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Abstract
In this paper, by using the properties of an auxiliary function, we mainly present the
necessary and sufficient conditions for various ratios constructed by gamma
functions to be respectively completely and logarithmically completely monotonic.
As consequences, these not only unify and improve certain known results including
Qi’s and Ismail’s conclusions, but also can generate some new inequalities.
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1 Introduction
It is well known that the classical Euler gamma function � is defined by

�(x) =
∫ ∞


tx–e–t dt (.)

for x > , and its logarithmic derivative ψ(x) = �′(x)/�(x) is known as the psi or digamma
function, while ψ ′, ψ ′′, . . . are called polygamma functions.

Over the past decades, various bounds concerning certain ratios of gamma functions
have been researched by many mathematicians. As a possible origin, Wendel [] showed
that, for s ∈ (, ) and x > , the following double inequalities hold:

x–s ≤ �(x + )
�(x + s)

≤ (x + s)–s.

Based on a different motivation from Wendel [], Gautschi [] in  independently got
the two double inequalities: for n ∈N and  ≤ s ≤ , one has

e(s–)ψ(n+) <
�(n + s)
�(n + )

< ns–,
(


n + 

)–s

<
�(n + s)
�(n + )

<
(


n

)–s

.
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In , the above inequalities were improved in [] to be as follows: for  < s <  and x > ,

exp
[
( – s)ψ(x +

√
s)

]
<

�(x + )
�(x + s)

< exp

[
( – s)ψ

(
x +

s + 


)]
,

(
x +

s


)–s

<
�(x + )
�(x + s)

<
(

x –



+
√

s +



)–s

.

More inequalities involving the ratios of above two gamma functions can be found in Qi’s
review article [] and the references therein. Indeed, these inequalities are almost derived
by way of following the monotonicity or convexity properties of the ratios of gamma func-
tions. Ismail et al. [, ] further realized that these inequalities are also the consequences
of complete monotonicity of such gamma functions’ ratios.

Now let us recall that a function f is called completely monotonic (for short, CM) on an
interval I if f has the derivative of any order on I and satisfies

(–)k(f (x)
)(k) ≥ 

for all k ≥  on I , see [, ]. An important criterion from the definition is so-called famous
Bernstein’s theorem, which stated that a necessary and sufficient condition for f (x) to be
a completely monotonic for  < x < ∞ is that for nondecreasing α(t),

f (x) =
∫ ∞


e–xt dα(t)

converges for  < x < ∞; for details, see [, p., Theorem b].
Similarly, a positive function f is called logarithmically completely monotonic (for short,

LCM) on an interval I if f has the derivative of each order on I and its logarithm ln f
satisfies (–)k(ln f (x))(k) ≥  for all k ∈N on I , see [–]. For simplicity, in the context we
denote the sets of completely and logarithmically completely monotonic functions on I by
C[I] and L[I], respectively.

Remark . ([]) Let f be a positive function on I . Then it is clear that f ∈ L[I] if and
only if –(ln f )′ ∈ C[I].

As a classical result, Ismail et al. [] in  showed that the function

x �→ xb–a �(x + a)
�(x + b)

for any a > b ≥  is logarithmically completely monotonic on (,∞) if and only if a + b ≥ .
Meanwhile, Bustoz and Ismail [] further presented other complete monotonicity results
involving the ratio of two gamma functions as follows.

Theorem A ([, Theorem ]) The function

x �→ Ha,b,c(x) = (x + c)b–a �(x + b)
�(x + a)

for  ≥ b – a >  is logarithmically completely monotonic on (– min(a, c),∞) if c ≤ (a + b –
)/, and so is /Ha,b,c on (– min(b, c),∞) if c ≥ a.
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Theorem B ([, Theorem ]) The function

x �→ �(x + s)
�(x + )

exp

[
( – s)ψ

(
x +

s + 


)]

for  < s <  is logarithmically completely monotonic on (,∞).

Theorem C ([, Theorem ]) The function

x �→ �(x)�(x + a + b)
�(x + a)�(x + b)

(.)

for any a, b ≥  is logarithmically completely monotonic on (,∞).

More complete monotonicity results concerning the combinations of gamma functions
can be found in [–].

Remark . Function (.) can be regarded to be a generalization of Gurland’s ratio de-
fined by

T(x, y) =
�(x)�(y)

�((x + y)/) , x, y > , (.)

which appeared in Gurland’s paper []. For more information on Gurland’s ratio, see [,
, ] and the references therein.

We would like to mention that Qi et al. obtained many important achievements con-
cerning the complete (logarithmic) monotonicity of the ratios of gamma and polygamma
functions from  on, such as [, –]. Other reference materials can be found in
his review article []. Especially, it is worth mentioning that Qi et al. [, ] applied an
efficient auxiliary function vα,β defined on (,∞) by

vα,β (t) =

⎧⎨
⎩

e–αt–e–βt

–e–t , if t 
= ,

β – α, if t = 

to give an improvement of Bustoz and Ismail’s Theorem A [, Theorem ]. More precisely,
they proved the following theorem.

Theorem D ([, Theorem ], [, Theorem ]) Let a, b and c be real numbers and ρ =
min(a, b, c). Then

(i) Ha,b,c(x) ∈L[(–ρ,∞)] if and only if

(a, b, c) ∈ {
(b – a)( – a – b + c) ≥ 

}

∩ {
(b – a)

(|a – b| – a – b + c
) ≥ 

}

\{a = c +  = b + }\{b = c +  = a + }.
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(ii) Hb,a,c(x) ∈L[(–ρ,∞)] if and only if

(a, b, c) ∈ {
(b – a)( – a – b + c) ≤ 

}

∩ {
(b – a)

(|a – b| – a – b + c
) ≤ 

}

\{a = c +  = b + }\{b = c +  = a + }.

Later, Qi and Guo [, Theorem ] obtained a generalization of Theorem B by establish-
ing the logarithmically complete monotonicity of the following function:

ms,t(x) =


exp[ψ(x + θ (s, t))]

[
�(x + t)
�(x + s)

]/(t–s)

(.)

for x > – min(s, t, θ (s, t)) with s 
= t, and they derived the following.

Theorem E ([, Theorem ]) Let s and t be two real numbers with s 
= t and θ (s, t) be a
constant depending on s and t. Then the following statements are valid:

(i) If θ (s, t) ≤ min(s, t), then ms,t(x) ∈L[(–θ (s, t),∞)].
(ii) /ms,t(x) ∈L[(– min(s, t),∞)] if and only if θ (s, t) ≥ (s + t)/.

Additionally, Qi’s another result involving the logarithmically complete monotonicity
of the function ms,t can be also found in [, Theorem ]. An improvement of Theorem E
and new proofs of Theorems D and E can be found in recent papers [, ].

Inspired by the above mentioned results, we aim to present the necessary and suffi-
cient conditions or sufficient conditions for these ratios Wu,v/Wr,s, Wu,v/

∏n
i= W λi

ri ,si and∏n
i=(Wui ,vi /Wri ,si ) to be logarithmically completely monotonic on (– min(u, v, r, s),∞),

(– min≤i≤n(u, v, ri, si),∞) and (– min≤i≤n(ui, vi, ri, si),∞), respectively, where λi ≥  with∑n
i= λi =  and

Wu,v(x) =

⎧⎨
⎩

( �(x+u)
�(x+v) )/(u–v) if u 
= v,

exp[ψ(x + u)] if u = v
(.)

for x > – min(u, v).
The rest of this paper is organized as follows. In Section , we introduce an auxiliary

function yu,v : R −→R defined for u, v ∈R by

yu,v(t) =

⎧⎨
⎩

e–ut–e–vt

v–u if u 
= v,

te–ut if u = v
(.)

and show its properties. These properties, especially Property ., give a necessary and
sufficient condition for yu,v(t) ≤ yr,s(t) to hold for all t > , which is crucial to the proof
of our main results. In Section , by using Properties . and . of yu,v(t), the necessary
and sufficient conditions for ln(Wr,s/Wu,v) and sufficient conditions for ln(Wu,v/

∏n
i= W λi

ri ,si )
to be completely monotonic are realized respectively, which not only improves certain
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known results including Qi’s and Ismail’s conclusions, but also generates some new re-
sults. In the fourth section, by means of Properties . and . of yu,v(t) and other
two techniques, we further establish the necessary and sufficient conditions for the ra-
tios

∏n
i= �(x + si)λi

�(x + s)
,

n∏
i=

�(x + ui)
�(x + ri)

,
n∏

i=

Wri ,s(x)
Wui ,s(x)

to be logarithmically completely monotonic.

2 An important auxiliary function
It is easy to check that yu,v(t) defined by (.) has the following two simple properties.

Property . We have

yu,v(t) = t
∫ 


exp

(
–utx – vt( – x)

)
dx, (.)

yu,v(t) =

⎧⎨
⎩

e–(u+v)t/ sinh[(u–v)t/]
(u–v)/ if u 
= v,

te–ut if u = v.
(.)

Property . Let u, v, t ∈R. Then yu,v(t) satisfies the following relations:
(i) yu,v(t) > (<)  for t > (< );

(ii) yu,v(t) = yv,u(t);
(iii) e–ρtyu–ρ,v–ρ(t) = yu,v(t) for any ρ ∈R.

Now let us further add other two important properties of yu,v(t) which are useful to our
main proof.

Property . Let t ∈R with t 
= . Then
(i) the function yu,v(t) is strictly completely monotonic in both u and v on R for

t ∈ (,∞);
(ii) the function (u, v) �→ |yu,v(t)| is log-convex on R

 for t ∈R.

Proof (i) Using integral representation (.), we immediately get

(–)n ∂nyu,v

∂un = tn+
∫ 


xn exp

(
–utx – vt( – x)

)
dx >  ∀t ∈ (,∞),

which implies the complete monotonicity of yu,v(t) with respect to u. By the symme-
try of u and v, the function yu,v(t) has the same complete monotonicity in parame-
ter v.

(ii) Let φ(x) = –utx–vt(–x). By integral representation (.), ln |yu,v(t)| can be expressed
as

ln
∣∣yu,v(t)

∣∣ = ln |t| + ln
∫ 


eφ(x) dx.



Yang and Zheng Journal of Inequalities and Applications  (2017) 2017:255 Page 6 of 17

Differentiation yields

∂ ln |yu,v(t)|
∂u

= –t
∫ 

 xeφ(x) dx∫ 
 eφ(x) dx

,

∂ ln |yu,v(t)|
∂u = t

∫ 
 xeφ(x) dx

∫ 
 eφ(x) dx – (

∫ 
 xeφ(x) dx)

(
∫ 

 eφ(x) dx)

=
t



∫ 


∫ 
 (x – y)eφ(x)+φ(y) dx dy

(
∫ 

 eφ(x) dx)
> .

Likewise, we have

∂ ln |yu,v(t)|
∂v =

∂ ln |yu,v(t)|
∂u ,

∂ ln |yu,v(t)|
∂u∂v

= –
∂ ln |yu,v(t)|

∂u .

These indicate that

∂ ln |yu,v(t)|
∂u

∂ ln |yu,v(t)|
∂v –

[
∂ ln |yu,v(t)|

∂u∂v

]

= ,

which yields the log-convexity of |yu,v(t)| in (u, v) on R
 for t ∈R with t 
= . �

Remark . Property . together with part (i) of Property . implies that the function
(u, v) �→ yu,v(t) is convex on R

 for any t > .

The next result, Property ., plays an essential role in proving our main theorems. To
prove it, we need the following lemma.

Lemma . ([, Theorem .]) Let p, q ∈R and Hp,q be defined on (,∞) by

Hp,q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( q
p

sinh(pt)
sinh(qt) )/(p–q) if pq(p – q) 
= ,

( sinh(pt)
pt )/p if p 
= , q = ,

( sinh(qt)
qt )/q if p = , q 
= ,

et coth(pt)–/p if p = q, pq 
= ,

 if p = q = .

(.)

Then the function t �→ t– ln Hp,q(t) is strictly increasing (decreasing) from (,∞) onto
(, (p + q)/(|p| + |q|)) (((p + q)/(|p| + |q|), )), and concave (convex) on (,∞) if p + q > (<)
, respectively.

Property . For u, v, r, s ∈R, let yu,v be defined on (,∞) by (.). Then the comparison
inequality yu,v(t) ≥ yr,s(t) holds for all t >  if and only if

u + v ≤ r + s and min(u, v) ≤ min(r, s). (.)
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Proof Let p = |u – v|/, q = |r – s|/. In the case of (u – v)(r – s) 
= , we use the hyperbolic
function representation (.) to obtain

h(t) =

t

ln
yu,v(t)
yr,s(t)

=
r + s – (u + v)


+


t

ln

( |r – s|
|u – v|

sinh |(u – v)t/|
sinh |(r – s)t/|

)

=
r + s – (u + v)


+


t

ln

(
q
p

sinh(pt)
sinh(qt)

)

=
r + s – (u + v)


+ (p – q)

ln Hp,q(t)
t

,

which is also true for (u – v)(r – s) = .
Since p, q ≥ , by Lemma . we see that t �→ t– ln Hp,q(t) is strictly increasing from

(,∞) onto (, ), which implies that t �→ h(t) is increasing (decreasing) on (,∞) if p ≥
(≤) q. Consequently, h(t) ≥  for all t >  if and only if limt→ h(t) ≥  and limt→∞ h(t) ≥ .
A simple computation yields

lim
t→

h(t) =
r + s – (u + v)


,

lim
t→∞ h(t) =

r + s – (u + v)


+ (p – q)

=
r + s – (u + v)


+

|u – v| – |r – s|


= min(r, s) – min(u, v),

which proves the desired assertion. �

3 Main results
Now we are in a position to state and prove our results.

Theorem . For fixed u, v, r, s ∈ R and ρ = min(u, v, r, s), let the function Wu,v be defined
on (– min(u, v),∞) by (.). Then ln(Wr,s/Wu,v) ∈ C[(–ρ,∞)] if and only if

u + v ≤ r + s and min(u, v) ≤ min(r, s). (.)

Proof To prove the desired result, we first give the following integral representation:

ln
Wr,s(x)
Wu,v(x)

=
∫ ∞



[
yu,v(t) – yr,s(t)

] e–xt

t( – e–t)
dt, (.)

where yu,v(t) is defined by (.). In fact, using the integral representation of ln�(x) [,
p., (..)]

ln�(x) =
∫ ∞



[
(x – )e–t –

e–t – e–xt

 – e–t

]
dt
t

for x > , (.)
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we get that for u – v 
= ,

ln Wu,v(x) =
ln�(x + u) – ln�(x + v)

u – v

=


u – v

∫ ∞



[
(x + u – )e–t –

e–t – e–(x+u)t

 – e–t

]
dt
t

–


u – v

∫ ∞



[
(x + v – )e–t –

e–t – e–(x+v)t

 – e–t

]
dt
t

=
∫ ∞



(
e–t

t
– yu,v(t)

e–xt

t( – e–t)

)
dt,

which is obviously valid for u = v, and then (.) follows.
The integral representation (.) and Property . indicate that

ln
Wr,s(x)
Wu,v(x)

=
∫ ∞



[
yu–ρ,v–ρ(t) – yr–ρ,s–ρ(t)

] e–(x+ρ)t

t( – e–t)
dt. (.)

Using Bernstein’s theorem, it yields that ln(Wr,s/Wu,v) ∈ C[(–ρ,∞)] if and only if
yu–ρ,v–ρ(t) ≥ yr–ρ,s–ρ(t) for all t > , which, from Property ., is equivalent to

u – ρ + v – ρ ≤ r – ρ + s – ρ and min(u – ρ, v – ρ) ≤ min(r – ρ, s – ρ).

These imply that the inequalities (.) hold, which completes the proof. �

While s = r + , the function Wu,v/Wr,r+ is reduced to

Wu,v(x)
Wr,r+(x)

=

⎧⎨
⎩


x+r [ �(x+u)

�(x+v) ]/(u–v) if u 
= v,


x+r eψ(x+u) if u = v.

By Theorem . we have the following corollary.

Corollary . Let u, v, r ∈R and ρ = min(u, v, r). Then we have
(i) ln(Wu,v/Wr,r+) ∈ C[(–ρ,∞)] if and only if r ≤ min[(u + v – )/, min(u, v)];

(ii) ln(Wr,r+/Wu,v) ∈ C[(–ρ,∞)] if and only if r ≥ max[(u + v – )/, min(u, v)].

Remark . Yang and Chu [] showed that ln(Wu,v/Wr,r+) ∈ C[(–ρ,∞)] if and only if
r ≤ u + v – max(|u – v|, ), while ln(Wr,r+/Wu,v) ∈ C[(–ρ,∞)] if and only if r ≥ u + v –
min(|u – v|, ). It is easy to check that

{
r ≤ min

[
(u + v – )/, min(u, v)

]}
=

{
r ≤ u + v – max

(|u – v|, 
)}

,
{

r ≥ max
[
(u + v – )/, min(u, v)

]}
=

{
r ≥ u + v – min

(|u – v|, 
)}

.

Therefore, these results are equivalent to Qi’s Theorem D.

For s = r, the function Wu,v/Wr,r can be expressed as

Wu,v(x)
Wr,r(x)

=

⎧⎨
⎩


exp[ψ(x+r)] [ �(x+u)

�(x+v) ]/(u–v) if u 
= v,

eψ(x+u)–ψ(x+r) if u = v.



Yang and Zheng Journal of Inequalities and Applications  (2017) 2017:255 Page 9 of 17

As a direct consequence of Theorem ., we obtain the following corollary.

Corollary . Let u, v, r ∈ R and ρ = min(u, v, r). Then ln(Wu,v/Wr,r) ∈ C[(–ρ,∞)] if and
only if r ≤ min(u, v), while ln(Wr,r/Wu,v) ∈ C[(–ρ,∞)] if and only if r ≥ (u + v)/.

Remark . The above corollary slightly improves Qi and Guo’s Theorem E. Another
proof of this corollary can be found in [].

Putting (u, v) = (a + b, a) and (r, s) = (b + c, c) yields

Wa+b,a(x)
Wb+c,c(x)

=
(

�(x + a + b)�(x + c)
�(x + a)�(x + b + c)

)/b

.

An application of Theorem . gives a generalization of Bustoz and Ismail’s Theorem C
(see [, Lemma ]).

Corollary . Let a, c ∈R and b ≥ . Then the function

x �→ ln
�(x + a + b)�(x + c)
�(x + a)�(x + b + c)

∈ C
[(

– min(a, c),∞)]

if and only if a ≥ c. In particular, if a ≥ c = , then the function

x �→ ln
�(x)�(x + a + b)
�(x + a)�(x + b)

∈ C
[
(,∞)

]
.

On the basis of Property ., we can deduce the following theorem.

Theorem . Let r, s, ri, si ∈ R, λi ≥  (i = , , . . . , n) with
∑n

i= λi = , and let the function
Wu,v be defined on (– min(u, v),∞) by (.). Then

(i) the function ln(Wr̄,s̄/
∏n

i= W λi
ri ,si ) ∈ C[(–ρ,∞)], where ρ = min≤i≤n(ri, si) and

(r̄, s̄) =

( n∑
i=

λiri,
n∑

i=

λisi

)
;

(ii) the function ln(Wr,s/
∏n

i= W λi
r,si ) ∈ C[(–ρ,∞)] if and only if s ≥ s̄ =

∑n
i= λisi, and so

is – ln(Wr,s/
∏n

i= W λi
r,si ) ∈ C[(–ρ,∞)] if s ≤ min≤i≤n(si), where ρ = min≤i≤n(r, s, si).

Proof By the integral representation (.) we have

ln

(
Wr,s(x)∏n

i= W λi
ri ,si (x)

)
=

n∑
i=

(
λi ln

Wr,s(x)
Wri ,si (x)

)

=
n∑

i=

λi

∫ ∞



[
yri ,si (t) – yr,s(t)

] e–xt

t( – e–t)
dt

=
∫ ∞



[ n∑
i=

λiyri–ρ,si–ρ(t) – yr–ρ,s–ρ(t)

]
e–(x+ρ)t

t( – e–t)
dt.
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(i) While (r, s) = (r̄, s̄), ρ = ρ, by Remark . it is easy to see that
∑n

i= λiyri–ρ,si–ρ (t) –
yr̄–ρ,s̄–ρ (t) ≥ , which proves the desired assertion due to Bernstein’s theorem.

(ii) While (ri, si) = (r, si), ρ = ρ, we have

ln

(
Wr,s(x)∏n

i= W λi
r,si (x)

)
=

∫ ∞



[ n∑
i=

λiyr–ρ,si–ρ (t) – yr–ρ,s–ρ (t)

]
e–(x+ρ)t

t( – e–t)
dt

:=
∫ ∞


I(t)

e–(x+ρ)t

t( – e–t)
dt.

By Bernstein’s theorem, ln(Wr,s/
∏n

i= W λi
r,si ) ∈ C[(–ρ,∞)] if and only if I(t) ≥  for all t > .

The sufficiency obviously follows from the decreasing and convexity of s �→ yr,s(t) for t > .
The necessity can be deduced by the limit relation

lim
t→+

I(t)
t = lim

t→+

∑n
i= λiyr–ρ,si–ρ (t) – yr–ρ,s–ρ (t)

t =



(
s –

n∑
i=

λisi

)
≥ .

If s ≤ min≤i≤n(si), then by the decreasing property of s �→ yr,s(t) we get yr–ρ,si–ρ (t) ≤
yr–ρ,s–ρ (t) for  ≤ i ≤ n, and then

I(t) =
n∑

i=

λiyr–ρ,si–ρ (t) – yr–ρ,s–ρ (t) ≤
n∑

i=

λiyr–ρ,s–ρ (t) – yr–ρ,s–ρ (t) = ,

which implies that – ln(Wr,s/
∏n

i= W λi
r,si ) ∈ C[(–ρ,∞)] if s ≤ min≤i≤n(si). This completes

the proof. �

Note that

ln
Wu,v(x)∏n

i= W λi
ri ,si (x)

= ln
Wu,v(x)
Wr̄,s̄(x)

+ ln
Wr̄,s̄(x)∏n

i= W λi
ri ,si (x)

.

By Theorems . and ., we obtain the following corollary.

Corollary . For fixed u, v, ri, si ∈ R, i = , , . . . , n, and ρ = min≤i≤n(u, v, ri, si), let the
function Wu,v be defined on (– min(u, v),∞) by (.). Then, for λi >  with

∑n
i= λi = , the

function ln(Wu,v/�n
i=W λi

ri ,si ) ∈ C[(–ρ,∞)] if

u + v ≥
n∑

i=

λiri +
n∑

i=

λisi and min(u, v) ≥ min

( n∑
i=

λiri,
n∑

i=

λisi

)
.

4 Further results
In [], Grinshpan and Ismail considered the logarithmically complete monotonicity of a
more general combination of gamma functions. More precisely, they proved the following
theorem.

Theorem F ([, Lemma .]) Let αk and βk (k = , . . . , n) be real numbers such that∑n
k= αk =  and βk ≥  for all k. Then

u(x) =
n∏

k=

�(x + βk)αk
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is logarithmically completely monotonic if and only if

v(t) =
n∑

k=

αktβk ≥ 

for all t ∈ (, ].

In fact, our main results presented in Section  are essentially regarded as some special
cases of the above theorem. Generally speaking, it is very hard to determine those param-
eters αk , βk . Here we would like to adopt other techniques to determine those parameters
such that certain combinations of gamma functions are logarithmically completely mono-
tonic in two special cases.

The first case is that αn = max(αk) >  and αk ≤  for  ≤ k ≤ n – . In this case, we have
(–αk/αn) ≥  with

∑n–
k=(–αk/αn) = . To this end, we need the following basic fact.

Lemma . ([, p. and p.]) Let a = (a, . . . , an) and λ = (λ, . . . ,λn) be positive n-
tuples with

∑n
i= λi = . Then the function p �→ Mp(a,λ) defined by

Mp(a,λ) =

( n∑
i=

λia
p
i

)/p

if p 
=  and M(a,λ) =
n∏

i=

aλi
i (.)

is increasing on R with M–∞(a,λ) = min≤i≤n(ai) and M∞(a,λ) = max≤i≤n(ai).

Theorem . Let s, si ∈R, λi >  for i = , , . . . , n with
∑n

i= λi = . Then

g(x) =
∏n

i= �(x + si)λi

�(x + s)
∈L

[(
– min

≤i≤n
(s, si),∞

)]
(.)

if and only if s ≥ s̄ =
∑n

i= λisi; and so is /g(x) on (– min≤i≤n(s, si),∞) if and only if s ≤
min≤i≤n(si).

Proof It suffices to prove that –[ln g(x)]′, [ln g(x)]′ ∈ C[(– min≤i≤n(s, si),∞)] if and only
if s ≥ s̄ =

∑n
i= λisi and s ≤ min≤i≤n(si), respectively.

By the integral representation of ψ(x) [, p., (..)]

ψ(x) =
∫ ∞



(
e–t

t
–

e–xt

 – e–t

)
dt (x > ), (.)

we have

–
[
ln g(x)

]′ = ψ(x + s) –
n∑

i=

λiψ(x + si) =
∫ ∞



( n∑
i=

λie–sit – e–st

)
e–xt

 – e–t dt

=
∫ ∞



( n∑
i=

λie–(si–ρ)t – e–(s–ρ)t

)
e–(x+ρ)t

 – e–t dt

=
∫ ∞



(
Mt(a,λ)t – e–(s–ρ)t)e–(x+ρ)t

 – e–t dt,
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where Mt(a,λ) is defined by (.) with ai = e–(si–ρ) and ρ = min≤i≤n(s, si). By Bernstein’s
theorem, we see that –[ln g(x)]′ is completely monotonic on (–ρ,∞) if and only if
Mt(a,λ)t – e–(s–ρ)t ≥  for all t > , which is equivalent to

s – ρ ≥ – ln Mt(a,λ)

for all t > . Using Lemma ., the necessary and sufficient condition for –[ln g(x)]′ to be
completely monotonic on (–ρ,∞) is that

s – ρ ≥ sup
t∈(,∞)

(
– ln Mt(a,λ)

)
= – inf

t∈(,∞)

(
ln Mt(a,λ)

)

= – ln M(a,λ) =
n∑

i=

λisi – ρ,

which implies that s ≥ ∑n
i= λisi.

Similarly, the necessary and sufficient condition for [ln g(x)]′ to be completely mono-
tonic on (–ρ,∞) is that

s – ρ ≤ inf
t∈(,∞)

(
– ln Mt(a,λ)

)
= – sup

t∈(,∞)

(
ln Mt(a,λ)

)

= – max
≤i≤n

(ln ai) = min
≤i≤n

(si) – ρ,

which yields that s ≤ min≤i≤n(si), and the proof is complete. �

Note that

lim
x→∞

�(x + a)
�(x + b)

xb–a = , (.)

which yields that as x → ∞,

g(x) =
n∏

i=

(
�(x + si)
�(x + s)

)λi

= xs̄–s
n∏

i=

(
�(x + si)
�(x + s)

xs–si

)λi

→ exp
[
sgn(s̄ – s)∞]

.

In order to ensure that limx→∞[ln g(x)] ≥ , it is necessary to s̄ – s ≥ . This relation in
combination with Theorem . gives the following theorem.

Theorem . Let s, si ∈R, λi > , i = , , . . . , n, with
∑n

i= λi = . Then the function

ln g(x) = ln

(∏n
i= �(x + si)λi

�(x + s)

)
∈ C

[(
– min

≤i≤n
(s, si),∞

)]

if and only if s = s̄ =
∑n

i= λisi.

Remark . We claim that the function x �→ – ln g(x) is not completely monotonic on
(– min≤i≤n(s, si),∞) unless s = si for  ≤ i ≤ n. If not, then limx→∞[– ln g(x)] ≥ , which
leads to s ≥ s̄ =

∑n
i= λisi. This together with s ≤ min≤i≤n(si) yields s = si for  ≤ i ≤ n, and

so g(x) ≡ .
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Remark . Obviously, g(x) is another generalization of Gurland’s ratio defined by (.).

The second case is that n is an even number and αk– = , αk = – for k = , , . . . , n/.
Theorem C [, Theorem ] is clearly a direct result in this case, and as a generalization of
Alzer’s work [, Theorem ] which was proved in  as follows.

Theorem G ([, Theorem ]) Let ai and bi be the real numbers such that  ≤ a ≤ a ≤
· · · ≤ an,  ≤ b ≤ b ≤ · · · ≤ bn, and

∑k
i= ai ≤ ∑k

i= bi for k = , , . . . , n. Then the function∏n
i=[�(x + ai)/�(x + bi)] is logarithmically completely monotonic on (,∞).

To prove Theorem G, Alzer made use of the following lemma.

Lemma . ([, p.], [, Lemma ]) Let ai and bi (i = , , . . . , n) be real numbers such
that a ≤ a ≤ · · · ≤ an, b ≤ b ≤ · · · ≤ bn and

∑k
i= ai ≤ ∑k

i= bi for k = , , . . . , n. If the
function f is decreasing and convex on R, then

n∑
i=

f (ai) ≥
n∑

i=

f (bi).

Here we slightly improve Alzer’s Theorem G by way of Lemmas . and ..

Theorem . Let ui, ri ∈ R, i = , , . . . , n, such that u ≤ u ≤ · · · ≤ un, r ≤ r ≤ · · · ≤ rn,∑k
i= ui ≤ ∑k

i= ri for k = , , . . . , n – . Then the function

g(x) =
n∏

i=

�(x + ui)
�(x + ri)

∈L
[(

– min(u, r),∞)]

if and only if u ≤ r and
∑n

i= ui ≤ ∑n
i= ri.

Proof It suffices to prove that –[ln g(x)]′ ∈ C[(– min(u, r),∞)] if and only if u ≤ r and∑n
i= ui ≤ ∑n

i= ri. By the integral representation (.) we have

–
[
ln g(x)

]′ = –
n∑

i=

ψ(x + ui) +
n∑

i=

ψ(x + ri)

=
n∑

i=

∫ ∞



(
e–(x+ui)t

 – e–t –
e–(x+ri)t

 – e–t

)
dt

=
∫ ∞



( n∑
i=

e–(ui–ρ)t –
n∑

i=

e–(ri–ρ)t

)
e–(x+ρ)t

 – e–t dt

= n
∫ ∞



(
Mt(a,λ)t – Mt(b,λ)t)e–(x+ρ)t

 – e–t dt,

where Mt(a,λ) is defined by (.) with ai = e–(ui–ρ), bi = e–(ri–ρ), λi = /n and ρ =
min≤i≤n(ui, ri) = min(u, r). For the necessity, note that –[ln g(x)]′ is completely mono-
tonic on (–ρ,∞), by Bernstein’s theorem the inequality

Mt(a,λ)t – Mt(b,λ)t ≥ ,
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or equivalently,

Mt(a,λ) – Mt(b,λ) ≥ 

holds for all t > . Therefore, by Lemma . we have

lim
t→

(
Mt(a,λ) – Mt(b,λ)

)
=

( n∏
i=

ai

)/n

–

( n∏
i=

bi

)/n

≥ ,

lim
t→∞

(
Mt(a,λ) – Mt(b,λ)

)
= max

≤i≤n
(ai) – max

≤i≤n
(bi) ≥ ,

which are equivalent to

n∑
i=

ui ≤
n∑

i=

ri and u ≤ r.

Since u �→ e–ut is strictly decreasing and convex on R for t > , using Lemma . and
Bernstein’s theorem, the sufficiency follows. This completes the proof. �

If ui ≤ ri (i = , , . . . , n), then
∑k

i= ui ≤ ∑k
i= ri for k = , , . . . , n. By Theorem . we get

the following corollary.

Corollary . Let ui, ri ∈R such that ui ≤ ri for i = , , . . . , n. Then the function

g(x) =
n∏

i=

�(x + ui)
�(x + ri)

∈L
[(

– min
≤i≤n

(ui),∞
)]

.

Analogously, by virtue of (.) we get

ln g(x) =
n∑

i=

ln

(
�(x + ui)
�(x + ri)

)

=
n∑

i=

ln

(
�(x + ui)
�(x + ri)

xri–ui

)
+

( n∑
i=

ui –
n∑

i=

ri

)
ln x

→ sgn

( n∑
i=

ui –
n∑

i=

ri

)
as x → ∞.

Hence, if limx→∞ ln g(x) ≥ , then there must be
∑n

i= ui –
∑n

i= ri ≥ . This together with
Theorem . yields the following theorem.

Theorem . Let ui, ri ∈ R, i = , , . . . , n, such that u ≤ u ≤ · · · ≤ un, r ≤ r ≤ · · · ≤ rn,∑k
i= ui ≤ ∑k

i= ri for k = , , . . . , n – . Then the function

ln g(x) = ln

( n∏
i=

�(x + ui)
�(x + ri)

)
∈ C

[(
– min(u, r),∞)]

if and only if u ≤ r and
∑n

i= ui =
∑n

i= ri.
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Taking n =  in the above two theorems, we conclude the following results.

Corollary . Let u, v, r, s ∈R.
(i) The function

x �→ �(x + u)�(x + v)
�(x + r)�(x + s)

∈L
[(

– min(u, v, r, s),∞)]

if and only if

min(u, v) ≤ min(r, s) and u + v ≤ r + s.

(ii) The function

x �→ ln
�(x + u)�(x + v)
�(x + r)�(x + s)

∈ C
[(

– min(u, v, r, s),∞)]

if and only if

min(u, v) ≤ min(r, s) and u + v = r + s.

Remark . Taking (u, v) = (a + b, c), (r, s) = (a, b + c) in the above corollary, we obtain
Corollary ..

Finally, we give the following theorem by employing the decreasing and convex proper-
ties of v �→ yu,v(t) on R for t >  and Lemma ..

Theorem . Let the function Wu,v be defined on (– min(u, v),∞) by (.), and let ui, ri,
s ∈ R (i = , , . . . , n) such that u ≤ u ≤ · · · ≤ un, r ≤ r ≤ · · · ≤ rn and

∑k
i= ui ≤ ∑k

i= ri

for k = , , . . . , n – . Then the function

g(x) = ln

( n∏
i=

Wri ,s(x)
Wui ,s(x)

)
∈ C

[
(–ρ,∞)

]

if and only if
∑n

i= ui ≤ ∑n
i= ri, where ρ = min(u, r, s).

Proof By the integral representation (.) we have

g(x) =
n∑

i=

[
ln Wri ,s(x) – ln Wui ,s(x)

]

=
n∑

i=

∫ ∞



[
yui–ρ,s–ρ(t) – yri–ρ,s–ρ(t)

] e–(x+ρ)t

t( – e–t)
dt

:=
∫ ∞


J(t)

e–(x+ρ)t

t( – e–t)
dt,

where

J(t) =
n∑

i=

yui–ρ,s–ρ(t) –
n∑

i=

yri–ρ,s–ρ(t).
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By Bernstein’s theorem, if g is completely monotonic on (–ρ,∞), then J(t) ≥  for all
t > . It follows that

lim
t→

J(t)
t =

n∑
i=

(
lim
t→

yui–ρ,s–ρ(t) – yri–ρ,s–ρ(t)
t

)
=




n∑
i=

(ui – ri) ≥ ,

which implies the necessity.
Based on Property ., we see that r �→ yr,s(t) is strictly decreasing and convex on R

for t > . Applying Lemma . with J(t) ≥  for all t > , it yields the sufficiency due to
Bernstein’s theorem. This completes the proof. �

5 Conclusions
In this paper, we investigate the (logarithmically) complete monotonicity of various ratios
structured by gamma functions including

Wr,s(x)
Wu,v(x)

,
∏n

i= �(x + si)λi

�(x + s)
,

n∏
i=

�(x + ui)
�(x + ri)

,
n∏

i=

Wri ,s(x)
Wui ,s(x)

,

where Wu,v(x) is defined by (.).
By using Properties . and . of yu,v(t) defined by (.), we present in Theorem .

a nice result, which states that ln(Wr,s/Wu,v) ∈ C[(–ρ,∞)] if and only if u + v ≤ r + s and
min(u, v) ≤ min(r, s). This unifies and improves some known results presented by Qi and
Ismail, that are Theorems A-E.

Applying the increasing property of Mp(a,λ) defined by (.) in its order p, we show in
Theorem . that

ln g(x) = ln

(∏n
i= �(x + si)λi

�(x + s)

)
∈ C

[(
– min

≤i≤n
(s, si),∞

)]
⇐⇒ s = s̄ =

n∑
i=

λisi.

Clearly, g(x) for s = s̄ is a generalization of Gurland’s ratio defined by (.).
It is interesting that both ln(Wr,s/

∏n
i= W λi

r,si ) ∈ C[(– min≤i≤n(r, s, si),∞)] and g(x) ∈
L[(– min≤i≤n(s, si),∞)] if and only if s ≥ s̄ =

∑n
i= λisi, which are stated in Theorems .

and ..
Theorems . and . follow from Lemmas . and ., which improve Alzer’s result,

that is, Theorem G. Comparing Theorem . and Corollary ., we find that both

ln

(
Wr,s

Wu,v

)
∈ C

[
(–ρ,∞)

]
and x �→ �(x + u)�(x + v)

�(x + r)�(x + s)
∈L

[
(–ρ,∞)

]

if and only if u + v ≤ r + s and min(u, v) ≤ min(r, s), where ρ = min(u, v, r, s).
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