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Abstract
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1 Introduction

A function f : I — R is said to be convex if

f((l—t)x+ty) <A-8f(x) +tf(y), Vxyeltel0,1].

Convexity plays a pivotal role in different fields of pure and applied sciences. Another
fact that makes it more attractive is its close relationship with theory of inequalities. In
particular, integral inequalities have been obtained via convex functions. Inspired by the
research work in this field, many authors introduced new extensions of classical convex
functions; see, for example, [1-4] and the references therein. Recently, Iscan [3] intro-
duced and investigated the notion of harmonically convex functions. These days the class
of harmonically convex functions is receiving much attention by many researchers. For
more details, see [3—-9]. Hermite and Hadamard independently obtained an integral in-
equality that provides us a necessary and sufficient condition for a function to be convex.
This famous result reads as follows.
Letf : 12 [a,b] — R be a convex function, then

b
7(457) = o [ e =TT v

2 2

For more details on Hermite-Hadamard-type inequalities, see [1, 2, 4, 10, 11]. Sarikaya
et al. [12] developed a new generalization of Hermite-Hadamard-type inequality using
fractional calculus approach. This opened a new venue of research in this field. Utilizing
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the concepts of fractional calculus, Iscan et al. [6] derived new refinements of fractional
Hermite-Hadamard’s inequality via harmonically convex functions. The main motivation
of this paper is to obtain new refinements of fractional Hermite-Hadamard-type inequal-
ities via harmonically convex functions in connection with the generalized Mittag-Leftler
function, which even generalizes the classical Riemann-Liouville fractional integral oper-

ators. We also discuss some particular cases.

2 Preliminaries

In this section, we discuss some preliminary concepts and facts. Recently, Iscan [3] ob-

tained several inequalities of Hermite-Hadamard type via harmonic convex functions.
The class of harmonic convex functions is defined as follows.

Definition 2.1 ([3]) Letf:I C R\ {0} — R, where I a real interval. The function f is said
to be harmonic convex if

xy
— | <4 1-¢ 2.1
iy ) <00+ (-7 1)
forallx,y € I and ¢ € [0,1].If (2.1) holds in the reversed sense, then f is said to be harmonic

concave.

Iscan et al. [6] established new fractional estimates of Hermite-Hadamard-type inequal-
ities via harmonic convex functions. For more details on Hermite-Hadamard inequalities
involving fractional integrals; see Mihai [13, 14], Mihai et al. [15], Awan et al. [16], Kunt et
al. [7], Sarikaya et al. [17], Nisan et al. [18], and references therein. Latif et al. [8] gave the
following definition.

Definition 2.2 A function g: [4,b] C R\ {0} — R is said to be harmonically symmetric

with respect to 2 M’ if

1
g(")=g(ﬁ)
a b x

for all x € [a, b].

For details and the definition of Riemann-Liouville fractional integrals, see [19, 20].
Salim et al. [21] have defined the generalized fractional integral operators containing
Mittag-Leffler function:

Definition 2.3 Let u,v,k,[,y >0 and @ € R. Then the generalized fractional integral op-
erators containing the Mittag-Leffler functions 8Zil;w .+ and az:i"lzw’b, for a real-valued
continuous function f are defined by

(1)) = / — 0" EN Y (0 - £))f(£) de 2.2)

and

(7o i f) ) = / (t—2) " EL (ol - %)) () dt, (2.3)
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respectively, where EZiI; is the generalized Mittag-Leffler function defined as

Y8,k o\ _ - (y)kn i
Bt ® = 2 S )

and (a), is the Pochhammer symbol defined as
(@p=al@+1)---(a+n-1), (a)=1.

Remark If k [=11n (2.2), then the integral operator (¢ Mill(wa +f) reduces to the integral
operator (7 . lwa* f) containing the generalized Mittag-Leffler function E vl ! introduced
by Srivastava and Tomovski [22]. If k =/ =1 and § =1, then (2.2) reduces to the integral
operator defined by Prabhaker [23] and containing the Mittag-Leffler function E, . For

o =0in (2.2), the integral operator (5 +f) reduces to the Riemann-Liouville fractional

oV, lw at.
integral operator [21].

In [21] the properties of the generalized integral operator and the generalized Mittag-
Leffler function are studied. It is proved that EV ok 11 (2) is absolutely convergent for all £ € R

if k <l + u. Since

ySk
oy ‘—Z‘ Tl 1) (a »

with
(V)kn t" S
2| T +v) O |
we have
[E 1)) < S.

3 Results and discussions
In this section, we discuss our main results. We write ||g|loc = Sup,c(,; |g(£)| for a contin-
uous function g : [a,b] — R.

Lemma 3.1 Ifg:[a,b] C R\ {0} — R is integrable and harmonically symmetric with re-
spect to zib, then

Sk 1 Sk 1
(Ezlvvl’m‘z%z’i)*gOh)(Z) (’fﬂuzw(—wh) Z)

where h(x) = , X € [%, %] .

Proof Since gis harmonically symmetric with respect to % , using Definition 2.2, we have

g( ) =g( T 1 ) forall t € [ ]. Hence, in the following integral, setting u = 1 + % —tand

a
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du = —dt gives

¥,k l
(gﬂ,v,l,wy(%g)*g ° h) <a>

This completes the proof.

Lemma3.2 Letf:I C (0,+00) — R bea differentiable function on I°, the interior of I, such
that f' € Lla,b], where a,b € I. If g : [a,b] — R is integrable and harmonically symmetric

with respect to 2“b , then the following equality holds:

1

2ab v.8,k 1 v.8,k
f(a + b) |:(8u vl (4288 ") (Z) * (Su,vvl,wm%)-go ) <Z>]
¥.8:k 1 v,k 1
| o n (2) el o (5)

50,10

atb t v-1
S w3 o
b b
1 1 v-1
LG e e

2ab

where h(x) = ,xe[ ] and o’ —(Z“b) w

Proof It suffices to show that

atb t v-1
1=ﬁzab(fl (S_%) EZi';(w/(s_—) )(goh)(s)ds)(foh)(t)dt
“ (e O U G VI W
_/;H-b -/t ;_S ol \ @ ;_S (goh)(s)ds )(f o h)'(£)de

2ab

=hL-D5. (3.2)
By Lemma 3.1, integrating by parts, we have

+b

ato

t v-1 22 )
11:/1 (s—%) EZif(a/(s—%) )(goh)(s)ds~(foh)(t) 1
1 1

b

% 1 v-1 1 "
_/1 <t—z> EZ:if(a/(t—E) )(goh)(t)(foh)(t)dt
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2ab Pt 1\"1 sl 1\~
- (ﬂ+b)/% <S_Z) E}:,v,l (a) (S_Z) )(goh)(S)ds
2ab 1\, s 1\*
- ﬁ <t - 5) Ei (w/ (t - E) )(fg o h)(t)de. (3.3)
5

Thus

_ 2ab v,8,k 1 v,8,k 1
Il _f(m)(gp.vlw (u+lli) goh) Z - (Suvla) a+b)jgoh) b

—_ 2ab )/5/( 1 y,&,k 1
1
(1 FEoh) (5) .
Analogously,

1 v—1
b= f ’ (i —s) El (w(i _s)”)(goh)(s)ds (f o (D)
% 1 vt .8,k ’ 1 .
—/ ——t) BN Z—t) )@om@)(f o)) dt
i \a "\ \a

2ab % 1 v-1 , 1 n
:_f(a+b> /% (;_S) E:i?(“’ (;—3) )(goh)(S)ds
% v-1 w
" /M (% - t) EZif(ﬂ)/(i - t) )(ngh)(t)dt. (3.5)

2ab

Inserting (3.4) and (3.6) into (3.2), we get (3.1), and the proof is complete. a

Remark Taking w = 0 in Lemmas 3.1 and 3.2, we have Lemmas 2 and 3 from [7].
The next result is an Hermite-Hadamard-type inequality for a generalized fractional

integral operator containing the generalized Mittag-Leffler function.

Theorem 3.3 Let f : I C (0,+00) — R be a function such that f € Lla, b], where a,b € I.

Iff is a harmonically convex function on [a, b, then the following inequality for fractional
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integrals holds:

2ab VK 1
/ (b)( wzrl)(z)
1 1 1
_ v,k - y,8,k 1
§2|:(8;/.vla) (a+2joh)(b)+(8 lw(a+h)+foh)(a)i|
f@)+fb), sk 1
= f(gu,v,l,w’,(%)* 1) P (3.7)

a
where h(x) = ;lc, X € [%, é] and o' = (Zab)ﬂw-

Proof Since f is a harmonically convex function on [a, b], we have

f( 2xy ) Sf(x) +f () (3.8)
x+y 2

for x,y € [a, b]. Substituting x = 2 = and y = ~ into inequality (3.8), we get
2

f< 2ab ) ) )

3.9
a+b 2 39)
Multiplying both sides of (3.9) by £~ IEV oK »1 (@t") and integrating over [0, 1], we get
2ab
2 LB (i) dt
(20 [ e
! b 1 ab
< | P EK (ot <7ﬂ )dt+/ £ EY K (ot (7>dt.
_/0 le(w 4 ta+th 0 “Vl(w ¥ th+%ta
Setting
1 /¢ 2-t 1 /¢ 2-t
- (Lai 225, - (fp+Zta), 3.10
" ab(2“+ 2 ) ’ ab<2 i) “) (310)
we have

a

ﬁ v-1 u
2f<a2ilrbb)fli (V_%> EZ:i;f(d(v—%) >dv
(1 N el (1 O\
ffw (;—u) E; (a) (;—u) )(foh)(u)du
ath 1\ v 1\® o
+/}, (V_Z> E. (a) <V—Z> )(fo )(v) dv.

This implies

2ab 7,8k 1
f(a+b>(8xwlw (3‘;2’)”(5)
1 8,k Sk 1
= 2[( Zvlw 57 Se h)< ) (e Zv,l,w’,(%)*foh)<;>i|' (3.11)
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On the other hand, the harmonic convexity of f yields

b b
%) /(5% ) sf@-s (312)

2 2 2

2

for all ¢ € [0,1]. Multiplying both sides of (3.12) by ¢'~ LEY? v, l(wt“) and integrating over
[0,1], we have

1
[ ey

< (@) +1 ) f T () de.

ab ! -1y ok ab
) [ ey ()«

2

This implies, using substitutions (3.10),

[ e
% a v,l a
ath v-1
+fb (v-3) e (v-3) )oonman
1 v-1
(@) [ (5-u) 22 (o (5-u) Joeman

2ab
So
LT/ sk 1 vk
5[(8,“,10) sy foh)<g> G (astof © h)( )]
o ()
Combining (3.11) and (3.13), we get (3.7). O

Remark In Theorem 3.3, if we take w = 0, then we get the known inequality of Isan et
al. [7]

2ab I'(v+1) f(ﬂ) +f(]9)
1(255) < T P rem(3) s vem(5) | <55

Theorem 3.4 Letf :1 C (0,+00) — R be a harmonically convex functsuch that f € Lla, b].

2ab
a+b’

Ifg :[a,b] — Ris nonnegative, integrable, and harmonically symmetric with respect to
then the following inequality holds:

2611’) 8.k 8.k 1
A(Z) e (3) € o (5)]
1 1
=3 [(gliill(a) “”’)*fg ° h)( ) (‘SZ:i’,lz(,wm%)fg °h) <5)]

f(ﬂ) +f(b) yék 1 y,S,k 1
= T (8/1 vl (ﬂ‘rZ) go h) ; + (Sy,v,l,w’,(%)‘go h) Z ) (314')

where h(x) = 1, x € [3,1], and o' = (2L ) .




Mihai et al. Journal of Inequalities and Applications (2017) 2017:265 Page 8 of 13

Proof Since f ia a harmonically convex function on [a, b], multiplying both sides of (3.9)

by ZtV‘IEZ:iI;(a)t“)g( ; 2 = b) and then integrating the resulting inequality over [0,1], we

obtain

2ab ab
2 le}’(Sk i
f((l+b>/ le(a)t )g<%(l+%b>dt
1 b ab
< le}"Sk HH < a ) ( )dt
_/0 ’“’l(w v ta+ED g ta+Zth

1
p-Lpr ok ab ab
+/0 EZUl(a)t“)f( b+2‘ta)g %a+2‘tb> de.

Since g is harmonically symmetric with respect to 2‘12 , using Definition 2.2, we have g( }C) =

g(1 I )forallxe[ ] Settlngx—ah( a+ 2 b) gives

(355 [ o) (e e) o) o
) oG] e

Using substitution u = % + % —x, we have

|
S =
\_<
-
N
NN
N———
[/
N
NN
N—"
a

1 v-1
v,8,k ’
u-— E) E. <w u

Hence, using Lemma 3.1, we obtain

2(1b v.8,k 1 .8,k 1
f(a + b) [(8u,vvl,wy(§;§)*g ° h) ; * (Su,v,l,wv(%’b’)‘g ° h) E

! vbk y,8,k 1
< E[(%u L, ﬂ+b)+fgoh)< ) (e b JSgoh) 21 (3.15)

For the proof of the second inequality in (3.14), we first note that f is a harmonically convex

function. Then, multiplying both sides of (3.12) by 2£"~ lEy - k(wt“)g(—) and integrat-

2a+—
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ing the resulting inequality over [0, 1], we obtain

1 b ab
e n( 2 M)
/0 /l.\)l(w )f 2tb %61 sz
1
+/ L (wth)f (_ = (z 2_)dt
0 2 2 2

§(f(a)+f(b))fl AET S (wt") ( = )
2

From this, using Lemma 3.1, we get

1 1
2 [( Zill(w (a+b JgOh)< ) ( Zazlzw/,(%)fgoh)<z):|
f@+fB)[, s )
: f[(ﬂiilzw ‘”b)*gOh)<a> (giifw (&)~ gOh)<b>:|

From (3.15) and (3.16) we obtain (3.14). The proof is completed. O

(3.16)

Theorem 3.5 Let f : I C (0,+00) — R be a differentiable function such that f' € L|a, b],
where a,b € I, a < b. If |f'| is a harmonically convex function and g : [a,b] — R is continu-

ous and harmonically symmetric with respect to 2“1’ , then the following inequality holds:

2ab Sk 1 Sk 1
P(d + b) |:(8Z:i:17w/:(%)+go h) (;) + (8;}:,?),1, ’ a+b g o h)( ):|
y,8,k 1 y.5k
B [(8“’”'1"0"(%)*'& °k) (;) " (Sﬂvlw “*b)fg o h) (b)]‘

2ab Y 1 ok 1
E ‘j( )‘” ”OO[ lew (‘HZ) 1) ; + (Su,v,l,w’_(%)fl) E

+S||g||oo(b2 = ) s (@)

), (3.17)

where h(x) = 1, x € [}, 1], ' = (22)w, and |E/Y)(8)] < S.

Proof From Lemma 3.2, relationships (3.3) and (3.5), and the property of the modulus we

have

— 2ab y,0,k 1 y.o.k 1
]_Mwb)[(%”w (“*Z>g°h) a +(8M,v,l.w’:(%)’goh) b

y,8,k l .0k l
[(81/«1)1(9 (%)JgOh)(a) ' (guvv'l'w/v(%)fg()h)(b)]'
2ab Sk 1 I3
o2

2ab /m n\"*
a+b 1 S_Z
b
atb v=1 m
2ab 1 v,8,k / 1
7 (e5) Jese(-5))

|(fg o h)(2)| de
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o h)(s)| ds

HEN G o)
oG e oo

b
Since Igllco = SUP,c(,p 1€(£)] and |E ul(t)| < S, we have

2ab

2ab ath N skl 1\
r<p(Ze e [ (-5) mi(o(s-5) e
%g 1 v-1
+S||g||oo/1 (t— E) |(f o h)(2)| de
b

2ab %1 vt 1\
(@ [ (G w2 (G) )
b a a

1

+ Slglle /ﬁ (i‘t> |(Fom0)| de

2ab
B 2ab .y . 1
N L/<6l+b) ”g”ool:(gﬂ,v,l, / “*b)+goh)<a> (8lew (a+b) goh) E

+Sliglloe U +/2). (3.18)

Setting ¢ = a—( a+ —b) and using the harmonic convexity of |f|, we have

a+b at+b

2ab 1\"! ath N /1
Si= (f——) |(f o I(®)] de = (t——) P()‘dt
1 /;1; b /é b t
1/b-a\’ 2 1 \"1 ab
S(a) 039 W)l
1/b-—a\’ 2 1 \"1 5
<3(%) [ (30) (Ghol 5" ) a

This implies

b-a\"[ 2v+4
h= < ab ) < v+1)lf( )|_v+1lf( |) (3.19)

Similarly, using the substitution ¢ = - (3b + %), we get

U

1 1

/1 v-1 a (1 v
ne [ (o) wemetaes [ (G-o) ()]

1/b-a\' ([ 2v+4
SZ( ab ) (v(v+1)lf( )|_—lf( )|> (3.20)

Substituting (3.19) and (3.20) into (3.18), we obtain (3.17). The proof is completed. O

Theorem 3.6 Let f : 1 C (0,+00) — R be a differentiable function on I°, the interior of
1, such thatf' € Lla, b, where a,b € I. If |f|1, g > 1, is a harmonically convex function on
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la,b], g : [a,b] — R is continuous and harmonically symmetric with respect to 2‘”’ , then
the following inequality holds:

2ab 7.8,k y,8,k
P(m)[(‘?#vlw a+b gOh)(a) (Sﬂulw ‘”b gOh) b
1
y.5k y,8,k
- [(Su,v'l,w’,(m)*fg()h)(;> ’ (8"’”’1”“ Wb)ngh ( >:H
2ab .8k 1 1/5k 1
EP( )‘” ||oo|: lew(“*,l;) 1) ; + uvlw (;JrZ Z
1 1-1/q 1 1/q 1 v+l/q
S -+ _
+ “g”oo(v) (v+1) <2)

1 lq 1 1/q
X [(; @) + V(ﬂ)|q> + (; f@|" + lf(b)lq) } (3.21)

where h(x) = 1, x € [},1], o = (2 ) w, and |E/Y\(8)| < S.

Proof From (3.18) we have

2“?} 1 v-1 1 1%
=@ (-5) mi(o(-) )

a+b

5ab v-1
il | ”(r-%) (F 0 )(0)| e
b

l v-1 "
o ) e )
2ab
1 1 v-1
(— —t> |(f o b)(2)| de
a

Sl [
1
y,0,k v,8,k
||g||oo[(s L M)+goh)<a> (8%%[@,,(%)g0h)(5):|

(2 |
[ YO 4

2ab

Using the substitutions ¢ = a—( a+ —b) andt = - (—b + %a), the power mean inequality,
and the harmonicity of |f|?, it follows that

2ab y.5k v.8,k 1
]S‘/(dﬁ-b)‘”g”w[ ;l.vla) a+b goh)<a) (S/I.\)la) (g+£)goh) E
Sligllee (b—a\"
" 2 (ab
2 1 \"! ab 2 1\"! ab
x 1--u ——— ||du+ 1--v T
1 2 §ﬂ+—b 1 2 ib+Tﬂ
2ab 8k Sk
SP( )‘n ||oo[ ot (5 goh)(a) e 80N
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S () )
(L) o))
) o (b o))

Making the substitutions x =1 — %u andy=1- %v and simple calculations, we get inequal-
ity (3.21). 0

4 Conclusions

We have obtained several new refinements of Hermite-Hadamard-type inequalities via
harmonic convex functions. These results involve particularly the generalized Mittag-
Leffler function. We also discussed several particular cases. We expect that the results
obtained in this paper may stimulate further research in the field. We would like to spec-
ify here that the generalized fractional integral operators containing the Mittag-Leffler
function generalize the integrals of Riemann-Liouville type, and the results obtained in
this paper can be developed via other different types of convexities.
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