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Abstract

In the article, we present the best possible parameters A = A(p) and u = w(p) on the
interval [0, 1/2] such that the double inequality

G’[Aa+(1-M)b,Ab+(1-2A)a]A'(a,b)
<Ea,b) <GPlpa+ (1 - b, ub+ (1 - walA'*(a,b)

holds for any p € [1,00) and all g, b > 0 with a # b, where A(g, b) = (a + b)/2,
Gla,b) = v/ab and E(a,b) = [2 foﬂ/z Vacos?8 + bsin?6 df/m1? are the arithmetic,

geometric and special quasi-arithmetic means of a and b, respectively.
MSC: 26E60; 33E05
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1 Introduction
Let r € (0,1). Then the Legendre complete elliptic integrals K(r) and £(r) [1, 2] of the first
and second kinds are defined as

/2 d /2
ko= [ == E0= [ 1o
0 1—r2sin(¢) 0

respectively. It is well known that the function » — K(r) is strictly increasing from (0,1)
onto (1/2,00) and the function r — £(r) is strictly decreasing from (0, 1) onto (1, 7/2), and
they satisfy the formulas (see [3, Appendix E, pp. 474,475])

ak(r) &(r) —r2K(r) dé(r)  E(r)-Kl(r)

dr rr'? dr r
72
/c(z—‘/;) - 1+ NK®), 5(2—‘/;) _20-rk
1+r 1+r 1+r

where ' = +/1 - r2.
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The complete elliptic integrals KC(r) and &£(r) are the particular cases of the Gaussian
hypergeometric function [4-10]

Flabicn) = 3 Dol

(-1<x<1),
e~ (On n

where (a)g =1fora #0, (a), =a(a+1)(a+2)---(a+n-1) =T(a+ n)/T'(a) is the shifted
factorial function and I'(x) = fooo t*Le~tdt (x > 0) is the gamma function [11-18]. Indeed,

_T 11..2_7[00(%)%12;1
K05 8(5r37) = 5 2 (e

n=0
g(r)—zF _1 1'1~r2 _zi%ﬂ"
) 272777 ) 2 —~  (n)? ‘

Recently, the bounds for the complete elliptic integrals have attracted the attention of
many researchers. In particular, many remarkable inequalities and properties for K(r),
&(r) and F(a, b; ¢c; x) can be found in the literature [19-52].

In 1998, a class of quasi-arithmetic mean was introduced by Toader [53] which is defined
by

1 T 2 /2
Mp,n(a,b)=pl<;f0 p(rn(9)d9)> =p1(;/0 p(rn(H)d9)>,

where 7,,(6) = (a” cos 0 + b" sin2 0)V" for n # 0, ro(6) = a®* b*"*?, and p is a strictly mono-

tonic function. It is well known that many important means are the special cases of the
quasi-arithmetic mean. For example,

Myna(a ) T ral[2K(/1-(bla)?)], a=>b,
1/x2\4, D) = - =
2/0 12 m ﬂb/[ZK(\/l—(ﬂ/b)z)]; ﬂ<b,

is the arithmetic-geometric mean of Gauss [54-60],

w2 2a€(\/1—- (bla)?)/r, > b,
M,o(a, b)) = E/ Va2 cos? 6 + b2 sin® 6 do = a&( (blay)im, az
T Jo 2bE(\/1—-(alb)?)/m, a<b,
is the Toader mean [61-70], and

2 /2 9 9
Mx,o(ﬂ, b)) _Z / a°s Obsm 0 de
T Jo

is the Toader-Qi mean [71-74].

Let p = /x and n = 1. Then M, ,(a, b) reduces to a special quasi-arithmetic mean

— 2/ 2
E(@,b) = M (@ b)) - | VI blalins, mazb, 1)
4b[E(W1=alb)?/n?, a<b.
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Let
Ala,b) = “;b, Gla, b) = /ab,
1/
Mp(a,b)=(ﬂp;bp> ‘040, Molab)=ab

be the arithmetic, geometric and pth power means of a and b, respectively. Then it is well

known that the inequality

Gl(a, b) = My(a,b) < A(a, b) = Mi(a, b) (1.2)
holds for all 4, b > 0 with a # b, and the double inequality

%Mg/z (Lr) <& < %Mz (L7) (1.3)

holds for all » € (0,1) (see [75, 19.9.4]).
From (1.1)-(1.3) we clearly see that

Gl(a,b) < E(a,b) < A(a, b)

forall a,b > 0 with a # b.
Let p € [1,00) and

flx;psa,b) = Gp[xa + (1 -x)b,xb+ (1 - x)a]Al’p(a, b).

Then it is not difficult to verify that the function x — f(x; p; a, b) is strictly increasing on
[0,1/2] for fixed p € [1,00) and a, b > 0 with a # b. Note that
f(0;p;a,b) = G*(a,b)A P (a,b) < G(a, b)
<E(a,b) < A(a,b) = f(1/2;p;a,b) (1.4)

forall p € [1,00) and @, b > 0 with a # b.

Motivated by inequalities (1.4) and the monotonicity of the function x — f(x; p;a, b) on
the interval [0,1/2], in the article, we shall find the best possible parameters A = A(p), . =
(p) on the interval [0,1/2] such that the double inequality

G’[ra+(1-A)b,Ab+ (1~ 1)a]A" " (a,b)
< E(a,b) < G”[/m +(A-pu)b,ub+(1- u)u]Al_"(a, b)

holds for any p € [1,00) and all 4, b > 0 with a # b.
2 Lemmas

Lemma 2.1 (see [3, Theorem 1.25]) Let —0co < a < b < +00, f,g : [a,b] — R be continu-
ous on [a, b] and differentiable on (a,b), and g'(x) # 0 on (a,b). If f'(x)/¢'(x) is increasing
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(decreasing) on (a, b), then so are the functions

f(x)—f(a) fx)—f(b)
g -gla)  glx)-gb)

Iff'(x)/g'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 The inequality

()"

—+
4p b4
holds for all p € [1,00).

Proof Let

4/p
o= (22)7 o

Then simple computations lead to

lim f(p) = 1, (2.2)
p—> o0

o () ]
PI=p 8\ T w 16 log(¥2r)

4

5o (TNCY) )
> — log -
P> 4 m 16 log(*27)

1024 log(%) -t
N 4ip?

>0 (2.3)

for p € [1,00).
Therefore, Lemma 2.2 follows easily from (2.1)-(2.3). O

Lemma 2.3 The following statements are true:

(1) The function r = [E(r) — (1 =r2)K(r)]/r? is strictly increasing from (0,1) onto (7 /4,1).

(2) The function r— [K(r) — E(r)]/r? is strictly increasing from (0,1) onto (1 /4, 00).

(3) The function r— [E(r) + (1= r)K(r)]/(1 = r?) is strictly increasing from (0,1) onto
(7T, 00).

(4) The function r+— [2E(r) = (1 = r2)K(r)]/(1 + r2) is strictly decreasing from (0,1) onto
1,m/2).

(5) The function r — r*[2E(r) — (1 = r)K@)]/[(1 + r)2(K(r) = E(r))] is strictly
decreasing from (0,1) onto (0,2).

Proof Parts (1) and (2) can be found in the literature [3, Theorem 3.21(1) and Exer-
cise 3.43(11)].
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For part (3), let fi(r) = [E(r) + (1 - r?)K(r)]/(1 = r?). Then simple computations lead to
A07)=m, A7) =00, (2.4)
filr) = ﬁ [% (E@) - (1 -r)KE) + (1~ r2)/C<r>]‘ 2.5)

It follows from part (1) and (2.5) that
£l(r)>0 (2.6)

for all r € (0,1). Therefore, part (3) follows from (2.4) and (2.6).
For part (4), let f5(r) = [2E(r) — (1 = r2)K(r)]/(1 + r?), then one has

AO)=5 A1 7)

r Er)-A-r)K(r)

fr) = Ty [(1 -7?) " - 25(r)]. (2.8)

From part (1) and (2.8) we clearly see that

r

ﬁ(}”)<—m<0

(2.9)
for all » € (0,1). Therefore, part (4) follows from (2.7) and (2.9).
For part (5), let f3(r) = r?[2E(r) — (1 = P2)K()]/[A + r2)2(K(r) — £(r))], then f5(r) can be

rewritten as

28(r) = (1= r))K(r) 1 1
o) = 1+72 x Kin-£0) “Ter (2.10)
Therefore, part (5) follows easily from parts (2) and (4) together with (2.10). a
Lemma 2.4 The function
" r*K(r)
r)=
T KO - €0
is strictly decreasing from (0,1) onto (1/2,2).
Proof Let g(r) = r2K(r) and g (r) = (1 + r})[K(r) — £(r)]. Then we clearly see that
a(0") =g (07)=0, gl = gl(r), (2.11)
&(r)
_ 1
g(1) = > (2.12)
() 1
= 2.13
@) 2- %0 219

E(M+1-r2)K(r)
1-r2



Qian and Chu Journal of Inequalities and Applications (2017) 2017:274 Page 6 of 10

From Lemma 2.3(3), (2.11) and (2.13) we know that

¢(0%) = 1im &) _

= 2.14
r—0+ gé (}") ( )

and the function g{(r)/g}(r) is strictly decreasing on (0, 1).
Therefore, Lemma 2.4 follows easily from Lemma 2.1, (2.11), (2.12) and (2.14) together
with the monotonicity of the function g;(r)/g}(r). O

Lemma 2.5 Let u € [0,1], 7 € (0,1), p € [1,00) and

1 dur? 4Q2E(r) — (1 - r)K(r))?
h(u,p;r) = Ep log |:1 "0 rz)z] - 10g|: 07 ] (2.15)
Then one has
(1) h(u,p;r) >0 forall r € (0,1) if and only if u <1/4p;
(2) h(u,p;r) <0 forall r € (0,1) if and only if u > 1 - (25/2/7)*?.
Proof 1t follows from (2.15) that
h(u,p;0*) =0, (2.16)
2
h(u,p;17) = ‘g log(1 —u) + log(%>, (2.17)
dh(u,p;r) 21 =) [K(r) = E@)] dpur(l —r?)
or T A+ )REF) - A=r)KF)] A+ r2)[A + r2)2 — dur?]

201 =)[2(K(r) = £(r) + pQE(r) — (1 = r)K(r))]
T @+ ) [A +r2)? = 4urt][2E(r) = (1 = r2)K(r)]

[m(p;r) —2u], (218)

where

1+ P22IK() - E(r)]
P2(K(r) - £() + pEM) — A - 2K ()]
1
P GEEVAGK

hl(p; 7‘) =

(2.19)

where f3(r) and g(r) are defined by (2.10) and Lemma 2.4, respectively.
From Lemma 2.3(5) and Lemma 2.4 together with (2.19) we clearly see that the function

r — hy(p; r) is strictly increasing on (0, 1) and

1
hi(p;0%) = 2’ (2.20)

h(p;17) = 2. (2.21)

From Lemma 2.2 we know that 1 — (2+/2/7)*? > 1/(4p). Therefore, we only need to divide
the proof into three cases as follows.

Case I u <1/(4p). Then Lemma 2.3(4), (2.18), (2.20) and the monotonicity of the func-
tion r — &y (p; r) on the interval (0, 1) lead to the conclusion that the function r — h(u, p; r)
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is strictly increasing on (0,1). Therefore, /(u, p;r) > 0 for all r € (0,1) follows from (2.16)
and the monotonicity of the function r — h(u, p; r).

Case 2 u > 1—- (24/2/7)*?. Then from Lemma 2.2, Lemma 2.3(5), (2.17), (2.18), (2.20),
(2.21) and the monotonicity of the function » — h;(p;r) on the interval (0,1) we clearly
see that there exists ro € (0,1) such that the function » — h(u, p; r) is strictly decreasing on

(0, 7o) and strictly increasing on (ry, 1), and
h(u,p;17) < 0. (2.22)

Therefore, h(u, p;r) < 0 for all r € (0,1) follows from (2.16) and (2.22) together with the
piecewise monotonicity of the function r — h(u, p; r) on the interval (0, 1).
Case 31/(4p) < u <1 - (2+/2/7)*?. Then (2.17) leads to

h(u,p;17) > 0. (2.23)

It follows from Lemma 2.3(5), (2.18), (2.20), (2.21) and the monotonicity of the function
r — hy(p;r) on the interval (0,1) that there exists r* € (0,1) such that the function r —
h(u, p; r) is strictly decreasing on (0, 7*) and strictly increasing on (r*,1). Therefore, there
exists A € (0,1) such that h(u, p;r) < 0 for r € (0, 1) and h(u, p;r) > 0 for r € (1, 1). (]

3 Main result
Theorem 3.1 Let A, u € [0,1/2]. Then the double inequality

Gp[ka +(A=A)b,Ab+(1- A)a]Al’p(a, b)

< E(a,b) < Gp[;m +A=pb,ub+(1- ,u)a]Al’p(a, b)

holds for any p € [1,00) and all a,b > 0 with a # b ifand only if A, < 1/2—/1 = (2+/2/7)4r /2
and u>1/2 - \/p/(4p).

Proof Lett € [0,1/2], since G?[ta+(1—t)b, th+ (1-t)a]A'*(a, b) and E(a, b) are symmetric
and homogeneous of degree one, without loss of generality, we assume that a > b > 0. Let
re(0,1) and b/a = (1 — r)2/(1 + r)%. Then (1.1) leads to

’

ALy NENANK: [2E(r) - (L= K (r)]?
E(ﬂ,b) = mA(ﬂ, b)g <m> = —A(ﬂ,b) 1472

log[Gp(m +(1-t)b,th+(1- t)a)Al_”(a, h)] —logE(a,b)
o[ Fltat (- 0bth+ - @)A @ b)] | T[E@D) @.1)
] Og[ Ala,b) ] o [A(a, b)]

1 loel 1 4(1 - 2t)%r* . 4(2E(r) - (1 = rPK(r))?
=9F 0g|: 1+ r2)2 :|_ og[ 721 +r?) i|

Therefore, Theorem 3.1 follows easily from Lemma 2.5 and (3.1). O

Let p =1,2, then Theorem 3.1 leads to Corollary 3.2 immediately.
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Corollary 3.2 Let Ay, i1, 22, (4o € [0,1/2]. Then the double inequalities

H[Ala +(1=A)b,Ab+ (1 - Al)a] < E(a,b) < H[,ula + (1= )b, b+ (1 - Ml)a],
G[Aza + (A =A2)b,dob+ (1 - Az)a] < E(a,b) < G[uza + (1= )b, puab + (1 - /Lg)a]

hold for all a,b > 0 with a # b if and only if \y <1/2 — ~/1-8/72/2 =0.2823..., iy
1/2-+/2/8=0.3232..., Ay <1/2 = /1 - 64/7%/2 = 0.2071... and jy > 1/4.

Let p € [LLoo), r€ (0,1), a=r,b=1-r*=r* 1=1/2- V1-(2+/2/m)%P/2 and u

1/2 - \/p/(4p). Then (1.1) and Theorem 3.1 lead to Corollary 3.3 immediately.

v

Corollary 3.3 The double inequality

D) ~ 8 2/p pl4
_«/;7{ 1+ r’z)(1 P [4/2 + (—) r4:|

72

4 pl4
<& < _\/zn (1+ V’Z)(Hg)/2 |:(1 + /2)2 - r_]

4p

holds for all r € (0,1) and p € [1,00).

4 Results and discussion

In this paper, we provide the sharp bounds for the special quasi-arithmetic mean E(a, b)
in terms of the arithmetic mean A(a, b) and geometric mean G(a, b) with two parameters.
As consequences, we present the best possible one-parameter harmonic and geometric
means bounds for E(a, b) and find new bounds for the complete elliptic integral of the
second kind.

5 Conclusion
In the article, we derive a new bivariate mean E(a, b) from the quasi-arithmetic mean and
provide its sharp upper and lower bounds in terms of the concave combination of arith-

metic and geometric means.
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