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Abstract
The analytic functions, mapping the open unit disk onto petal and oval type regions,
introduced by Noor and Malik (Comput. Math. Appl. 62:2209-2217, 2011), are
considered to define and study their associated close-to-convex functions. This work
includes certain geometric properties like sufficiency criteria, coefficient estimates,
arc length, the growth rate of coefficients of Taylor series, integral preserving
properties of these functions.
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1 Introduction and definitions
Let A be the class of functions f of the form

f (z) = z +
∞∑

n=

anzn, (.)

which are analytic in the open unit disk E = {z ∈ C : |z| < }. Furthermore, S represents the
class of all functions in A which are univalent in E.

The convolution (Hadamard product) of functions f , g ∈A is defined by

(f ∗ g)(z) = z +
∞∑

n=

anbnzn, z ∈ E,

where f (z) is given by (.) and

g(z) = z +
∞∑

n=

bnzn, z ∈ E.

For two functions f and g analytic in E, we say that f is subordinate to g , denoted by f ≺ g ,
if there exists a Schwarz function w with w() =  and |w(z)| <  such that f (z) = g(w(z)).
In particular, if g is univalent in E, then f () = g() and f (E) ⊂ g(E). For more details, see
[].
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A function p analytic in E and of the form

p(z) =  +
∞∑

n=

pnzn

belongs to the class P[A, B] if and only if

p(z) ≺  + Az
 + Bz

, – ≤ B < A ≤ .

This class was introduced and investigated by Janowski []. In particular, if A =  and B =
–, we obtain the class P of functions with a positive real part (see [, ]). The classes P
and P[A, B] are connected by the relation

p(z) ∈P ⇔ (A + )p(z) – (A – )
(B + )p(z) – (B – )

∈P[A, B].

Now consider, for k ≥ , the classes k – CV and k – ST of k-uniformly convex func-
tions and corresponding k-starlike functions, respectively, introduced by Kanas and Wis-
niowska, respectively. For some details, see [–].

Consider the domain

�k =
{

u + iv; u > k
√

(u – ) + v
}

. (.)

For fixed k, �k represents the conic region bounded successively by the imaginary axis
(k = ), the right branch of a hyperbola ( < k < ), a parabola (k = ) and an ellipse (k > ).
This domain was studied by Kanas [–]. The function pk , with pk() = , p′

k() >  plays
the role of extremal and is given by

pk(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

+z
–z , k = ,

 + 
π (log +

√
z

–
√

z ), k = ,

 + 
–k sinh[( 

π
arccos k) arctan h

√
z],  < k < ,

 + 
k– sin[ π

R(t)
∫ u(z)√

t


√
–x

√
–(tx)

dx] + 
k– , k > ,

(.)

where u(z) = z–
√

t
–

√
tz , t ∈ (, ), z ∈ E and t is chosen such that k = cos h( πR′(t)

R(t) ), with R(t)
is Legendre’s complete elliptic integral of the first kind and R′(t) is the complementary
integral of R(t) (see [–]). Let Ppk denote the class of all those functions p(z) which are
analytic in E with p() =  and p(z) ≺ pk(z) for z ∈ E. Clearly, it can be seen that Ppk ⊂ P ,
where P is the class of functions with a positive real part (see [, ]). For the applications
and exclusive study of the class P , we refer to [–]. More precisely

Ppk ⊂P
(

k
 + k

)
⊂P ,

and, for p ∈Ppk , we have

∣∣arg p(z)
∣∣ ≤ λπ


,
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where

λ =

π

arctan

(

k

)
. (.)

Therefore, we can write

p(z) = hλ(z), h ∈P .

Definition . ([]) A function p analytic in E belongs to the class k – P[A, B] if and only
if

p(z) ≺ (A + )pk(z) – (A – )
(B + )pk(z) – (B – )

, k ≥ ,

where pk(z) is defined by (.) and – ≤ B < A ≤ . Geometrically, the function p(z) ∈
k –P[A, B] takes all values in the domain �k[A, B], – ≤ B < A ≤ , k ≥ , which is defined
as follows:

�k[A, B] =
{

w : Re

(
(B – )w(z) – (A – )
(B + )w(z) – (A + )

)
> k

∣∣∣∣
(B – )w(z) – (A – )
(B + )w(z) – (A + )

– 
∣∣∣∣

}

or equivalently

�k[A, B] =
{

u + iv :
[(

B – 
)(

u + v) – (AB – )u +
(
A – 

)]

> k[(–(B + )
(
u + v) + (A + B + )u – (A + )

)

+ (A – B)v]}.

The domain �k[A, B] retains the conic domain �k inside the circular region defined by
�[A, B] = �[A, B]. The impact of �[A, B] on the conic domain �k changes the original
shape of the conic regions. The ends of hyperbola and parabola get closer to each other
but never meet anywhere and the ellipse gets the shape of oval. When A −→ , B −→ –,
the radius of the circular disk defined by �[A, B] tends to infinity; consequently, the arms
of hyperbola and parabola expand and the oval turns into ellipse.

Definition . ([]) A function f ∈A is said to be in the class k –CV[C, D], – ≤ D < C ≤ ,
if it satisfies the condition

Re

( (D – ) (zf ′(z))′
f ′(z) – (C – )

(D + ) (zf ′(z))′
f ′(z) – (C + )

)
> k

∣∣∣∣
(D – ) (zf ′(z))′

f ′(z) – (C – )

(D + ) (zf ′(z))′
f ′(z) – (C + )

– 
∣∣∣∣ (k ≥ ; z ∈ E),

equivalently, we can write

(zf ′(z))′

f ′(z)
∈ k – P[C, D].
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Definition . ([]) The class k – ST [C, D], – ≤ D < C ≤ , is the family of all those
functions f ∈A such that

Re

( (D – ) zf ′(z)
f (z) – (C – )

(D + ) zf ′(z)
f (z) – (C + )

)
> k

∣∣∣∣
(D – ) zf ′(z)

f (z) – (C – )

(D + ) zf ′(z)
f (z) – (C + )

– 
∣∣∣∣ (k ≥ ; z ∈ E),

or equivalently

zf ′(z)
f (z)

∈ k – P[C, D].

These two classes were recently introduced by Noor and Malik [].
Motivated by the recent work presented by Noor and Malik [], we define some classes

of analytic functions associated with conic domains as follows.

Definition . Let f ∈ A. Then f ∈ k – UK[A, B, C, D] if and only if there exists g ∈ k –
ST [C, D] such that

Re

( (B – ) zf ′(z)
g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

)
> k

∣∣∣∣
(B – ) zf ′(z)

g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
∣∣∣∣ (k ≥ ),

or equivalently

zf ′(z)
g(z)

∈ k – P[A, B],

where – ≤ D ≤ C ≤  and – ≤ B < A ≤ .

Definition . Let f ∈ A. Then f ∈ k – UQ[A, B, C, D] if and only if, for – ≤ D < C ≤ ,
– ≤ B < A ≤  and k ≥ , there exists g ∈ k – CV[C, D] such that

Re

( (B – ) (zf ′(z))′
g′(z) – (A – )

(B + ) (zf ′(z))′
g′(z) – (A + )

)
> k

∣∣∣∣
(B – ) (zf ′(z))′

g′(z) – (A – )

(B + ) (zf ′(z))′
g′(z) – (A + )

– 
∣∣∣∣,

or equivalently

(zf ′(z))′

g ′(z)
∈ k – P[A, B].

It can easily be seen that

f ∈ k–UQ[A, B, C, D] ⇔ zf ′ ∈ k–UK[A, B, C, D]. (.)

Special cases:
i.  – UK[A, B, C, D] = K[A, B, C, D] and  – UQ[A, B, , –] = Q[A, B], subclasses of

close-to-convex and quasi-convex functions studied by Silvia and Noor, respectively,
see [, ].
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ii. k – UK[, –, , –] = k – UK and k – UQ[, –, , –] = k – UQ, the class of
k-uniformly close-to-convex and the class of k-uniformly quasi-convex functions
studied by Acu [].

iii. k – UK[ – β , –,  – γ , –] = k – UK(β ,γ ) and
k – UQ[ – β , –,  – γ , –] = k – UQ(β ,γ ), the well-known class of k-uniformly
close-to-convex and the class of k-uniformly quasi-convex functions of order β and
type γ , see [].

iv. –UK[ – β , –,  – γ , –] = K(β ,γ ) and  – UQ[ – β , –,  – γ , –] = Q(β ,γ ),
well-known classes of close-to-convex and quasi-convex functions of order β type
γ , see [, ].

v.  – UK[, –, , –] = K and  – UQ[, –, , –] = Q, the classes of close-to-convex
and quasi-convex functions; for details, see [, ].

Throughout this paper, we assume that – ≤ D < C ≤ , – ≤ B < A ≤  and k ≥  unless
otherwise specified.

2 A set of lemmas
To prove our main results, we need the following lemmas.

Lemma . ([]) Let p(z) =  +
∑∞

n= pnzn ≺ F(z) =  +
∑∞

n= dnzn in E. If F(z) is univalent
in E and F(E) is convex, then

|pn| ≤ |d|, n ≥ .

Lemma . ([]) Let p(z) =  +
∑∞

n= cnzn ∈ k – P[A, B]. Then

|cn| ≤
∣∣δ(A, B, k)

∣∣,

where

δ(A, B, k) =
(A – B)δk


, (.)

and

δk =

⎧
⎪⎪⎨

⎪⎪⎩

(cos– k)

π(–k) ,  ≤ k < ,


π , k = ,
π


√

t(k–)R(t)(+t) , k > .

(.)

Lemma . ([]) Let f and g be in the class C and S∗, respectively. Then, for every function
F(z) analytic in E with F() = , we have

f (z) ∗ g(z)F(z)
f (z) ∗ g(z)

∈ co
(
F(E)

)
, z ∈ E,

where “∗” denotes the well-known convolution of two analytic functions and coF(E) denotes
the closed convex hull F(E).
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Lemma . ([]) Let g ∈ k–ST [C, D] with k ≥  and be given by

g(z) = z +
∞∑

n=

bnzn.

Then

|bn| ≤
n–∏

j=

|(C – D)δk – jD|
(j + )

,

where δk is defined by (.).

3 The main results and their consequences
This section is about the main results of our defined families k–UK[A, B, C, D] and k –
UQ[A, B, C, D]. These families will be thoroughly investigated by studying their important
properties including coefficient inequalities, sufficient condition, necessary condition, arc
length problem, the growth rate of coefficients, convolution preserving properties and the
radius of convexity problem. We will also discuss some special cases of our main results.

. Coefficient inequalities

Theorem . Let f ∈ k–UK[A, B, C, D], and let it be of the form given by (.). Then, for
n ≥ , we have

|an| ≤ 
n

n–∏

i=

|(C – D)δk – iD|
(i + )

+
(A – B)|δk|

n

n–∑

j=

j–∏

i=

|(C – D)δk – iD|
(i + )

,

where δk is defined by (.). This result is not sharp.

Proof Let us take

zf ′(z) = g(z)p(z), (.)

where p ∈ k –P[A, B] and g ∈ k –ST [C, D]. Let zf ′(z) = z+
∑∞

n= nanzn, g(z) = z+
∑∞

n= bnzn

and p(z) =  +
∑∞

n= cnzn. Then (.) becomes

z +
∞∑

n=

nanzn =

(
z +

∞∑

n=

bnzn

)(
 +

∞∑

n=

cnzn

)
.

Equating the coefficients of zn on both sides, we have

nan = bn +
n–∑

j=

bjcn–j.

This implies that

n|an| ≤ |bn| +
n–∑

j=

|bj||cn–j|. (.)
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Since p ∈ k – P[A, B] and g ∈ k – ST [C, D], therefore by Lemma . and Lemma . we
have

|bn| ≤
n–∏

i=

|(C – D)δk – iD|
(i + )

and

|cn| ≤ 


(A – B)|δk|.

Hence (.) becomes

n|an| ≤
n–∏

i=

|(C – D)δk – iD|
(i + )

+
n–∑

j=

(A – B)|δk|


j–∏

i=

|(C – D)δk – iD|
(i + )

,

which implies that

|an| ≤ 
n

n–∏

i=

|(C – D)δk – iD|
(i + )

+
(A – B)|δk|

n

n–∑

j=

j–∏

i=

|(C – D)δk – iD|
(i + )

.

This completes the proof. �

Corollary . ([]) Let f ∈ k – UK[, –, , –] which has the form (.). Then, for n ≥ ,

|an| ≤ (|δk|)n–

n!
+

|δk|
n

n–∑

j=

(|δk|)j–

(j – )!
.

Corollary . Let f ∈ k –UK[ – β , –,  – γ , –] = f ∈ k –UK[β ,γ ] which has the form
(.). Then, for n ≥ ,

|an| ≤ (|δk|)n–

n!
+

|δk|
n

n–∑

j=

(|δk|)j–

(j – )!
.

Corollary . ([]) Let f ∈  – UK[, –, , –] = K which has the form (.). Then, for
n ≥ ,

|an| ≤ n.

Using relation (.) and Theorem ., we obtain immediately the following result.

Theorem . Let f ∈ k – UQ[A, B, C, D] which has the form (.). Then, for n ≥ ,

|an| ≤ 
n

n–∏

i=

|(C – D)δk – iD|
(i + )

+
(A – B)|δk|

n

n–∑

j=

j–∏

i=

|(C – D)δk – iD|
(i + )

.



Mahmood et al. Journal of Inequalities and Applications  (2017) 2017:259 Page 8 of 14

By assigning different permissible values to the parameters, we obtain several known
results, see [, , ].

. Sufficient conditions

Theorem . Let f ∈A and be given by (.). Then f ∈ k–UK[A, B, C, D] if

∞∑

n=

[
(k + )|bn – nan| +

∣∣(B + )nan – (A + )bn
∣∣] < |B – A|. (.)

Proof Let us assume that equation (.) holds true. It is sufficient to show that

k
∣∣∣∣
(B – ) zf ′(z)

g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
∣∣∣∣ – Re

( (B – ) zf ′(z)
g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
)

< .

Now consider

∣∣∣∣
(B – ) zf ′(z)

g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
∣∣∣∣ =

∣∣∣∣
(B – )zf ′(z) – (A – )g(z)
(B + )zf ′(z) – (A + )g(z)

– 
∣∣∣∣

= 
∣∣∣∣

g(z) – zf ′(z)
(B + )zf ′(z) – (A + )g(z)

∣∣∣∣

= 
∣∣∣∣

∑∞
n=(bn – nan)zn

(B – A)z +
∑∞

n=[(B + )nan – (A + )bn]zn

∣∣∣∣

≤ 
∑∞

n= |bn – nan|
(B – A) –

∑∞
n= |(B + )nan – (A + )bn| .

Since

k
∣∣∣∣
(B – ) zf ′(z)

g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
∣∣∣∣ – Re

( (B – ) zf ′(z)
g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
)

≤ (k + )
∣∣∣∣
(B – ) zf ′(z)

g(z) – (A – )

(B + ) zf ′(z)
g(z) – (A + )

– 
∣∣∣∣ ≤ (k + )

∑∞
n= |bn – nan|

(B – A) –
∑∞

n= |(B + )nan – (A + )bn| .

The last inequality is bounded by  if

(k + )
∞∑

n=

|bn – nan| ≤ |B – A| –
∞∑

n=

∣∣(B + )nan – (A + )bn
∣∣.

Hence we have

∞∑

n=

[
(k + )|bn – nan| +

∣∣(B + )nan – (A + )bn
∣∣] ≤ |B – A|.

This completes the proof. �
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Theorem . Let f ∈A which has the form (.). Then f ∈ k – UQ[A, B, C, D] if

∞∑

n=

n
[
(k + )|bn – nan| +

∣∣(B + )nan – (A + )bn
∣∣] < |B – A|.

The proof follows immediately by using Theorem . and relation (.).

Corollary . ([]) A function is said to be in the class  –UQ[ – β , –, , –] = UQ(β)
for g(z) = z if

∞∑

n=

n|an| <
 – β


.

. Necessary condition

Theorem . Let f ∈ k – UK[A, B, C, D]. Then, for θ < θ, z ∈ E,

∫ θ

θ

Re

{
(zf ′(z))′

f ′(z)

}
dθ > –

[
C – D

k +  – D
+ λ

]
π ,

where λ is defined by (.).

Proof Since f ∈ k – UK[A, B, C, D], there exists g ∈ k – CV[C, D] ⊂ C(β),

β =
k +  – C
k +  – D

(.)

such that

f ′(z) = g ′(z)p(z),

where p ∈ k – P[A, B]. We can write

f ′(z) =
(
g ′

(z)
)–β hλ(z), h ∈P[A, B] ⊂P , g ∈ C.

For z = reiθ ,  ≤ r < ,  ≤ θ ≤ θ ≤ π , we have

∫ θ

θ

Re

{
(zf ′(z))′

f ′(z)

}
dθ = ( – β)

∫ θ

θ

Re

{
(zg ′

(z))′

g ′
(z)

}
dθ + β(θ – θ)

+ λ

∫ θ

θ

Re

{
zh′(z)
h(z)

}
dθ . (.)

Also, we observe that, for h ∈P[A, B],

∂

∂θ
arg h

(
reiθ ) =

∂

∂θ
Re

{
–i ln h

(
reiθ )}

= Re

{
reiθ h′(reiθ )

h(reiθ )

}
.
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Therefore

∫ θ

θ

Re

{
reiθ h′(reiθ )

h(reiθ )

}
dθ = arg h

(
reiθ

)
– arg h

(
reiθ

)
,

this implies that

max
h∈P[A,B]

∣∣∣∣
∫ θ

θ

Re

{
reiθ h′(reiθ )

h(reiθ )

}
dθ

∣∣∣∣ = max
h∈P[A,B]

∣∣arg h
(
reiθ

)
– arg h

(
reiθ

)∣∣. (.)

Since h ∈P[A, B], so

∣∣∣∣h(z) –
 – ABr

 – Br

∣∣∣∣ ≤ (A – B)r
 – Br .

From (.), we observe that

max
h∈P[A,B]

∣∣∣∣
∫ θ

θ

Re

{
reiθ h′(reiθ )

h(reiθ )

}
dθ

∣∣∣∣ ≤  sin–
(

(A – B)r
 – ABr

)

≤ π –  cos–
(

(A – B)r
 – ABr

)
. (.)

Also, for g ∈ C , we have

∫ θ

θ

Re

{
(zg ′

(z))′

g ′
(z)

}
dθ > –π .

Using (.) and (.) in (.), we obtain

∫ θ

θ

Re

{
(zf ′(z))′

f ′(z)

}
dθ > –( – β)π + β(θ – θ) – λπ + λ cos–

(
(A – B)r
 – ABr

)

> –
[

(C – D)
k +  – D

+ λ

]
π (r → ).

This completes the required result. �

Remark . Let f ∈ k – UK[A, B, C, D]. Then, for C–D
k+–D <  – λ,

∫ θ

θ

Re

{
(zf ′(z))′

f ′(z)

}
dθ > –π ,

and hence f is univalent in E, see [].

Corollary . ([]) Let f ∈  – UK[, –, , –]. Then, for θ < θ, z ∈ E,

∫ θ

θ

Re

{
(zf ′(z))′

f ′(z)

}
dθ > –π .
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. Arc length problem

Theorem . Let f ∈ k – UK[A, B, C, D] which has the form (.). Then

Lr(f ) ≤ C(λ, C, D)
(


 – r

)(–β)–

(r → ),

where β is defined by (.) and C(λ, A, B) is a constant depending upon λ, A and B.

Proof Let

zf ′(z) = g(z)hλ(z), (.)

where g ∈ k –ST [C, D] and h ∈P[A, B] ⊂P . Since k –ST [C, D] ⊆ S∗(β), see []. We can
write

g(z) = z
(

g(z)
z

)–β

, g ∈ S∗.

Equation (.) gives

zf ′(z) = zβ
(
g(z)

)–β hλ(z).

Now, for z = reiθ ,

Lr(f ) =
∫ π



∣∣zf ′(z)
∣∣dθ =

∫ π



∣∣zβ
(
g(z)

)–β hλ(z)
∣∣dθ .

Using Holder’s inequality, we have

Lr(f ) ≤ π

(


π

∫ π



∣∣(g(z)
)(–β)( 

–λ
)∣∣dθ

) –λ


(


π

∫ π



∣∣h(z)
∣∣ dθ

) λ


. (.)

Since h ∈P[A, B] ⊂P , so


π

∫ π



∣∣h(z)
∣∣ dθ ≤  + {(A – B) – }r

 – r . (.)

Using (.) and the distortion result for a starlike function in (.), we obtain

Lr(f ) ≤ π

(


π

∫ π



r(–β)( 
–λ

)

| – reiθ | (–β)
–λ

dθ

) –λ


(
 + {(A – B) – }r

 – r

) λ


≤ C(λ, A, B)
(


 – r

)(–β)+λ–

(r → ),

where C(λ, A, B) = π
λ
 (A – B)λ and ( – β) + λ > . This completes the proof. �
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Corollary . ([]) Let f ∈  – UK[, –, , –]. Then, for  < r < ,

Lr(f ) ≤O
(
M(r) log


 – r

)
as r → ,

where O-notation denotes that the constant is absolute and M(r) = max|z|=r |f (z)|.

. Growth rate of coefficients

Theorem . Let f ∈ k –UK[A, B, C, D] which has the form (.). Then, for k ≥ , we have

|an| ≤ C(λ, A, B)n(–β)+λ–,

where β is defined by (.).

Proof From Cauchy’s theorem with z = reiθ , one can easily have

nan =


πrn

∫ π


zf ′(z)e–inθ dθ .

This implies that

|nan| ≤ 
πrn

∫ π



∣∣zf ′(z)
∣∣dθ

=


πrn Lr(f ).

Using Theorem . and putting r =  – 
n , we obtain the required result. �

. Convolution properties

Theorem . If f ∈ k – ST [C, D] and ϕ ∈ C , then ϕ ∗ f ∈ k – ST [C, D].

Proof To prove the result, we need to prove

z(ϕ(z) ∗ f (z))′

ϕ(z) ∗ f (z)
∈ k – P[A, B].

Consider

z(ϕ(z) ∗ f (z))′

ϕ(z) ∗ f (z)
=

ϕ(z) ∗ zf ′(z)
f (z) f (z)

ϕ(z) ∗ f (z)

=
ϕ(z) ∗ �(z)f (z)

ϕ(z) ∗ f (z)
,

where zf ′(z)
f (z) = �(z) ∈ k – P[C, D]. Applying Lemma ., we obtain the required result. �

Theorem . Let f ∈ k – UK[A, B, C, D] and ϕ ∈ C . Then ϕ ∗ f ∈ k – UK[A, B, C, D].
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Proof Since f ∈ k – UK[A, B, C, D], there exists g ∈ k – ST [C, D] such that zf ′(z)
g(z) ∈ k –

P[A, B]. It follows from Lemma . that ϕ ∗ g ∈ k – ST [C, D]. Now

z(ϕ(z) ∗ f (z))′

ϕ(z) ∗ g(z)
=

ϕ(z) ∗ zf ′(z)
ϕ(z) ∗ g(z)

=
ϕ(z) ∗ zf ′(z)

g(z) g(z)
ϕ(z) ∗ g(z)

=
ϕ(z) ∗ F(z)g(z)

ϕ(z) ∗ g(z)
,

where F(z) ∈ k –P[A, B]. Applying Lemma ., we have z(ϕ(z)∗f (z))′
ϕ(z)∗g(z) ∈ k –UK[A, B, C, D] for

z ∈ E. �

. Radius of convexity problem

Theorem . Let f ∈ k – UK[A, B, C, D] in E. Then f ∈ C for |z| < r, where

r =


( – β) + λ(A – B) +
√

([( – β) + λ(A – B)] + [β – ])
, (.)

where λ and β are defined by (.) and (.), respectively.

Proof Let

zf ′(z) = g(z)p(z),

where g ∈ k –ST [C, D] and p ∈ k –P[A, B]. Since k –ST [C, D] ⊂ S∗(β), it is known []
that there exists g ∈ S∗ such that

g(z) = z
(

g(z)
z

)–β

.

We can write

zf ′(z) = zβ
(
g(z)

)–β hλ(z), h ∈P[A, B] ⊂P . (.)

The logarithmic differentiation of (.) yields

(zf ′(z))′

f ′(z)
= β + ( – β)

zg ′
(z)

g(z)
+ λ

zh′(z)
h(z)

.

Using the distortion result for the classes S∗ and P[A, B], we obtain

Re
(zf ′(z))′

f ′(z)
≥ β + ( – β)

 – r
 + r

–
λ(A – B)r

 – r

≥  + ( – β)r – [( – β) + λ(A – B)]r
 – r . (.)

The right-hand side of (.) is positive for |z| < r, where r is given by (.). �

We note the following cases:
(i). For A = , B = –, C =  and D = –, we obtain the radius of convexity problem for

the class k – UK.
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(ii). For k = , we have the radius of convexity for the class K[A, B, C, D].
(iii). For A = , B = –, C = , D = – and k = , we have the radius of convexity problem

for the well-known class of close-to-convex functions studied by Kaplan [].
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