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Abstract
A weighted Bregman-Gradient Projection denoising method, based on the Bregman
iterative regularization (BIR) method and Chambolle’s Gradient Projection method (or
dual denoising method) is established. Some applications to image denoising on a
1-dimensional curve, 2-dimensional gray image and 3-dimensional color image are
presented.
Compared with the main results of the literatures, the present numerical results of

the proposed method are improved.
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1 Introduction
In this paper, we consider the image denoising problems. The objective is to find the un-
known true image u ∈ Rn from an observed image g ∈ Rn formed as the follows:

g = u + n, (.)

where n ∈ Rn refers to the additive white gaussian noise. To remove the additive white
gaussian noise well, Rudin, Osher and Fatemi (ROF) first proposed the total-variation
(TV) regularization denoising model in []. This denoising model is actually the optimiza-
tion of the ROF functional:

min
u

‖∇u‖ +


λ
‖u – g‖

, (.)

where, for the continuous case, i.e. u ∈ L(�), � is an open subset of Rn. Here, ‖ · ‖ denotes
the L norm. We also denote ‖∇u‖ by TV(u). The TV regularization model had been
popular from then on for it can preserve the edges and the details as denoising [, ].

There are various excellent algorithms to solve the ROF denoising model [–]. In this
paper, we consider two state-of-the-art denoising methods, i.e. Chambolle’s gradient pro-
jection denoising algorithm [] and Osher et al.’s Bregman iterative regularization method
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[]. Chambolle solved the ROF model in the dual field. The Bregman iterative regulariza-
tion method in [] gave a significant improvement over standard ROF models by taking
back useful information to the denoising results. Yin et al. proved a more simple equiv-
alent formation to the Bregman iterative regularization model in []. It is known from
the numerical examples of [] that the Bregman iterative regularization method can keep
the horizontal and the vertical edges well and the bent edges badly. On the contrary, we
see that Chambolle’s dual denoising method in [] can keep the curve well and the hor-
izontal and the vertical edges badly. Accordingly, in this paper, we give a comprehensive
denoising method based on the dual denoising algorithm [] and the Bregman iterative
regularization method [, ]. In this paper, implicitly assumed, dual denoising just refers
to Chambolle’s dual denoising algorithm or the gradient projection method.

Firstly, we choose a proper weight parameter β and modify the ROF functional to a
modified form with a weighted taking-back-noise term:

bk+ = (g + bk) + βπλK (g + bk).

The weight parameter β ∈ (, ), maintains a balance between the Bregman iterative reg-
ularization method and the dual denoising method. The value of β varies according to the
noise level and it is approximately inversely proportional to the noise level. Specially, when
β = , we solve the ROF model by the gradient projection method for there is no informa-
tion that is taken back to the model. As for β = , the model becomes the Bregman iterative
regularization model. Secondly, we iteratively solve the modified ROF model until the end
condition is met. When  < β < , we solve the modified ROF model by Chambolle’s dual
algorithm. The results of the numerical experiments demonstrate that the new method
cannot only restore more straight edges than the dual denosing method but also restore
more bent edges than the Bregman iterative regularization method.

The rest of this paper is organized as follows. In Section , we briefly review the dual
denoising method and Bregman iteration denoising method. In Section , we propose our
weighted gradient projection denoising method. Then, in Section , we apply our new
method to -D curve, -D gray image and -D color image denoising examples, respec-
tively, and present the numerical results. Finally, we give a conclusion.

2 Preliminaries
2.1 Dual denoising method
Noticing that

TV(u) = sup
v∈K

(u, v)X (.)

(.) can be rewritten as

min
u

J(u) +


λ
‖u – g‖

. (.)

The Euler equation for (.) is

 ∈ u – g + λ∂J(u), (.)
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which is equivalent to

(u – g)/λ ∈ ∂J(u)

and equivalent to

u ∈ ∂J∗((g – u)/λ
)
.

The above equation can be rewritten as

 ∈ g – u
λ

–
g
λ

+

λ

∂J∗
(

g – u
λ

)
, (.)

where J∗ is the Legendre-Fenchel transform of J [–], defined by

J∗(v) = sup
u

(u, v)X – J(u). (.)

Proposition .

J∗(v) = χκ =

{
 if v ∈ κ ,
+∞ otherewise.

(.)

Let ω = (u – g)/λ, (.) is the Euler equation for the minimization problem

min
ω

‖ω – (g/λ)‖


λ
+


λ

J∗(ω).

By Proposition ., we get ω = πK (g/λ). The solution of equation (.) can be simplified as

u = g – πλK (g). (.)

For computing u, we just need to compute the nonlinear projection πλK (g), i.e. to solve
the following problem:

min
{∥∥λdiv p – g)

∥
∥

 : ∀p ∈ Y , |pi,j| –  ≤ , i = , . . . , M, j = , . . . , N
}

, (.)

here, M, N represent the total number of pixels in each row and in each column.
Given λ = λ > ,  < τ < 

 , p = , for any n ≥ , Chambolle’s gradient projection
method for the denoising problem (.) is described as below.

for n = , . . . , Lout

Initialization: p = ;

for t = , . . . , Lin

pn+
i,j =

pn
i,j + τ (∇(div pn – g/λt))i,j

 + τ |(∇(div pn – g/λt))i,j| ;

vn+ = πλt (g) = λt div pn+;

fn+ = fn+(λt) =
∥∥πλtK (g)

∥∥ = ‖vn+‖;
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end

λt =
Nσ

fn+
λt ;

end

λt+ = λt ;

u = g – vn+
(
i.e. u = g – πλt+K (g)

)
.

Here Iout, Iin denote the iterative numbers of the external iterations and the internal
iterations time for u. N is the total number of pixels. σ is the noise standard deviation.
For convenience, we set the inner loop times Lin and the outside loop time Iout.

Lemma . ([]) Let  < τ < 
 and p = , then, for any λ > , λdiv pn converges to πλnK (g)

as n → +∞.

2.2 Bregman iterative regularization denoising method
Osher et al. proposed a Bregman iterative regularization denoising method and proved the
convergence []. A simple and equivalent iterative procedure to the BRI denoising model
was given in [], and the convergence of this simplified method was also analyzed. Here we
consider the simplified BRI denoising model in []. The simplified BIR denoising model is
as follows:

uk+ = art min
u∈BV(�)

{|u|BV + μ‖g + bk – u‖
L

}
, (.)

where BV(�) denotes the space of functions with bounded variation on � and | · |BV de-
notes the BV seminorm, formally given by

|u|BV =
∫

�

|u|,

which is also referred to as the total variation (TV) of u, and update

bk+ = bk + g – uk+, (.)

where bk is the information taken back (we set b = ), g is the degenerative image con-
taminated by additive white gaussian noise.

The Bregman iteration technique has the advantage of converging quickly when applied
to certain types of objective functions and the advantage of keeping a fixed value of λ as
denoisings [].

Lemma . ([]) Suppose that some iterate, u∗, satisfies Au∗ = b. Then u∗ is a solution to
the constrained problem (.).

3 A weighted denoising method
While the gradient projection and the BIR denoising methods are extremely efficient, they
can either keep the straight edges or keep the bent curves well. From the denoised results



Tong Journal of Inequalities and Applications  (2017) 2017:279 Page 5 of 12

of [] and [], we see that the bent parts of the curve do not get restored perfectly by the
BIR method, while the straight edges are not be kept well by Chambolle’s dual denoising
method. So we plan to combine these two methods to improve the restored efficiency of
the noisy images. We found that the denoising effects were not very good if we just put
these two methods together. This is because too much noise was taken back if the noise
level is heavy. So we propose a weighted coefficient strategy to eliminate this phenomenon.

Firstly, we use the simplified Bregman iterative regularization model:

uk+ = art min
u∈BV(�)

{|u|BV + μ‖g + bk – u‖
L

}
;

for the sake of consistency, setting the parameter μ in the above functional equal to 
λ

we
consider the modified ROF model

uk+ = art min
u∈BV(�)

{
|u|BV +


λ

‖g + bk – u‖
L

}
; (.)

if we apply Chambolle’s dual algorithm to each iteration of (.) by Chambolle’s dual algo-
rithm, we have

uk+ = g + bk – πλK (g + bk);

and the update

bk+ = bk + (bk + g – uk+).

By a simple derivation, we have

bk+ = bk + πλK (g + bk), (.)

where b = .
Bregman-gradient projection method initialize:

Initialization: u = g, b = , λ = λ (here, we choose a λ > )

While ‖uk – uk–‖ > tol (tol is the tolerance)

for k = , . . . , K∗:

Using Chambolle’s dual method to compute uk+ in (.), we obtain

uk+ = (g + bk) – πλK (g + bk)

end

and using the new update (.):

bk+ = bk + πλK (g + bk)

end

For simplicity, we preset the outside recycling (i.e. the Bregman iteration) numbers and
the internal recycling (i.e. the dual iteration) numbers. Usually we just need  or  steps
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outside recycling. It is easy to see that we just need to replace g in (.) by g +bk . This mixed
denoising method is mainly based on the Bregman iterative regularization denoising and
Chambolle’s gradient projection denoising method, which ensures that each sub-problem
has a closed-form solution. However, if we just put these two methods together, the de-
noising effects were not very good.

Secondly, we add a weight factor β before the taking-back-noise term of the updating
iteration step, i.e.

bk+ = bk + βπλK (g + bk). (.)

Here, the weighted coefficient β ∈ [, ], β ≥ , is used to balance the amount of the
noises taken back to the latest denoised result. The strategy is that the bigger the noise
level, the smaller the β is. This is because too much noise was taken back if the noise level
is heavy. Next, we will give the mixed denoising method of BIR denoising and the dual
denoising method.

Weighted Bregman-gradient projection method

Initialization: u = g, b = , λ = λ (here, we choose a λ > )

While ‖uk – uk–‖ > tol

for k = , . . . , K∗:

Using Chambolle’s dual method to compute uk+ in (.), we obtain

uk+ = (g + bk) – πλK (g + bk)

end

and using the new update (.):

bk+ = bk + βπλK (g + bk)

end

Table 1 Values of the parameter β

Dimension 1-D 2-D 3-D
σ = 12 σ = 25

β 0.4 0.1 0.1 0.05

Figure 1 1-D original image.
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Figure 2 1-D denoising results.

Figure 3 2-D original image.
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Figure 4 2-D denoising results.

Through experiments, we give the value of β . In the -D and -D cases we select β = .
and β = ., respectively. In -D cases, when σ = , we choose β = .; and when σ = ,
we choose β = .. All the PSNRs of our method in -D, -D and -D are bigger than
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Figure 5 3-D original image.

those of the dual algorithms. The results presented in this paper extend and improve the
related results of [] and []. The details of the parameter β are showed in Table .

4 Numerical experiments and discussions
In this section, we will examine the effectiveness of the weighted Bregman method on TV
denoising. The new method was implemented in FORTRAN and MATLAB, and compiled
on a Win platform.

Firstly, we test our method by denoising three kinds of images: the -D curves, the -D
gray images and the -D color images.

Next, we will compare the peak signal-to-noise ratios (PSNRs) of the dual denoising
method and our new denoising method. Under the same number of iterations, all the
results show that the PSNRs of the new method are higher than those of the dual denoising
method. Here, the PSNR is defined as follows: given a noise-free m-by-n image I and its
noisy approximation K ,

PSNR =  · log

(
MAX

I
MSE

)
,

where the mean squared error (MSE) is defined as

MSE =


mn

m–∑

i=

n–∑

j=

[
I(i, j) – K(i, j)

],

where MAXI denotes the maximum possible pixel value of the image. When the pixels are
represented using  bits per sample, MAXI is .

Example  In our first test, an -D signal f (Figure ) is used. We add Gaussian white
noises of standard deviation . and  on f . The corresponding degraded images are
displayed in the top row of Figure  from left to right, respectively. All the -D restored
results of the dual method and the proposed method are shown in Figure  also. The
restored results for the dual denoising method are shown in the middle row of Figure ,
and the PSNRs are . dB (left) and . dB (right). The denoised images for the



Tong Journal of Inequalities and Applications  (2017) 2017:279 Page 10 of 12

Figure 6 3-D Denoising results.

proposed method are shown in the bottom row of Figure . The PSNRs are . dB
(left) and . dB (right), respectively. In comparison, it shows that the restored output
images of the proposed method are very satisfactory. In fact, under the same conditions,
the proposed method can reconstruct more details of the straight edges and the cusps than
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Table 2 PSNR results of Chambolle’s dual method and our new method

Dimension σ Dual (dB) Ours (dB)

1-D σ = 9.4544 36.3555 40.1584
σ = 25 31.1127 32.8930

2-D σ = 12 33.9067 34.3631
σ = 25 31.1647 31.2651

3-D σ = 12 32.1209 32.7622
σ = 25 28.7921 29.6473

the dual method. Here, ‘s – ’ is the taking-back-noises iteration time and ‘k’ refers to the
dual iteration number. The dual iterations stop when the infinite module of the denoised
results of the kth step and (k + )th step is less than ..

Example  In the second example, we further test the effectiveness of the proposed
method by denoising the gray images. The clean -D gray image of Figure  is contam-
inated by gaussian white noise with standard deviation  and , and the noisy images
are shown in the first row of Figure  from left to right. A comparison of the denoising
results for the dual method and the proposed method is provided in the last two rows of
Figure . In the middle row of Figure , the PSNRs for the dual method are . dB
(left) and . dB (right). The bottom images are the restored images using the pro-
posed method, with PSNRs . dB (left) and . dB (right). The denoising pa-
rameter of A from left to right is . and .. Also here, the symbol k refers to the
dual iteration number. All the taking-back-noises iteration numbers are one. Comparison
results show again that the contours and the details such as the girl’s hair, mole, nose and
teeth are recovered more clearly by our new method than the dual method.

Example  In this experiment, we come to deal with -D color image. The original RGB
‘Lena’ image in Figure  is distorted by gaussian white noises with standard deviation of
 and , respectively. The noisy images are shown in the Figure  at the top left and the
top right. In Figure , the second row, the denoised results for the dual method are shown,
the PSNR of the left one is . dB and the right one is . dB. In the third row,
the restoration results by the proposed method are displayed, with the PSNRs . dB
(left) and . dB (right) severally. The denoising parameter of λ from left to right is
. and ., the taking-back-noises iteration number equals one and the dual iteration
number k is ten. It is clear that, no matter the noise level is light or heavy, the restored
results by our method are much better than those by the dual method, especially in the
contours and details, such as the hair and the hat.

In Table , we present the PSNRs of the dual algorithm and our new method. Here σ is
the noise standard deviation.

5 Conclusions
In this paper, we proposed a weighted Bregman-gradient projection denoising method.
Several kinds of images are denoised by the new method. Numerical results indicate that
the new method is more accurate than the dual denoising method and Bregman iteration
regularized method.



Tong Journal of Inequalities and Applications  (2017) 2017:279 Page 12 of 12

Acknowledgements
The author was supported by the Grant No. 17ZB0447 of the Scientific Research Fund of Sichuan Provincial Education
Department. Also, this work was partly support by the State Key Laboratory of Science and Engineering Computing of the
Chinese Academy of Sciences (LSEC of CAS). I would like to thank Dr. Chong Chen (LSEC of CAS) for his friendly inviting
me to visit LSEC of CAS, and I would like to thank Prof. Gang Li (QDU) and Prof. Kelong Zhen (SWUST) for their help too.

Competing interests
The author declares that she has no competing interests.

Authors’ contributions
The author of the manuscript has read and agreed to its content and is accountable for all aspects of the accuracy and
integrity of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 September 2017 Accepted: 12 October 2017

References
1. Rudin, LI, Osher, S, Fatemi, E: Nonlinear total variation based noise removal algorithms. Phys. D, Nonlinear Phenom.

60(1-4), 259-268 (1992)
2. Aubert, G, Kornprobst, P: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus

of Variations. Springer, Berlin (2002)
3. Chan, T, Shen, J: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia

(2005)
4. Chambolle, A: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89-97 (2004)
5. Osher, S, Burger, M, Goldfarb, D, Xu, J, Yin, W: An iterated regularization method for total variation-based image

restoration. In: IEEE International Conference on Imaging Systems and Techniques, pp. 170-175 (2011)
6. Yin, W, Osher, S, Goldfarb, D, Darbon, J: Bregman iterative algorithms for l1-minimization with applications to

compressed sensing. SIAM J. Imaging Sci. 1(1), 143-168 (2008)
7. Chang, Q, Chern, IL: Acceleration methods for total variation-based image denoising. SIAM J. Sci. Comput. 25,

982-994 (2003)
8. Goldstein, T, Osher, S: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323-343

(2009)
9. Jia, R, Zhao, H: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231-241

(2010)
10. Rockafellar, RT: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1972)
11. Boyd, S, Vandenberghe, L: Convex Optimization. Cambridge University Press, Cambridge (2004)
12. Ekeland, I, Temam, R: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)


	A weighted denoising method based on Bregman iterative regularization and gradient projection algorithms
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Dual denoising method
	Bregman iterative regularization denoising method

	A weighted denoising method
	Numerical experiments and discussions
	Conclusions
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


