Yang et al. Journal of Inequalities and Applications (2017) 2017:264 ® Journal of Inequalities and Applications

DOI 10.1186/513660-017-1537-2

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Some properties and applications of the
Teodorescu operator associated to the
Helmholtz equation

Pei Yang, Liping Wang™ and Long Gao

“Correspondence: wlpxjj@163.com
College of Mathematics and
Information Science, Hebei Normal
University, Shijiazhuang, Hebei
050024, PR. China

@ Springer

Abstract

In this paper, we first define the Teodorescu operator Ty  related to the Helmholtz
equation and discuss its properties in quaternion analysis. Then we propose the
Riemann boundary value problem related to the Helmholtz equation. Finally we give
the integral representation of the boundary value problem by using the previously
defined operator.
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1 Introduction

It is well known that the Helmholtz equation is an elliptic partial differential equation
describing the electromagnetic wave, which has important applications in geophysics,
medicine, engineering application, and many other fields. Many problems associated with
the Helmholtz equation have been studied by many scholars, for example [1-5]. The
boundary value problem for partial differential equations is an important and meaning-
ful research topic. The singular integral operator is the core component of the solution of
the boundary value problem for a partial differential system. The Teodorescu operator is
a generalized solution of the inhomogeneous Dirac equation, which plays an important
role in the integral representation of the general solution for the boundary value problem.
Many experts and scholars have studied the properties of the Teodorescu operator. For ex-
ample, Vekua [6] first discussed some properties of the Teodorescu operator on the plane
and its application in thin shell theory and gas dynamics. Hile [7] and Gilbert [8] stud-
ied some properties of the Teodorescu operator in n-dimensional Euclid space and high
complex space, respectively. Yang [9] and Gu [10] studied the boundary value problem
associated with the Teodorescu operator in quaternion analysis and Clifford analysis, re-
spectively. Wang [11-15] studied the properties of many Teodorescu operators and related
boundary value problems.

In this paper, we will study some properties of the singular integral operator and the Rie-
mann boundary value problem associated to the Helmholtz equation using the quaternion
analysis method. The structure of this paper is as follows: in Section 2, we review some
basic knowledge of quaternion analysis. In Section 3, we first construct a singular inte-

gral operator T, related to the Helmholtz equation and study some of its properties.
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In Section 4, we propose the Riemann boundary value problem related to the Helmholtz
equation. Finally we give the integral representation of the boundary value problem by

using the previously defined operator.
2 Preliminaries

Let {i1, i, i3} be an orthogonal basis of the Euclidean space R* and H(C) be the set of com-

plex quaternions with basis
{io, 11,2, i3},

where iy is the unit and i, iy, i3 are the quaternionic imaginary units with the following

properties:
) ) . .. .. .
ig = —iy = io, loix = ixio =ik, k=1,2,3,
iy = —ixiy = i3, Ipiz = —iziy = iy, i3iy = —ii3 = iy.

Then an arbitrary quaternion a can be written as a = 213(:0 axix, ax € C. The quaternionic
conjugation is defined by a = g — 22:1 ay - ix. The norm for an element a € H(C) is taken

to be |a| = ,/ZZ’:O |ax|?. Moreover, if aa = aa = |a|? and |a| # 0, then we say that a is re-

versible. Obviously, its inverse element can be written as a™! =

|

|al**
Let A € C\{0} and let & be its complex square root: & € C, a? = A. Suppose 2 C R® is

a domain and 9% is its boundary. We shall consider functions f defined in Q C R® with
values in H(C). Then f can be expressed as f = Zizofk(x)ik. Here fi(x) (k =0,1,2,3) are
complex functions defined on €.

Let CY(Q,H(C)) = {f | f: Q@ — H(C),f(x) = Zizofk(x)ik,fk(x) e C"(2,C)}. We define
the operators as follows:

o R

3 3
YIS v D= YT
k=1

Er

v _ & 3f =Y _ -
D'If1=) =—-yn, D[fl=) = Vp

Py Bxk Xk

where 1// = {wlr I/f21 1#3} = {ib i2’ l3}

For the above stated o, let us introduce the following operators:
VDylfl=af +D[fl,  «D'[f]=af +DV[f],
"Dulfl=af ~VDIf,  uD'[f1=ef ~D'[f].

f will be called a left (right)-(v,)-hyperholomorphic in the domain R, if YD, [f] = 0
(DY [f]=0)in Q. Let « € C\{0} and Ima # 0. For x € R*\{0}, we introduce the following

notation:
1
—Mlxle’“"“, Ima >0,
ea(x) = 1 .
L vl Ty <0,

T 4m|x| ’



Yang et al. Journal of Inequalities and Applications (2017) 2017:264 Page 3 of 19

In both cases it is a fundamental solution of the Helmholtz equation with A = a2. Then the
fundamental solution to the operator ¥ D, Ky, is given by

X
%72

O (%) (cx + ﬁ—ia Ima >0,

K:iﬂ»a(x) = 1//5& [ea](x) =
O (x)(a + ﬁ + ialﬁ—l), Ima < 0.

Iff(x) € LP (R®, H(C)) means that f (x) € L?(B, H(C)), f*)(x) = |x| £ (%) € L?(B, H(C)),

%2
in which B = {x | |x| <1}, o is a real number, ||f]l,,c = ||[fllr(5) + If 2, p > 1.

Definition 2.1 Suppose that the functions u, v, ¢ are defined in © with values in H(C)
and u,v € LY(Q, H(C)). I, for arbitrary ¢ € C°(22, H(C)), u, v satisfy

N4
/ ox)ulx) dv, — f «D" [plv(x)dv, =0,
Q Q
then u is called a generalized derivative of the function v, where we denote u = ¥ D, [v].
Lemma 2.1 ([16]) Ifo1,0,>0,0 <y <1, then we have
’UIV - 0'2y| <lo1—-0al”.

Lemma 2.2 ([17]) Suppose Q is a bounded domain in R® and let o', B’ satisfy 0 <a’, B’ < 3,
o' + B’ > 3. Then, for all x1,%, € R® and x, # x,, we have

/ |t — 21| |t — | P dt < M CHA S
Q
Lemma 2.3 ([18]) Let 2, 3R be as stated above. Iff € C")(Q, H(C)) (m > 1), then we have

/ S®doyKyoly—x) + / aﬁw FO)Ky oy -x)dvy=f(x), x€Q.

a0 Q

3 Some properties of the singular integral operator Ty , for the Helmholtz
equation

In this section, we will discuss some properties of the singular integral operators as follows:

(Ty.alf1) )
_ _ I (2L
AR +/B’C"”"(|y|2 x)f< |y|2) e ™
= (9, [F1) @) + (T, [f1) ), 3.1)

where B={x | |x| <1}, =a +ib, b > 0.

Theorem 3.1 Assume B to be as stated above, « = a +ib, b > 0. If f € L?(B,H(C)), 3 <p <
+00, then
W (TL D@ < M@ lrm), x € R,
@ [Ty, (D@ = (Ty, D] < Ma(p)If llo) 21 — 52| + Ma(@)|f 12y o1 = 32,
x1,%7 € R,
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(3) VDo(TY), (D) = f(x), x € B, VDo (T}, [f)(x) = 0, x € R*\B,
whereO<,B p3<1

Proof (1)

(T2 1) () = /’Cwa(y x)f (y) dv,

a eiely—+l 1 elaly=x| (y — x)

T ax Bly—xlf(y) C4n ly — |3 FO)dv,

i [ e*=*(y—x)
+— | ————f(y)adv

dm Jp ly—aP o)y
= 11 + ]2 + ]3.

(i) By the Taylor series, we have |e®=*I| = |gl@+ib)ly-#| = g=bb= < m. By the Holder

inequality, we have

ot e~ byl 1
< / Lf(y>|dvy5h/3|y_—x|zlf(y>|dvy

ly — x|

1
1 q
<Ilf e |:/B U’—TW dVyi| . (3.2)

When x € B, because p > 3, 117 + ‘11 =1. Thenl<g«< % Thus [, m dv, is bounded.

Hence we suppose

1
v/B; W dVy 5]2 (33)

When x € R*\B, by Lemma 2.1 and the generalized spherical coordinate, we have

1 do+2
-/B m dvy 5]3/;1 p*dp <Ju, (3.4)
o

where p = |y — x|, dy = d(x, B). Therefore, for arbitrary x € R3, we obtain

L] < MP O If ), (3.5)

11
where M{" () = max{/,J;, 1/ }.
(ii) Obviously, e"?P-* < 1. By the Holder inequality, we have

e bl
|2ISE/|J’ xlzlf()’ y—]5f| x|2lf0/| Vy

1
<Jsllf e [/| — Vy]q.

Then, by inequality (3.3) and (3.4), we have

L] < MP)If |rw), (3.6)

101
where M;z)(p) =max{JsJ; ,Js/. }.
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(iii) This case is similar to (ii). We obtain
15| < MY @)I1f 18- (3.7)
By inequalities (3.5)-(3.7), we obtain
(TP @)] < 1L+ 1L + 15| < MO ),
where M; (p) = M (p) + M (p) + M (p).
@ (TN 6 - (T ) x2)
- /B [Kpaly = 31) - Kyaly — ) [ ) vy
eldl-xil  gialy-xa|
= [w i |y—xz|}/(y)d”

_1 [el“'y-m(y—xn 0D

4 ly —x ly — %213
i io|y—x1] () _ i |y—x2] (4 _
+ i [e o le) _ € o 2x2)}[(y)dvy
41 Jp ly — x| ly — %]
=14 +15 +16-

Let us consider e®?=*I, For arbitrary x € R, it is easy to prove |e“=*| <1 and satisfy
|eel—=l _ glely=%2l| < |y — .

(i) For arbitrary x;,x, € R, by the Holder inequality, we have

e
4] <Js
B

- d
ly—xl  |y—%l o] dvy

ioly—x1| _ pio|y—x2]
S/a/ e ‘ |[f(y)|dvy+] /
B

ly — 1l

jaly-x1|  plaly—x3]

(L1 Y,

ly—al |y -l

< Y dvy|xr —xo| + B )| dvy|x, —x
_]7/B|J’ x|VU’ |1 — %2 ]6/|y T x2|lf )| dvy |z — %2

<— 7 dV + ]6 e — d]; .
B |y X1 |2 7 B |y — X1 |€ |y —_ x2|q Yy LP(B) X1 X2

Asl<g<?

1 1
3 Jp iy vy and [ ;-7 dvy are bounded. Hence

al < M3 ) 7oy b1 = 52l (38)
1 edr=al(y —x)) el (y — xy)
Ii=—— - d
| i e P
1 (ell=al _ glaly=xal)(y — x1)
- d
4 Jp ly — a1 o)y

1 . y—x1 Y =% )/
— | eyl - Yd
e v
47T./B (D’—xll3 ly — %23 ) vy

=1+ 1
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By the Holder inequality, we have

|ewtl;v—x1I _ el b’—le|
dv
- 47rf ly — 2|2 o v,

<Js /;; mlf@’)‘ dvylx1 — x|

<18uf||m>[/ —

dv, is bounded. So we have
fB ly—x1 \Zq y

1
q
dvy |1 — %]

As1<q<

11O < Jolf vy 1 — 2.

By the Holder inequality and the Hile lemma, we have

eza\y —x3 | y—%1 _ y— %2 )dV
_477/| | ly—xl  ly—xf o av,
Y% Y%
< - d
=</ |y—x B )] dv,
x1| +
<)o oty le %2||f(9)] dv,

B ly—x1l2ly - xl2

1 1
:]10{/3|y—x1||y—x2|2w)|dVy /Bw x12ly - mww}

BT
—_—— aVv. —_— av
= L5 by —xalaly —xaf2a 5 [y —x Py —x

X |[fllr ) %1 = %2

We suppose &’ =¢q, B/ =2¢q. As1<g<
Hence, by Lemma 2.2, we have

%,we have o’ = ¢ <3, 8/

1 ! 3-3q
/B—|y—x1|q|y—xz|2’1dvyEMO(O("B)le_xz' )

dvy, <My (a 334,

/ _ B |1 — %2
B ly—x 2y — x|

So we have

1
" !
’é )| <Jullf lle) (1% = %21>739) 7|20y — 22| = Jullf 1208y 21 — %217,

where 0 < 8 = p3 1. By inequality (3.9) and (3.10), we have

1I5] < Jo|lf oy |%1 — %2 ] + T llf oy 11 — %o 1.

io elr=al(y — xp)  elolrx2l (y — x)
A |: 2 - 2 )d
47 Jp ly —x1] ly — 2]

i (el _ gle \yfle)(y —x1)
== d
=3 PR A

(ili) I =

=2g<3,ad +p

Page 6 of 19

(3.9)

=3qg > 3.

(3.10)

(3.11)
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+ii/eialy—x2< y—xm o y—x >f()/)dVy

47 Jp ly—x112 |y — %/

=10+ [
Similar to Iél), we have
|Iél)| < 2llfllz@ X1 — %2|. (3.12)

By the Holder inequality and the Hile lemma, we have

|O[| ioc|y—x) y—%1 _ Yy — %2
- 471f| | ly—x11? |y —xf? Oy
y—X y—X
< - e x22|2 If )| dv,

< ]13'[3 Vsl Lf(m dvy

ly = x1lly — %2

1
= - d B
hgf,gly—xllly—lelf(y)| Vylxr — %2

1
1 q
<] —dv,} |x1 -l
< 13“f||Lp(B){/BIy—xllqu—leq y} o — %3

Asl<g«< %, I3 m dvy is bounded. So we have

1] < Rallf )1 = %l (3.13)
By inequalities (3.12) and (3.13), we have

16| < |1”] + 7] = MP @) vy a1 - 2], (3.14)
where Mgz)(p) = Ji2 + J1a. By inequalities (3.8), (3.11) and (3.14), we have

(TP 1) = (TR ) (2)| < M) 1wy |1 = 2] + Ms (@) 1f |y 121 — 321,

where M, (p) = M (p) + Jo + MP (p), Ms(p) = 1.
(3) When x € B, for arbitrary ¢ € C3°(B,H(C)), by Lemma 2.3 and the Fubini theorem,

we have

[P i@ = [ D) [ [ Kot -20) dvy] v,
B B B

- [ [P 1Kty dvx}/mdvy
B B

_ / [w(y) - / o () daxicw,a(y—x)}f(y) dv,
B 0B

_ / o) 0) dvy = f P ()f () dv,.
B B
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Hence, in the sense of generalized derivatives, ‘”Da(T(lL [f1(x) = f(x), x € B. When x €
R3\B, it is easy to see ‘/'Da(T(l,)a FD(x) = 0. O

Theorem 3.2 Assume B to be as stated above and o = a + ib, b > 0.If f € LP3(B,H(C)),
3<p< +oo, then
W) (T [f])(x | <M4(P)|lf(3)||u’ xR,
@) (TP, UD@) = (T )] < MS(p)|lf<3>||Lp(B>|x1 — 23| + Me DI P N0 3121 — %21,
X1,% € R,
(3) VDu(T5 ) =0, x € B,V Do (T [f)(x) = f(x), x € R*\B,
where 0 < B = p 3.1

Proof (1)

) _ l_ l Ld
(Tyo )@ /B’C“”“<|y|2 x>f<|y|2)|y|6 "

« [e° ‘W xf( 3y ) 1 4

=—— — | —dv

4 Ju |2y -l \yP ) I ’
io] 2L x|

1 e b2 (%-x)f( ¥ ) 1 p
—_—— s — PER— R V
47 Jp |‘ > x3 2 lyle ™

o (NG 5
O R ()
y

4 Jp T x|? lyl*
ly?

= ]7 + Ig + [9.
As the first step, by the Holder inequality, we have

bl Ly - _
| bl
RNy BESES
47 BlH2 x| Iyl
1 7\| 1

<6 [ (58 o

1B|H2—x| 12/ | 1yl® g
| R R e
- " — dv
= B 4 yI? ! B|b%—x|‘1|y|3’1 g

= Gy [01)]7 (315)

1

— av.
y
|y[®

Q-

where 1% +1l=1. Next we discuss O;(x) in two cases.

(i) \X/hen x| > 2, since

—-q —-q
_ y _
= —x Iyl M =y 2q[lqu—— — }le"
||y|2 y[? |2
7 % | % -4
_ y X _ _ X _
< Glyl 2qy<—|y|2 —x) | =Gl 2 wp Y R
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we have

_ -q
x

W -y dVy.

mqmw@mquﬁ

qms/@mW
B

WY

We suppose o' =2¢q, B ' =q. As1<g< %,wehave0<oz’<3,0<ﬂ’<3,a’+ﬂ’:3q>3.
Thus, by Lemma 2.2, we have

O1(%) < Mo (o', B') %177 e

3-3q
< CMo (o, B)2°7% = C;. (3.16)

(ii) When |x| < %, by |y| <1, we have |1 — yx| > %, thus

00 = [ = [ i
B || |2 x|q|y| q
i -9
< C4/ I~ y(iz —x)
B Iyl

<Cy f ly| 72124 dv, < Cs / ly| 7 dvy < C. (3.17)
B B

y
T

dv,

dvy=C4/ Iyl’qul—yxl’qdvy
B

Therefore, by (3.15)-(3.17), we have

151 < MP O] sy (3.18)

1 1
where MY (p) = max{C,C{,C,C{}.
As the second step, by the Holder inequality, we have

b‘ |2 —x|

1 e y
w2
4m BI||2 —x2T \ Iyl
1 7\| 1
=c [ () e
’ Bl||2 x|? 2/l lyle
_ p 1 1
_ y p 1 q
<ol [ (Ga) ] o) | )
7{ B ) lyI? g Blllz—x|24|y|3‘1 g

= G fO] iy [02] 7. (3.19)

1

— av.
y
|y[®

Similar to O (x), we find that O,(x) is bounded. Suppose O,(x) < Cs. Then

151 < MPG)FP ] o - (3.20)
As the third step, similar to I7, we have

1] < MP D) FP | o - (3.21)
By inequalities (3.18), (3.20), and (3.21),

(TR @] = 1]+ sl + o] < Ma @) [ s
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where My (p) = MV (p) + MP (p) + MY (p).

@ (T - (T9 1) (@)

Y il 2 _
o ela‘ly_\f x1| etoz\W x| y 1
piar -3 oz ) e
47 Jp Iop —al  Igp %l I /] 1yl

io| 2y —x1] 3 ia| 25

—x2|
b2 J__ iz 2l vy _

b |:e b2 xl)_e b xZ)]/( y )_1 dv
y 5 y

dm el I - wlP |2y — 223 y2 / Iyl®

71 1
o] 2y x|, 5 il Ly —x3l | 5

i |:e 12 (‘y‘ xl) e (#_M)}j( 7) 1 p
- — | —dv
'y

el I - mP |5 —%al? 12/ lyle

= 110 + 111 + 112.

Firstly, we discuss ;9. We have

il 2 _ il 2 _
o eta b2 %1 | ewtl‘y‘2 %2 | y 1
S A e et A it
Blipz -l gz =% y

Iy
o ez|‘2 —x1] ewt\ly%fxz\ 7 1
S A(2) s
4m Jp IW%—xﬂ ¥12 /1yl
e[ () e
A Jg g -ml 2z —al/ DI D

(1) (2)
=1l +1y .

By the Holder inequality, we have

ol [ le i Hﬁ—xn_eim‘ﬁ—m' 7 1
|110 = 7 <—2> g dvy
T JB |W—x1| Iyl Iyl
el [elx - x2|p<l)‘
= 4n BlII2 — x| 2/ yle Wy
) _
)
B ||y%—x1| yI?
_ p 1 1 1
< @{/[lyl‘ﬂ/(%) ] dvy}p{/idvy}qbﬁ—xz
3
B Iyl B |‘ 7 —xl?yl*

= Gof® ||LP(B)[Ol(x)] %1 — %3]

By (3.16) and (3.17), we have O;(x) < max{Cjs, Cs}. Therefore

dvylxl le

QU

11| < Cuo[f | g 22 — 521, (322)

1 1
where Cip = max{CyCy,CoC{ }.
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x| ~b|

2! | < . Therefore

By the Taylor series, we have |e W |=1]e W
bl‘ 2 x2|
1 1

|a| / b' v —x2]| ‘j( y )‘
|110 w = T dvy
—x| |-l 2/ e

b _

L]l 1 e =*l- W m"p(L)‘idv

— y Y
4 s bl —ml g —wllg -l /e

L
2

2 2
- 1
SCH/ £ le 2P<L2)‘—6d"y
oG
- y VylX1 — X2
||y|2 x1|||y|2 _x2|2|y|3 |y|2

1
1 q
< Cu|f® {/ = 5 @ } L
Ir HU’(B) B||y%_xl|q|L2 x| |y|3 y

Page 11 of 19

= Cu |9 L,,(B)[og(x)]é %1 — %3] (3.23)
Since
= -q - = -q = -2q
y -3q —-q y -2q y
— = = =x3| [y = |yl ——x1‘ [y|™ | = —x2
TS T 7 b 7be
3 -4 7 -2
Yy y
§C12y<——x) (——xz)
TR AN
= Cpa|1— gy |11 =y |79,
we have
O3(x) < C / 1 d C1204(x)
x v, = x).
I 11— yx1|9]1 - yxp|?7 e
By (3.23), we have
12| < Cs|f® 04@)]7 |1 - 3.24
o' | = Cus|lf Hl}’(B)[ 1)) |1 = s . (3.24)
In the following, we discuss O4(x) in four cases.
(i) When |x;] < 5 |x2| < z,as |yl <1, wehave [1-yx| > 5 |1 yxo| > 2, 2 — x| < 1.
Hence
O4(x) < / 2922 dvy = 23”1/ dvy = Cyy.
B B
As |x; —x| <1,0 < B = 22 <1, we have |x; — x3| < |x1 — x2|?. Therefore, by (3.24), we
have
’1{§)| <C; “f(s) ||Lp(3)|x1 - xP. (3.25)
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(ii) When || > 5, x| < 5,we have |1 — yx,| > 5, ﬁ <2, 22l <1 Thus

3
=

1 1
O4(x) < 24 | — — gy = 22‘7|x1|’q _— dv
—_ q y X1 Y
B |1 —yx| B L= ym|9] 25 7

1 1
< C1622‘1|x1|_q/ T m . dVy = C1622q|x1|_q/ —_— Vy.
—_ 2 _1q —
B |(1 yxl) |x1‘2 | B |y |x ‘2 |
Again, since
— 1- - — =\ |1-
11| =® p 1 (= x0)(x — X)) P
il ]| |1 ]? B a2 — %o
1 9_61 (x1 - x2) -8 1 1 7_51952 - -
=CGri—3 5 5= Qg |l-——|  In - x|
|1 | |1 | |1 — %o Jov1 | Jov1 |

|02 |

-B
< Cy7lxa|™ 5(1 + ) ey — w2 |P 7t < Ciglaey — 20| P,

| |

we have x| < Ciolar — %2/, Again from the notion that 1 < g < 3, we know

fB x1

- le\z

m dv, is bounded. Hence,we obtain

04(x) < Caolay — x| ¥~V
Therefore, by (3.24), we have
’I{(z))| < C|f® ||Lp(B)[C25|x1 — x|V ]%le x|
= Cu [P g1 — 2217 (3.26)
(iii) When |x;| < = , 2| > 3, L similar to (ii), we have
|I{5)| < Cyn|f® ||U;(B)|x1 - x)P. (3.27)

(iv) When |x;| > 5, x| > 2, we have — ‘x <2, ﬁ < 2. Since

— |
11— yoer |77 = |1 = yoer [ foer 7)1 |7 = |1 = yxy [ 72 x—|2 1|77
1
x| _ x| _
S Cs|d-ym)——| Wl =Cosly— | Iul™,
|1 ] | |
-2 Y T -2 -2
1 = yoea |70 = |1 = yoea | |xa | Joea |7 = |1 =y |71 P |2 o |~
- |29 = |72
X2 ) X2 -2
<Cu|d-yx)——| Wl 1=Culy-—75| %™
E2] o2
We have
1
O4(x) < Cys . dv,.
B|y %1 |2| |y_|x ‘2|q
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Suppose o’ =¢, 8’ =2¢q. Then0<a’'<3,0< 8 <3,&'+ 8" =3¢ > 3. Thus, by Lemma 2.2,

we have
_ — 3-3 = _ 3-3
% X g Tl |® = Xl |2 |71
0s(¥) = Cos| 7 — T3 =Cw|— 37
ler]® [ e |# |2 |
_ — _ _ 3-3
X112 |2 = Kol | + Xo %2 |2 — Folay 2|71
= Gz 2o |2
e |2 |
- - = 3-3
X —% Xl - lx?)|
= Coe 2 2 12
[ |61 |* oea |

1 ol e\ 33
<Cs|—5+—5—) |lu-xl
|1 ] 1] *[oca |

3-3¢q

1 1 1

= C26<—2 ot ) o — 20>~
ler® fxal® e |lxal

3-3
< Gzl —x|° 721,

Therefore, by (3.24), we have
1
|1$)| <Cs “f(3) ||Lp(3)[c27|xl — 23] 7 %y — %
= Cos[[fV] b1 = 221", (3.28)

where 0 < 8 = 1%3 < 1. From (3.25)-(3.28), we obtain
1565 | < M@ | s 1~ 221, (3.29)

where MY (p) = max{Cis, Ca1, Cay, Cas}.
By (3.22), (3.29), we obtain

ol = Cuo [P gyl = 21 + MG D) [fD ] g 1 = 521 (3:30)

Secondly, we discuss I;;. We have

i Y iy
io| =>-x1] , 5 io| =5~
Iy2 y 2

1 [e proa) e b (—jz—xz)}/( y) 1
- = —— |—dv
T3 T3 2 6
B | e x1| e %3 | ly1*/ Iyl

Iy =— =
11 . 5

io) Ly-xi|  ialLr-xl 3
Iy — Iy J__ —
L € v e " Ve xl)f(i)idv
47 Jp |2 —al P/ e
- J__ J _
I Il T TG VY A YRS
4 y 3 y 3 ly12 ) 1y1e 7
B |W_x1| |W_x2| VARV

1, ;2
=Ly +1y.
. M
Similar to I}, we get

’18){ < Cy||f® “LP(B)'xl —%2]. (3:31)
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By the Holder inequality and the Hile lemma, we have

Page 14 of 19

’18) = ! /e_bl\yj\lz_ml Il " _ P = L/( 2) g Ay
An Jp gz P Igp —xP I \YIE /1
|2 —ml+lm-ml) /5
< 30/ ‘yyl i > P(Lz)‘ < Avylxr — x|
B ||J’|2 xll |‘y‘2 _x2| | |
Ed )
= 30/ = == || =g dvylx1 — x2]
512 —allgy - w2l \DP/1I°
1 y 1
+ Cgo/ P(%)‘—sdvylxl — X2
B|H2 x1| |||2 _x2| |y| |y|
1 1
q
< Cy|f® [/ dv ] oy — %2
”f ||LP(B) Bll_yx1|q|1_yx2|2q y
1
1 q
+Cy|f©® / avy | |x—w
32|lf ”U’(B) Bll—yxllqul—yleq y %1 2|
1 1
= Ca1 [ 1o )[04 0] 7 131 = 22| + Caa [fO] 1 5, [ 05 (0] 7 131 — . (3.32)
This is similar to I%) and it is easy to prove the following:
1
C31|Lf(3)HLp(B>[ 4 (%) ] 1oy — x2|<C33Hf ||Lp v — x|,
1
Ca2 |f? ”yﬂ(B)[OS(x)] “]xy — 23| < Caa|[f® “U,(B)|x1 -x”.
Therefore, we obtain
(2)
0| < Css Hf(s) ”Lp(B)|xl - xP. (3.33)
By (3.31) and (3.33), we have
i1l < Cos [P 1 gy 121 = 2] + Cs [FO] 1 gy 1 = %27 (3.34)
Finally, we discuss I;5. We have
ia| 2yl 5 ial 2yl ~
i fre " (GEpmx) e P T (Ermw)] oy 1
IIZZE |__ |2 — |y_ |2 W va
5 p? — M e~ M2
[ By R [ A R
PG R 2)(#—9@)}((;) 1
= — = —— |—dv
Am i gz —ml? /) e
. 5 J__ 3 _
+£/e"°‘$-x2< p? ~M )f(%)% vy
4 . 2 |2
™ Js Iop 1l Ipp — %l wI1*/ Iyl
1, 72
=1y + ;.
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Similar to 11((1)), we get

Page 15 of 19

|Ig)| = Cse Hf(g) HLF(B)|x1 — . (3.35)
By the Hile lemma and the Hélder inequality, we have
af [ -bl2r-ml \y|2 —m o gpem ¥y \| 1
1= e )
47 ||2 —x1]2 ||y—|—x2|2 I/ 11yl
%1 — y
< C37/ AU dvy
||J’|2 xl||||2 _x2| |y|
1 _
= C37/ 5 3Iylgl/(Lz) dvylx; — %,
1 1
q
< Colf® | / : an) -
PO |2y - a0l 2y - o Paly e
1
= C |f® HLP(B) [O3(x)]7 41 — %2
Therefore
|I$)| < Cas[f® ”l}’(B)'xl ~xl’, (3.36)
by (3.35) and (3.36), so we have
2] < Cas [f9] gy 111 = 221 + Cas [fP ] gy 11 = 221 (3.37)
By (3.30), (3.34), and (3.37), we have
T, 1) (2) = (T4 [ 1) (1)
v v
=< MS(P) Hf(3) ||U7(B) |x1 - x2| + M6(p) |V‘(3) “LP(B) |x1 —X2 |ﬂ;
where Ms(p) = Cio + Cag + Cs6, Mg(p) = M (p) + Css + Cs.
(3) This case is similar to Theorem 3.1, and it is easy to prove. g

Remark 3.1 Assume B to be as stated above and o = a + ib,b > 0. If f € LP3(B,H(C)),

3 < p < +00, then

1) T\/IOt[f )(x)] <M7(p)”f”p3:x ER
() (TyolfDe1) = (Ty o[ D) < Ms()IIf 1l 3121
X1,%X2 ERB,

() VDo(TyolfD(®) =f(x), x € R*\0B,

where 0 < 8 = p3<1

—x2| + Mo(P)If Il p,31%1

_x2|ﬂ,
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4 Integral representation of solution of Riemann boundary problem to
inhomogeneous partial differential system
In this section, we will discuss the inhomogeneous partial differential system of first order

equations as follows:

awo — Wy, —Wa,, —W3,, = co(%),
awi + W, —Wa + W3, = a(x), 1)
awy + Wy, + Wi, —ws, = c(x),

aws + Wo,, — Wi, + Wy, =C3 (%),
where w;(x), ¢;(x) (j = 0,1,2, 3) are real-value functions.

Problem P Let B C R® be as stated above. The Riemann boundary value problem for
system (4.1) is to find a solution w(x) of (4.1) that satisfies the boundary condition

wh(t)=w (t)G+f(r), T €IB,

where w(t) = lim,cp+ ., w(x), B* = B, B~ = R®\B, G is a quaternion constant, G™! exists,
and f € Hj; (0<v<1).

In fact,
3 ow
VD, [w] = i— +aw
a[ ] Z’ax,

j=1

3 3

> (4 Wo L1y OM 2 L O va Y wi

— g0 s T e T2 TS ik
- ’Oaxj ”ax, 128x, ’Sax,-

Jj=1 k=0

= (awg — Wi, — Wy, — Wi, )ig + (wq + Wo, = Wa,, + W3, )i1

+(awy + wo,, +wi,, —ws, )ia + (aws + wo,, —wi,, + Wy, )is. (4.2)
Let
3
g(x) = co(x)io + c1(®)iy + ca(x)ia + c3(x)iz = Z cj(x)ij. (4.3)
j=0

By (4.2) and (4.3), the inhomogeneous partial differential system (4.1) can be trans-
formed to the following equation:

3
Y Daw] =) ¢i(x)ij = gx). (4.4)
j=0

Therefore Problem P as stated above can be transformed to Problem Q.

Problem Q Let B C R® be as stated above. The Riemann boundary value problem for
system (4.1) is to find a solution w(x) of (4.4) that satisfies the boundary condition

wi(t) =w (r)G+f(r), T €dB,
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where w(t) = lim,ept ... w(x), B* = B, B~ = R®\B, G is a quaternion constant, G™! exists,
and f € H}; (0 <v <1).

Theorem 4.1 Let B be as stated above. Find a quaternion-valued function u(x) satisfying
the system ¥ Dy, [u] = 0(x € R*\dB) and vanishing at infinity with the boundary condition

u (t)=u (r)G+f(r), t€dB, (4.5)

where u*(t) = limyept . ., u(x), G is a quaternion constant, G exists, and f € Hy, (0 <
A < 1). Then the solution can be expressed as

S Kvay-ndof ), xeB,

u(x)
[ Kyaly —x)do,f(y)G™, xe€B.

Proof Define

u(x), «x€B,

ulx)G, xe€B .

px) =

Then it is obvious that ¥ D, [¢] = 0 (x € R*\dB) and the Riemann boundary condition (4.5)
is equivalent to

0" (t) =9 (1) +f(t), 7 €dB.

Suppose W(x) = [, Ky« (y — %) doyf (y). Then VDo [W] = 0 (x € R*\0B). By the Plemelj for-

mula, we have
() -W (1) =f(r), T €0B.

Hence ¢*(t) - W*(t) = ¢~ () =¥ (r) (r € 3B). Thus ¥ D,[¢ — ¥] = 0 and by Theorem 3.12
in [10] we obtain ¢(x) = W(x). So the solution can be expressed as

s Kvay-ndofe),  xeB,

u(x)
Jos Kvay —x)doyf()G™', x€B. 0

Theorem 4.2 Let B be as stated above and g(x) € LPA3(R3,H(C)), 3 < p < +00. Find a
quaternion-valued function w(x) satisfying the system V D, [w](x) = g(x) (x € R*\dB) and
vanishing at infinity with the boundary condition

w'(t)=w (t)G+f(r), T €IB, (4.6)

where wt(t) = limyep+ .. w(x), G is a quaternion constant, G exists, and f € H} (0<
A <1). Then the solution has the form

w(x) = W (x) + (Td/,a k])(x),
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in which YDy [V] = 0 and

_ s Kial-2)doyf(),  xeB,

W(x) g
fos Kpay —x)dof )G, xeB,

where f = f + (T ,[g])(G - 1).

Proof By Remark 3.1, we know ¥ Dy [w] = VDo [W (%) + (Ty o [g])(x)] = g(x). The boundary
condition (4.6) is equivalent to

(\If + vaa[g]y(t) = (\If + Tl,,,o,[g])f(r)G +f(r), te€dB. (4.7)

Again from Remark 3.1, we know that (7' . [g])(x) has continuity in R®. Thus (T 4[g])" =
(Tylgl)™ = Ty «lgl, so (4.7) is equivalent to

V(1) =V (1)G + (Tyulgl)(t)(G-1) +f(x), Te€dB. (4.8)
Suppose f = f + (Ty «[g])(G —1). Then (4.8) has the following form:
W (1) =W (1)G+f(1), T e€dB. (4.9)

Again from Theorem 4.1, the solutions which satisfy the system ¥ D, [¥] = 0 and boundary
condition (4.9) can be represented in the form

Jop Kyay = x) doyf (), x e B,

Y(x) = g
L35 Kyay—x)doyf(y)G™, xeB,

where f = f + (T 4[g])(G -1). O

Remark 4.1 By Theorem 4.2, the solution of problem P can be expressed as

w(x) = V() + (Ty,«[g]) (),

in which YD, [¥] = 0 and

) s Kyay-%)dorf(),  xeB,

W(x) = g
faB Kyl —x) d"yf(y)Gfl, x€B,

where f = f + (T .[g])(G - 1).
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