż(s) ds dθ dλ

+
∫ t

t–τM

∫ t

θ

∫ t

λ

eα(s–t)żT (s)Mż(s) ds dθ dλ.

Computing the derivative of V (zt) of model (), we have

V̇(zt) = zT (t)Pż(t) = –αV(zt) + zT (t)Pż(t) + αzT (t)Pz(t)

= –αV(zt) + αzT (t)Pz(t) + zT (t)P
(
Az(t) + Dz

(
t – τ (t)

)
+ Bw(t)

)
, ()

V̇(zt) = –αV(zt) + zT (t)Rz(t) + e–ατm zT (t – τm)Rz(t – τm)

– e–ατm zT (t – τm)Rz(t – τm) – e–ατM zT (t – τM)Rz(t – τM), ()

V̇(zt) = –αV(zt) + zT (t)Mz(t) –
(
 – τ̇ (t)

)
e–ατ (t)zT(

t – τ (t)
)
Mz

(
t – τ (t)

)

≤ –αV(zt) + zT (t)Mz(t) – ( – μ)e–ατM zT(
t – τ (t)

)
Mz

(
t – τ (t)

)
, ()

V̇(zt) = –αV(zt) + τ 
mżT (t)Qż(t) – τm

∫ t

t–τm

eα(s–t)żT (s)Qż(s) ds

≤ –αV(zt) + τ 
mżT (t)Qż(t) – e–ατmτm

∫ t

t–τm

eα(s–t)żT (s)Qż(s) ds. ()



Chen and Zhong Journal of Inequalities and Applications  (2017) 2017:277 Page 6 of 13

By using Lemma ,

V̇(zt) ≤ –αV(zt) + τ 
mżT (t)Qż(t)

– e–ατmζ T


⎡

⎢⎢
⎢
⎣

Q –Q Q –Q

∗ Q –Q Q

∗ ∗ Q –Q

∗ ∗ ∗ Q

⎤

⎥⎥
⎥
⎦

ζ, ()

where ζ T
 = (zT (t), zT (t – τm), 

τm

∫ t
t–τm

zT (s) ds, 
τ

m

∫ t
t–τm

∫ t
θ

zT (s) ds dθ ),

V̇(zt)

= –αV(zt) + (τM – τm)żT (t)Qż(t) – (τM – τm)
∫ t–τm

t–τM

eα(s–t)żT (s)Qż(s) ds

≤ –αV(zt)

+ (τM – τm)żT (t)Qż(t) – e–ατM (τM – τm)
∫ t–τm

t–τM

eα(s–t)żT (s)Qż(s) ds. ()

By using Lemma ,

V̇(zt) ≤ –αV(zt) + (τM – τm)żT (t)Qż(t)

– e–ατMζ T


⎡

⎢⎢
⎢
⎣

Q –Q Q –Q

∗ Q –Q Q

∗ ∗ Q –Q

∗ ∗ ∗ Q

⎤

⎥⎥
⎥
⎦

ζ, ()

where

ζ T
 =

(
zT (t – τm), zT (t – τM),


τM – τm

∫ t–τm

t–τM

zT (s) ds,


(τM – τm)

∫ t–τm

t–τM

∫ t–τm

θ

zT (s) ds dθ

)
,

V̇(zt) = –αV(zt) +


τ 

mż(t)Mż(t) +


τ 

Mż(t)Mż(t)

–
∫ t

t–τm

∫ t

θ

eα(s–t)żT (s)Mż(s) ds dθ –
∫ t

t–τM

∫ t

θ

eα(s–t)żT (s)Mż(s) ds dθ

≤ –αV(zt) +


τ 

mż(t)Mż(t) +


τ 

Mż(t)Mż(t)

– e–ατm

∫ t

t–τm

∫ t

θ

żT (s)Mż(s) ds dθ

– e–ατM

∫ t

t–τM

∫ t

θ

żT (s)Mż(s) ds dθ . ()
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In the light of Lemma ,

V̇(zt) ≤ –αV(zt) +


τ 

mż(t)Mż(t) +


τ 

Mż(t)Mż(t)

– e–ατmζ T


⎡

⎢
⎣

M M –M

∗ M –M

∗ ∗ M

⎤

⎥
⎦ ζ

– e–ατMζ T


⎡

⎢
⎣

M M –M

∗ M –M

∗ ∗ M

⎤

⎥
⎦ ζ, ()

where

ξT
 =

(
zT (t),


τm

∫ t

t–τm

zT (s) ds,

τ 

m

∫ t

t–τm

∫ t

θ

zT (s) ds dθ

)
,

ξT
 =

(
zT (t),


τM

∫ t

t–τM

zT (s) ds,


τ 
M

∫ t

t–τM

∫ t

θ

zT (s) ds dθ

)
.

Certainly, the following equations hold:


(
–ż(t) + Az(t)

+ Dz
(
t – τ (t)

)
+ Bw(t)

)T N
(
–ż(t) + Az(t) + Dz

(
t – τ (t)

)
+ Bw(t)

)
= ,

zT (t)N
(
–ż(t) + Az(t) + Dz

(
t – τ (t)

)
+ Bw(t)

)
= ,

()

where N, N are matrices with appropriate dimensions.
Through ()-() and ()()()(), one gets

V̇(zt) + V̇(zt) + V̇(zt) + V̇(zt) + V̇(zt) + V̇(zt) –
α

w
m

wT (t)w(t)

≤ –αV(zt) – αV(zt) – αV(zt) – αV(zt) – αV(zt) – αV(zt) + ζ T (t)�ζ (t).

That is,

V̇ (zt) –
α

w
m

wT (t)w(t) ≤ –αV (zt) + ζ T (t)�ζ (t).

Then one has

V̇ (zt) + αV (zt) –
α

w
m

wT (t)w(t) ≤ ζ T (t)�ζ (t), ()

where

ζ T (t) =
[

zT (t), zT(
t – τ (t)

)
, zT (t – τm), zT (t – τM),


τm

∫ t

t–τm

zT (s) ds,


τM

∫ t

t–τM

zT (s) ds,


τM – τm

∫ t–τm

t–τM

zT (s) ds,

τ 

m

∫ t

t–τm

∫ t

θ

zT (s) ds dθ ,


τ 

M

∫ t

t–τM

∫ t

θ

zT (s) ds dθ ,


(τM – τm)

∫ t–τm

t–τM

∫ t–τm

θ

zT (s) ds dθ , żT (t), wT (t)
]

.

For () holding, we get V̇ + αV – α

w
m

wT (t)w(t) ≤ .
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Thus, according to Lemma , one has V (zt) ≤ .
It is easy to see

zT (t)Pz(t) = V(zt) ≤ V(zt) + V(zt) + V(zt) + V(zt) + V(zt) + V(zt) = V (zt).

Furthermore, by using the spectral property for symmetric positive definite matrix P,
we get

λmin(P)
∥
∥z(t)

∥
∥ ≤ V (zt). ()

Therefore, ‖z(t)‖ ≤ r = √
λmin(P)

due to (). �

Next, let us consider the polytopic uncertain linear system (). Reachable set bounding
of system () is got and stated in Theorem .

Theorem  If there exist appropriate dimension matrices P > , R > , R > , Q > ,
Q > , M > , M > , M > , appropriate dimensions matrices N, N, and a scalar
α > , such that the following inequalities hold (i = , , . . . , N ):

�i =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

�i �i �i  �i �i  �i �i  � i � i
∗ �i         � i � i
∗ ∗ �i �i �i  �i �i  �,i  
∗ ∗ ∗ �i   �i   �,i  
∗ ∗ ∗ ∗ �i   �i    
∗ ∗ ∗ ∗ ∗ �i   �i   
∗ ∗ ∗ ∗ ∗ ∗ �i   �,i  
∗ ∗ ∗ ∗ ∗ ∗ ∗ �i    
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �i   
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � i  
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � i � i
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � i

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

≤ , ()

where

�i = αPi + Pi(A + Ai) + (A + Ai)T Pi + R + M – e–ατm Q – e–ατm M – e–ατM M

+ N(A + Ai) + (A + Ai)T NT
 + (A + Ai)T N(A + Ai) + (A + Ai)T NT

 (A + Ai),

�i = Pi(D + Di) + N(D + Di) + (A + Ai)T N(D + Di) + (A + Ai)T NT
 (D + Di),

�i = e–ατm Q, �i = –e–ατm Q – e–ατm M,

�i = –e–ατM M, �i = e–ατm Q + e–ατm M,

�i = e–ατM M, � i = –N – (A + Ai)T NT
 – (A + Ai)T N,

� i = Pi(B + Bi) + N(B + Bi) + (A + Ai)T NB + (A + Ai)T NT
 (B + Bi),

�i = –( – μ)e–ατM M + (D + Di)T N(D + Di) + (D + Di)T NT
 (D + Di),

� i = –(D + Di)T NT
 – (D + Di)T N, � i = (D + Di)T NB + (D + Di)T NT

 B

�i = e–ατm R – e–ατm R – e–ατm Q – e–ατM Q,
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�i = e–ατM Q, �i = e–ατm Q, �i = –e–ατM Q,

�i = –e–ατm Q, � i = e–ατM Q,

�i = –e–ατM R – e–ατM Q, �i = e–ατM Q, � i = –e–ατM Q,

�i = –e–ατm Q – e–ατm M, �i = e–ατm Q + e–ατm M,

�i = –e–ατM M, �i = e–ατM M,

�i = –e–ατM Q, � i = e–ατM Q,

� = –e–ατm Q – e–ατm M,

� = –e–ατM M, � i = –e–ατM Q,

� i = (τm)Q + (τM – τm)Q + N + NT
 , � i = –N(B + Bi) – NT

 (B + Bi),

� i = –
α

w
m

+ (B + Bi)T N(B + Bi) + (B + Bi)T NT
 (B + Bi).

Then the reachable sets of system () are bounded in a ball B(, r) = {z ∈ Rn|‖z‖ ≤ r} with

r =
√

λmin(Pi)
, i = , , . . . , n. ()

Proof In progress in Theorem , replacing matrix A by
∑N

i= θi(t)(A + Ai), matrix B by
∑N

i= θi(t)(B + Bi), matrix D by
∑N

i= θi(t)(D + Di), one can easily get the conclusion. �

Remark  In this paper, the discrete delay τm ≤ τ (t) ≤ τM is of a more general scope than
 ≤ τ (t) ≤ τ considered in [, , ].

Remark  The novel inequalities in Lemma  lead to tighter bounds than the Jensen in-
equality. By means of novel inequalities in Lemma , to estimate integral terms in Lya-
punov functionals, better bounds for a reachable set are proposed in this paper.

Remark  To compute the smallest bound of a reachable set for linear dynamic systems
(), we solve the optimization problem for a positive scalar δ > :

min δ̄

(
δ̄ =


δ

)

s.t.

⎧
⎨

⎩
(a) P ≥ δI,

(b) inequality ()/() in Theorem /.

()

Remark  The novel inequalities in Lemma  may be used to study the reachable set
problem for a linear neutral system, even for a non-linear neutral system.

Remark  In references [, , ], they used conventional Jensen inequalities –(h –
h)

∫ t–h
t–h

zT (s)Pz(s) ds ≤ –(
∫ t–h

t–h
z(s) ds)T P(

∫ t–h
t–h

z(s) ds) and – 
 (h – h) ∫ –h

–h

∫ t–h
t+θ

zT (s) ×
Rz(s) ds dθ ≤ –(

∫ –h
–h

∫ t–h
t+θ

zT (s) ds dθ )R(
∫ –h

–h

∫ t–h
t+θ

z(s) ds dθ ) to estimate a single inte-
gral and a double integral, respectively. However, in this paper, we use inequalities in
Lemma . to estimate the bound of a single integral and a double integral. Obviously, the
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bound in this study is more accurate than those in references. Therefore, the conservatism
in our work is less than the existing ones.

Remark  It should be noted that if there are more accurate inequalities to estimate the
bound of

∫ b
a zT (s)Rz(s) ds,

∫ b
a żT (s)Rż(s) ds dθ ,

∫ b
a

∫ b
θ

żT (s)Rż(s) ds dθ , there is still room for
further improvement of the proposed results to reduce the conservatism of systems.

Remark  Some literature works researched the stability of second order delay differen-
tial equations; see, for example, references [–]. In the future, reachable set bounding
for second order delay differential equations may be a hot issue, and methods similar to
those in this paper may be used to estimate reachable set bounding for second order delay
differential equations.

4 Examples
In order to compare the obtained results with those in the literature, we provide several
numerical examples in the following.

Example  Consider the uncertain time-varying delayed system in [, ]:

A + A =

[
– 
 –.

]

, A + A =

[
– 
 –.

]

, D + D =

[
– 
– –.

]

,

D + D =

[
– 
– –.

]

, B + B =

[
–.



]

= B + B, wT (t)w(t) ≤ .

()

We consider two cases for discrete delay τ (t):  ≤ τ (t) ≤ ., τ̇ (t) ≤ μ <  and  ≤ τ (t) ≤
., τ̇ (t) ≤ μ < . Let μ be different values, we compute δ̄’s by using optimization problem
(). The computed δ̄’s are listed in Table  for the forward case and in Table  for the
backward case. From Tables  and , we know that the proposed result in Theorem  is
tighter than the ones in references [, ].

Table 1 δ̄’s in Example 1 for 0 ≤ τ (t) ≤ 0.7, τ̇ (t) ≤ μ

μ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.9

[22] 2.97 3.30 3.85 4.85 6.93 12.84 53.86 -
[27] 1.89 1.94 2.00 2.08 2.19 2.35 2.60 3.51
Theorem 2 1.38 1.51 1.59 1.63 1.70 1.81 1.94 2.05

Table 2 δ̄’s in Example 1 for 0 ≤ τ (t) ≤ 0.75, τ̇ (t) ≤ μ

μ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.9

[22] 3.34 3.79 4.53 5.88 8.85 18.36 127.70 -
[27] 2.28 2.35 2.45 2.57 2.68 2.85 4.62 5.57
Theorem 2 1.27 1.32 1.36 1.97 2.09 2.17 2.54 3.22
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Table 3 δ̄’s in Example 2 for 0 ≤ τ (t) ≤ 0.1, τ̇ (t) ≤ μ

Method [21] [22] [2] Theorem 2
δ̄ - - 2.8686× 104 7.0825

Table 4 Computed r’s of Example 4 for different values of τ with μ = 0

τ

0.1 0.3 0.5 0.7 0.9

[8]
√
0.83

√
1.28

√
1.94

√
2.90

√
4.46

[4]
√
0.74

√
0.92

√
1.36

√
2.30

√
3.51

[10]
√
0.68

√
0.80

√
0.97

√
1.64

√
3.22

[2]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

[3]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

[22]
√
0.66

√
0.75

√
0.94

√
1.61

√
3.14

Theorem 2
√
0.57

√
0.68

√
0.81

√
1.43

√
2.10

Example  Consider the following uncertain model in [, , ] with parameters:

A + A =

[
 –.
 –.

]

, A + A =

[
 –.
 –.

]

,

D + D =

[
–. –.

 .

]

= D + D,

B + B =

[
–


]

= B + B, μ = , τm = , τM = ., wT (t)w(t) ≤ .

()

When μ are different values, we solve inequalities () to get δ̄′s for τm ≤ τ (t) ≤ τM ,
τ̇ (t) ≤ μ with τm = , τM = .. To compare with the results in [, , ], we list computed
results by using Theorem  in Table . One can see that there are no feasible solutions by
employing the methods in [, ], and one can see easily that the proposed method has
more application area.

Example  Consider the following delayed system () with parameters:

ż(t) =

[
– 
 –.

]

z(t) +

[
– 
– –.

]

z
(
t – τ (t)

)
+

[
–.



]

w(t), ()

and wT (t)w(t) ≤ .
By using the method in Theorem , we list computed r’s for different values of τ (t) with

μ =  in Table . We can see that bounds computed in this paper are tighter than those of
references [–, , , ]. Of course, it decreases the conservatism of systems.

Example  Consider the following uncertain delayed system:

A + A =

[
– 
 –.

]

, A + A =

[
– 
 –.

]

, D + D =

[
– 
– –.

]

,

D + D =

[
– 
– –.

]

, B + B =

[
–.



]

= B + B, wT (t)w(t) ≤ ,

()



Chen and Zhong Journal of Inequalities and Applications  (2017) 2017:277 Page 12 of 13

Figure 1 The reachable set of Example 4.

and time delay . ≤ τ (t) ≤ ., μ = .. The reachable set of system () is plotted in
Figure  with P =

[
. –.

–. .

]
.

Remark  In the reference [], Domoshnitsky discussed the stability of more compli-
cated linear neutral systems with uncertain coefficients and uncertain delays. In further
work, we will study reachable set bounding for this type of linear neutral systems.

5 Conclusions
Firstly, we study uncertain linear systems with polytopic parameters. By using L-K func-
tional and novel inequalities to estimate integral terms in L-K functional, some novel suf-
ficient conditions for a bounded reachable set of uncertain systems are obtained. Then, we
use some examples to show that our methods in Theorems  and  are effective and have
less conservatism compared with reported conditions. Furthermore, the method in this
work may be extended to compute a reachable set of linear neutral systems, and it may
even be used to deal with stability of linear systems and non-linear systems in the future.
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