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Abstract
In the field of pattern recognition, clustering groups the data into different clusters on
the basis of similarity among them. Many a time, the similarity level between data
points is derived through a distance measure; so, a number of clustering techniques
reliant on such a measure are developed. Clustering algorithms are modified by
employing an appropriate distance measure due to the high versatility of a data set.
The distance measure becomes appropriate in clustering algorithm if weights
assigned at the components of the distance measure are in concurrence to the
problem. In this paper, we propose a new sequence spaceM(φ ,p,F ) related to Lp

using an Orlicz function. Many interesting properties of the sequence space
M(φ ,p,F ) are established by the help of a distance measure, which is also used to
modify the k-means clustering algorithm. To show the efficacy of the modified
k-means clustering algorithm over the standard k-means clustering algorithm, we
have implemented them for two real-world data set, viz. a two-moon data set and a
path-based data set (borrowed from the UCI repository). The clustering accuracy
obtained by our proposed clustering algoritm outperformes the standard k-means
clustering algorithm.
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1 Introduction
Clustering is the process of separating a data set into different groups (clusters) such that
objects in the same cluster should be similar to one another but dissimilar in another
cluster [–]. It is a procedure to handle unsupervised learning problems appearing in
pattern recognition. The major contribution in the field of clustering came due to the
pioneering work of MacQueen [] and Bazdek []. The k-means clustering algorithm was
introduced by MacQueen [], which is based on the minimum distance of the points from
the center. The variants of k-means clustering algorithms were proposed to solve different
types of pattern recognitions problems (see [–]). The clustering results of k-means or its
variant can be further enhanced by choosing an appropriate distance measure. Therefore,
the distance measure has a vital role in the clustering.

Clustering process is usually carried out through the l distance measure [], but, due to
its trajectory, sometimes it fails to offer good results. Suppose that two points x and y are
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Figure 1 Geometry of lp norm.

selected on the boundary of the square (case p = ) and let z be the center (Figure ). Then
l will fail to distinguish x and y, but these points may be distinguished by l. If the points x
and y are on the circumference of the circle, then l will fail to distinguish them. Moreover,
the lp (p ≥ ) distance measures are not flexible, so they cannot be modified as per the need
of the clustering problem. Hence, clustering results derived through distance-dependent
algorithms basically depend upon two properties of a distance measure: () trajectory and
() flexibility. Till now, we have not come across to any distance measure that offers a
guaranteed good result for every clustering problems. Clustering is carried out by using
other variants of the lp distance measure. The distance measure of the sequence space lp,q,
 ≤ p, q ≤ ∞, introduced by Kellogg [] and further studied by Jovanovic and Rakocevic
[], Oscar and Carme [], and Ivana et al. [] offers more flexibility in comparison to lp

due to involvement of additional parameter q. Sargent [] introduced another interest-
ing sequence spaces m(ϕ) and n(ϕ) closely related to lp. Some useful extensions of m(ϕ)
and n(ϕ) sequence spaces were proposed by Tripathy and Sen [], Mursaleen [, ],
and Vakeel []. Malkowsky et al. [] defined a matrix mapping into the strong Cesàro
sequence space [] and studied the modulus function. Recently, for first time, Khan et
al. [] defined a distance measure of the double sequence of M(φ) and N (φ) to cluster
the objects. Moreover, Khan et al. in [, ] defined some more similarity measures by
using distance measures of the double sequences in the uncertain environment. Mohi-
uddine and Alotaibi applied measures of noncompactness to solve an infinite system of
second-order differential equations in �p spaces [, ]. The double sequence space is
further studied by Mursaleen and Mohiuddine [], Altay and Başar [, ], Başar and
Şever [], and Esi and Hazarika []. Moreover, an Orlicz function and a fuzzy set are
also used to define other types of double sequence spaces [, –]. The convergence of
difference sequence spaces is discussed in [, , ].

In this paper, we define a new double sequence space M(φ, p,F ) related to Lp using the
following Orlicz function:

M(φ, p,F )

=
{

x = {xmn} ∈ � : sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞, for some ρ > 
}

.

Obviously, M(φ, p,F ) is a norm space, and hence the induced distance measure is repre-
sented as

dM(φ,p,F )(x, y) =
(

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F
( |xmn – ymn|

ρ

))p) 
p

.

The parameters φ, p and Orlicz function F of M(φ, p,F ) brings flexibility in the in-
duced distance measure dM(φ,p,F ), which helps the user to modify it as per need of the
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clustering problem. Besides, defining the distance measure of M(φ, p,F ), we have also
studied some of its mathematically established properties. Finally, the distance measure
of M(φ, p,F ) is used in the k-means clustering algorithm, which clusters real-world data
sets such as two-moon data set and path-based data set. The clustering results obtained
by the modified clustering algorithm is compared with the k-means clustering algorithm
to show its efficacy.

2 Preliminaries
Throughout the paper, l∞, c, and c denote the Banach spaces of bounded, convergent,
and null sequences; ω, N, and R denote the sets of real (ordinary or single) sequences,
natural numbers, and real numbers, respectively.

2.1 Orlicz function [34]
A function F : [,∞) → [,∞) is called an Orlicz function if

(i) F () = , F (x) >  for x > , and F (x) → ∞ as x → ∞;
(ii) F is convex;

(iii) F is nondecreasing; and
(iv) F is continuous from the right of .
An Orlicz function F is said to satisfy 	-condition for all values of x if there exists a

constant K >  such that F (x) ≤ KF (x) for all x ≥ . The 	-condition is equivalent to
F (Lx) ≤ KF (x) for all values of x >  and for L > . An Orlicz function F can always be
represented in the following integral form:

F (x) =
∫ x


η(t) dt,

where η, known as the kernel of F , is right-differentiable for t ≥ , η() = , η(t) >  for
t > , η is nondecreasing, and η(t) → ∞ as t → ∞.

Let C be the space of finite sets of distinct positive integers. Given any element σ of C . Let
c(σ ) be the sequence {cn(σ )} such that cn(σ ) =  if n ∈ σ and cn(σ ) =  otherwise. Further,
let

Cs =

{
σ ∈ C :

∞∑
n=

cn(σ ) ≤ s

}
(cf. [])

be the set of those σ whose support has cardinality at most s, and

� =
{
φ = {φn} ∈ ω : φ > ,	φn ≥  and 	

(
φn

n

)
≤  (n = , , . . .)

}
,

where 	ϕn = ϕn – ϕn–.
For ϕ ∈ �, the sequence space, introduced by Sargent [] and known as Sargent’s se-

quence space, is defined as follows:

m(φ) =
{

x = {xn} ∈ ω : sup
s≥

sup
σ∈Cs

(

φs

∑
n∈σ

|xn|
)

< ∞
}

.

Let � be the set of all real-valued double sequences, which is a vector space with coordi-
natewise addition and scalar multiplication. A double sequence x = {xmn} of real numbers
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is said to be bounded if ‖x‖∞ = supm,n |xmn| < ∞. We denote the space of all bounded dou-
ble sequences by L∞. Consider a sequence x = {xmn} ∈ �. If for every ε > , there exist
n◦ = n◦(ε) ∈N and � ∈R such that

|xmn – �| < ε

for all m, n > n◦ then we say that the double sequence x is convergent in the Pringheim sense
to the limit � and write P- lim xmn = �. By Cp we denote the space of all convergent double
sequences in the Pringsheim sense. It is well known that there are such sequences in the
space Cp but not in the space L∞. So, we can consider the space Cbp of double sequences
that are both convergent in the Pringsheim sense and bounded, that is, Cbp = Cp ∩ L∞.
A double sequence x = {xmn} is said to converge regularly to � (shortly, r-convergent to �)
if x is P-convergent to � and the limits xm := limn xm,n (m ∈ N) and xn := limm xm,n (n ∈ N)
exist. Note that, in this case, the limits limm limn xm,n and limn limm xm,n exist and are equal
to the P-limit of x. Therefore, � is called the r-limit of x.

In general, for any notion of convergence ν , the space of all ν-convergent double se-
quences will be denoted by Cν , and the limit of a ν-convergent double sequence x by
ν- limm,n xmn, where ν ∈ {P , bp, r}.

Başar and Sever [] have introduced the space Lp of p-summable double sequences
corresponding to the space lp (p ≥ ) of single sequences as

Lp :=
(

{xmn} ∈ � :
∑
m,n

|xmn|p < ∞
)

( ≤ p < ∞)

and examined some properties of the space. Altay and Başar [] have generalized
the set of double sequences L∞, Cp, and Cbp etc. by defining L∞(t) = ({xmn} ∈ � :
supm,n∈N |xmn|tmn < ∞), Cp(t) = ({xmn} ∈ � : P- limm,n→∞ |xmn – �|tmn < ∞), and Cbp(t) =
Cp ∩ L∞, respectively, where t = {tmn} is a sequence of strictly positive reals tmn. In the
case tmn =  for all m, n ∈ N, L∞(t), Cp(t), and Cbp(t) reduce to the sets L∞, Cp and Cbp,
respectively.

Now just to have a better idea about other convergences, especially the linear conver-
gence, we first consider the isomorphism defined by Zelster [] as

T : � → ω,

x 
→ z = (zi) := (xχ–(i)),
()

where χ : N×N →N is the bijection defined by

χ
[
(, )

]
= , χ

[
(, )

]
= , χ

[
(, )

]
= , χ

[
(, )

]
= 

...

χ
[
(, n)

]
= (n – ) + , χ

[
(, n)

]
= (n – ) + , . . . ,

χ
[
(n, n)

]
= (n – ) + n, χ

[
(n, n – )

]
= n – n + , . . . , χ

[
(n, )

]
= n,

...
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Let us consider a double sequence x = {xmn} and define the sequence s = {smn} via x by

smn :=
m,n∑
i,j

xij (m, n ∈N).

For brevity, here and in what follows, we abbreviate the summations
∑∞

k=
∑∞

l= and∑m
k=

∑n
l= by

∑∞,∞
i,j= and

∑m,n
i,j=, respectively. Then the pair (x, s) and the sequence s = {smn}

are called a double series and the sequence of partial sums of a double series, respectively.
Let λ be the space of double sequences, converging with respect to some linear conver-
gence rule μ- lim : λ →R. The sum of a double series

∑∞,∞
i,j= xij with respect to this rule is

defined by μ-
∑∞,∞

i,j= xij := μ- lim smn.
In this paper, we define an analogoue of Sargent’s sequence in the double sequence

space �. For this, we first suppose that U is the space whose elements are finite sets of
distinct elements of N × N obtained by σ × ς , where σ ∈ Cs and ς ∈ Ct for each s, t ≥ .
Therefore any element ζ ofU means (j, k); j ∈ σ & k ∈ ς having cardinality atmost st, where
s is the cardinality with respect to m, and t is the cardinality with respect to n. Here, the
product say c of st may be same for differnt sets of positive integers k, l, but in that case, Ukl

is different from Ust . Given any element ζ of U , we denote by c(ζ ) the sequence {cmn(ζ )}
such that

cmn(ζ ) =

⎧⎨
⎩

 if (m, n) ∈ ζ ,

 otherwise.

Further, let

Ust =

{
ζ ∈ U :

∞,∞∑
m,n=

cmn(ζ ) ≤ st

}

be the set of those ζ whose support has cardinality at most st, and let

� =
{
φ = {φmn} ∈ � : φ > ,	φmn,	φmn,	φmn ≥  and

	

(
φmn

mn

)
,	

(
φmn

mn

)
,	

(
φmn

mn

)
≤  (m, n = , , . . .)

}
,

where 	ϕmn = ϕmn – ϕm–n, 	ϕmn = ϕmn – ϕmn–, 	ϕmn = ϕmn – ϕm–n–.
For ϕ ∈ �, we define the sequence space

M(φ,F ) =
{

x = {xmn} ∈ � : sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

F
( |xmn|

ρ

)
< ∞, for some ρ > 

}
.

Throughout the paper,
∑

m,n∈ζ means
∑

m∈σ

∑
n∈ς .
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The spaces M(φ,F ), Lp, and L∞ can be extended to M(φ, p,F ), Lp(F ), and L∞(F ) as
follows:

M(φ, p,F )

=
{

x = {xmn} ∈ � : sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞, for some ρ > 
}

,

Lp(F ) =
{
{xmn} ∈ � :

∑
m,n

(
F

( |xmn|
ρ

))p

< ∞, for some ρ > 
}

( ≤ p < ∞),

L∞(F ) =
{
{xmn} ∈ � : sup

m,n
F

( |xmn|
ρ

)
< ∞, for some ρ > 

}
.

Now, if we take the cardinality t with respect to n as , then M(φ,F ) reduce to m(φ,F ),
and M(φ, p,F ) to m(φ, p,F ). Here, without further discussing M(ϕ, F), we immediately
defineM(φ, p,F ) so as not to deviate from our main goal to show thatM(φ, p,F ) is a class
of new double sequences lying between Lp(F ) and L∞(F ). We then further prove certain
conditions under which M(φ, p,F ) is same as that of Lp(F ) and L∞(F ). We can easily
see that all results in Section  hold for M(φ,F ), which is a particular case of M(φ, p,F )
with p = .

3 Some interesting results related to M(φ, p,F )
Theorem . The sequence space M(φ, p,F ) is a linear space over R.

Proof Let x, y ∈ M(φ, p,F ) and λ,μ ∈ R. Then there exists positive numbers ρ and ρ

such that

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞

and

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞.

Let ρ = max(|λ|ρ, |μ|ρ).
()  < p < . Using the well-known inequality |a + b|p ≤ |a|p + |b|p for  < p <  and the

convexity of Orlicz functions, we have

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |λxmn + μymn|
ρ

))p

≤ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |λxmn|
ρ

))p

+ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |μymn|
ρ

))p

≤ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |λxmn|
ρ

))p

+ sup
s,t≥

sup
ζ∈Ust


Ust

∑
m,n∈ζ

(
F

( |μymn|
ρ

))p

< ∞,

so that λxmn +μymn ∈M(φ, p,F ). This proves that M(φ, p,F ) is a linear space over R and
so obviously is nonempty.
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()  ≤ p < +∞. It is easy to see that for all a, b ∈ R, |a + b|p ≤ p(|a|p + |b|p) and F is
convex, so that, for all s, t ≥ , ζ ∈ Ust ,

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |λxmn + μymn|
ρ

))p

≤ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

p
(
F

( |λxmn|
ρ

))p

+ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

p
(
F

( |μymn|
ρ

))p

≤ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
p + 

)(
F

( |xmn|
ρ

))p

+ sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
p + 

)(
F

( |ymn|
ρ

))p

< ∞.

This shows that x, y ∈M(φ, p,F ) ⇒ λx + μy ∈M(φ, p,F ). �

Remark . The distance measure between two sequences xn and yn induced by Cesq
p(F )

can be represented as

dCes
q
p(F )(x, y) =

( ∞∑
n=

(


Qn

n∑
i=

qifi
(|xi – yi|

))p) 
p

.

Theorem . M(φ, p,F ) ⊆M(ψ , p,F ) if and only if sups,t≥( φst
ψst

) < ∞.

Proof Let x ∈M(φ, p,F ). Then

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞ for some ρ > .

Suppose that sups,t≥( φst
ψst

) < ∞. Then ϕst ≤ kψst for some positive number k and for all
s, t ∈N, so 

ψst
≤ k

ϕst
for all s, t ∈N. Therefore we have


ψst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

≤ k
φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

for each s, t ∈N and for some ρ > .

Now taking the supremum on both sides we get

sup
s,t≥

sup
ζ∈Ust


ψst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

≤ k sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

and for some ρ > .
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Therefore we have

sup
s,t≥

sup
ζ∈Ust


ψst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞ and for some ρ > .

Hence x ∈M(ψ , p,F ).
Conversely, let M(φ, p,F ) ⊆M(ψ , p,F ) and suppose that sups,t≥( φst

ψst
) < ∞. Then there

exist increasing sequences (si) and (ti) of natural numbers such that lim( φst
ψst

) = ∞. Now for
every b ∈ R

+, the set of positive real numbers, there exist i◦, j◦ ∈ N such that ϕsiti
ψsiti

> b for
all si ≥ i◦ and ti ≥ j◦. Hence 

ψsiti
> b

ϕsiti
, so that, for some ρ > ,


ψsiti

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

>
b

φsiti

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

for all si ≥ i◦ and ti ≥ j◦. Now taking the supremum over si ≥ i◦, ti ≥ j◦, and ζ ∈ Ust , we get

sup
si≥i◦ ,ti≥j◦

sup
ζ∈Ust


ψsiti

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

> b sup
si≥i◦ ,ti≥j◦

sup
ζ∈Ust


φsiti

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

. ()

Since () holds for all b ∈ R
+ (we may take b sufficiently large), we have

sup
si≥i◦ ,ti≥j◦

sup
ζ∈Ust


ψsiti

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

= ∞

when x ∈ M(ϕ, p, F) with  < supsi≥i◦ ,ti≥j◦ supζ∈Ust


φsiti

∑
m,n∈ζ (F ( |xmn|

ρ
))p < ∞.

Therefore x /∈ M(ψ , p,F ). This contradicts to M(φ, p,F ) ⊆ M(ψ , p,F ). Hence
sups,t≥( φst

ψst
) < ∞. �

Corollary . M(φ, p,F ) = M(ψ , p,F ) if and only if sups,t≥(ηst) < ∞ and sups,t≥(η–
st ) <

∞, where ηst = ( φst
ψst

) for all s, t ∈N.

Corollary . M(φ) ⊆M(φ, p,F ).

Proof If p =  and F (x) = x, then M(φ) = M(φ, p,F ). Also, M(φ) ⊆M(φ, p,F ). �

Theorem . The inclusions Lp(F ) ⊆M(φ, p,F ) ⊆L∞(F )M(φ, p,F ) hold.

Proof Let x ∈ Lp(F ). Then, for some ρ > , we have
∑∞,∞

i,j=,(F ( |xmn|
ρ

))p < ∞. Since (ϕst) is
nondecreasing with respect to s, t ≥ , for some ρ > , we have


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

≤ 
φ

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

≤ 
φ

∞,∞∑
i,j=,

(
F

( |xi,j|
ρ

))p

< ∞.

Hence sups,t≥ supζ∈Ust


φst

∑
m,n∈ζ (F ( |xmn|

ρ
))p < ∞.
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Thus Lp ⊆M(φ, p,F ). Now let x ∈M(φ, p,F ). Then for some ρ > , we have

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞,

sup
m,n≥


φ

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞.

⇒F ( |xmn|
ρ

) ≤ (Aφ)

p for some A >  and all m, n ∈N. Thus x ∈L∞(F ). �

Theorem . Let F , F, F be Orlicz functions satisfying 	-condition. Then
() M(φ, p,F) ⊆M(φ, p,F ◦F),
() M(φ, p,F) ∩M(φ, p,F) = M(φ, p,F + F).

Proof () Let x ∈M(φ, p,F). Then there exists ρ >  such that

sup
s,t≥

sup
ζ∈Ust


φst

∑
m,n∈ζ

(
F

( |xmn|
ρ

))p

< ∞.

Let  < ε <  and δ with  < δ <  be such that F(t) < ε,  < t ≤ δ. Put tmn = F( |xmn|
ρ

) and
for any ζ ∈ Us, consider

∑
m,n∈ζ

(
F (tmn)

)p =
∑



(
F (tmn)

)p +
∑



(
F (tmn)

)p,

where the first sum is over tmn ≤ δ, and the second is over tmn > δ. From the remark we
have

∑


(
F (tmn)

)p ≤ (
F ()

)p ∑


(
tp
mn

) ≤ (
F ()

)p ∑


(
tp
mn

)
, ()

and for tmn > δ, we use the fact that

tmn <
tmn

δ
<  +

tmn

δ
.

Since F is nondecreasing and convex, we have

F (tmn) ≤F
(

 +
tmn

δ

)
<



F () +



F

(
tmn

δ

)
.

Since Fsatisfies 	-condition, we have

F (tmn) <



k
tmn

δ
F () +




k
tmn

δ
F () = k

tmn

δ
F ().

Hence

(
F (tmn)

)p <
(

k
tmn

δ
F ()

)p

.
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Therefore

∑


(
F (tmn)

) ≤ max

(
,

(
kF ()

δ

)p)p ∑
m,n∈ζ

(
tp
mn

)
. ()

By () and () we have M(φ, p,F) ⊆M(φ, p,F ◦F).
() The proof follows from the inequality

sup
s,t≥

sup
ζ∈Ust


φst

{ ∑
m,n∈ζ

(
(F + F)

( |xmn|
ρ

))p} 
p

≤ sup
s,t≥

sup
ζ∈Ust


φst

{ ∑
m,n∈ζ

(
F

( |xmn|
ρ

))p} 
p

+ sup
s,t≥

sup
ζ∈Ust


φst

{ ∑
m,n∈ζ

(
F

( |xmn|
ρ

))p} 
p

< ∞. �

Theorem . The M(φ, p,F ) satisfy the following relations:
() M(φ, p,F ) = Lp(F ) if and only if sups,t≥(ϕst) < ∞,
() M(φ, p,F ) = L∞(F ) if and only if sups,t≥( st

φst
) < ∞.

Proof () If we take ϕst =  for all s, t ∈ N, then we have M(φ, p,F ) = Lp(F ).
() By Theorem . we easily get that M(φ, p,F ) = L∞(F ) if and only if

sups,t≥( st
φst

) < ∞. �

3.1 k-means algorithm for M(φ, p,F ) distance measure
Let X = {x, x, . . . , xn} be a given data set. Then the proposed clustering algoritm works as
follows.

Step-: Select first k data points as the cluster center xk = {x, x, . . . , xk} (where k is the
number of clusters).

Step-: Compute the distance between each data point and cluster center through
M(φ, p,F ) distance measure.

Step-: Put the data point into that cluster whose M(φ, p,F ) distance with its center is
minimal.

Step-: Redefine cluster centers for newly evolved clusters due to the above steps; the
new cluster centers are computed as ci = 

ki

∑ki
j= xi, where ki is the number of

points in the ith cluster.
Step-: Repeat Step  to Step  until the difference between two consecutive cluster

centers becomes less than a desired small number.

3.2 Clustering by using the induced M(φ, p,F ) distance measure
Two-moon and path-based data sets are artificially designed as nonconvex collections of
points [, ]. The original shapes of the two-moon and path-based data are represented
in Figures  and , respectively. The clustering on these two data sets is carried out by
the algorithm dissussed in Section .. In the case of a two-moon data set, for making
simulation process simple, we take ϕ = , ∀m, n, p = , and F(x) = |x|. In Figure (a), it is
shown that the clustering accuracy of the k-means clustering algorithm is % over the
two-moon data set, whereas the clustering accuracy of our modefied algorithm k-means
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Figure 2 Two-moon data set.

(a) Clustering by l

(b) Clustering by M(φ, p,F)

Figure 3 Obtained clustering results for two-moon data set.
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Figure 4 Path-based data set.

(a) Clustering by l

(b) Clustering by M(φ, p,F)

Figure 5 Obtained clustering results for two-moon data set.
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clustering is % (Figure (b)). Moreover, in the case of a path-based data set, we take
ϕ = n, ∀m, n, p = , and F(x) = |x|. The clustering accuracy of the path-based data set by
using the k-mean clustering algorithm is %, whereas by using the proposed modefied
k-means clustering algorithm it is % as shown in Figures (a) and (b), respectively.

4 Conclusions
The parameters φ, p, F involved in the sequence space M(φ, p,F ) give additional three
degrees of freedom to its induced distance measure. Therefore, it is more flexible in com-
parison to the lp or weighted lp distance measure. The flexibility in the distance measure
can be judiciously used in the clustering of the real-world data sets. We have proposed only
a modified k-means clustering algorithm; in the similar fashion, other distance-based clus-
tering algorithms can also be modified. So, improvement in many clustering algorithms
is possible due to a distance measure of M(φ, p,F ). We have shown the efficacy of an
M(φ, p,F )-based k-means clustering algorithm over the l-based k-means clustering al-
gorithm on the basis of better clustering accuracy obtained for a two-moon data set and
path-based data set.
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