
Gou and Li Journal of Inequalities and Applications  (2017) 2017:252 
DOI 10.1186/s13660-017-1526-5

R E S E A R C H Open Access

Existence of mild solutions for fractional
nonautonomous evolution equations of
Sobolev type with delay
Haide Gou and Baolin Li*

*Correspondence:
ghdzxh@163.com
College of Mathematics and
Statistics, Northwest Normal
University, Lanzhou, 730070,
P.R. China

Abstract
In this paper, we deal with a class of nonlinear fractional nonautonomous evolution
equations with delay by using Hilfer fractional derivative, which generalizes the
famous Riemann-Liouville fractional derivative. The definition of mild solutions for the
studied problem was given based on an operator family generated by the operator
pair (A,B) and probability density function. Combining the techniques of fractional
calculus, measure of noncompactness, and fixed point theorem with respect to
k-set-contractive, we obtain a new existence result of mild solutions. The results
obtained improve and extend some related conclusions on this topic. At last, we
present an application that illustrates the abstract results.
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1 Introduction
Fractional differential equations have been successfully applied to various fields, for exam-
ple, physics, engineering, chemistry, aerodynamics, electrodynamics of complex medium,
and polymer rheology, and they have been emerging as an important area of investiga-
tion in the last few decades; see [–]. In [–], the authors discussed the existence of
solutions for various nonlinear differential equations or partial differential equations by
measures of noncompactness and fixed point theorems, whereas in [–], the authors
investigated the existence of solutions for the evolution equations by the monotone itera-
tive method.

On the other hand, Hilfer [] proposed a generalized Riemann-Liouville fractional
derivative (for short, the Hilfer fractional derivative), which includes the Riemann-
Liouville and Caputo fractional derivatives. Furati et al. [] considered an initial value
problem for a class of nonlinear fractional differential equations involving the Hilfer frac-
tional derivative. Very recently, Gu and Trujillo [] investigated a class of evolution equa-
tions involving the Hilfer fractional derivatives by using Mittag-Leffler functions. To the
best of our knowledge, there are no results about nonlinear fractional nonautonomous
evolution equations of Sobolev type with delay.
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Motivated by the above discussion, in this paper, we use the fixed point theorems com-
bined with the theory of propagation family to discuss the existence of mild solutions for
nonlinear fractional nonautonomous evolution equations of Sobolev type with delay of
the form

⎧
⎨

⎩

Dν,μ
+ Bu(t) = Au(t) + Bf (t, u(τ(t)), . . . , u(τm(t))), t ∈ J ,

I(–ν)(–μ)
+ Bu() = Bu,

(.)

where Dν,μ
+ is the Hilfer fractional derivative, which will be given in next section,  ≤ ν ≤

,  < μ < , the state u(·) takes values in a Banach space E, J = [, b] (b > ), J ′ = (, b],
A and B are closed (unbounded) linear operators with domains contained in E, m is a
positive integer number, τk : J → J are continuous functions such that  ≤ τk(t) ≤ t for
k = , , . . . , m, f : J × Em → E is a continuous function, and u ∈ D(B).

Furthermore, we study problem (.) without assuming that B has bounded (or com-
pact) inverse and without any assumption on the relation between D(A) and D(B). Our
purpose is to introduce the theory of propagation family {W (t)}t≥ (an operator family
generated by the operator pair (A, B); see Definition .) from Jin Liang and Ti-Jun Xiao
[] and probability density function and then to give a proper definition of mild solutions
for nonlinear fractional nonautonomous evolution equations (.), which plays a key role
in our discussion. The existence of a mild solution for problem (.) is obtained under cer-
tain assumptions on the nonlinear term f by using the Hilfer fractional derivative, measure
of noncompactness, and fixed point theorem. At last, as an application, we also obtain the
existence of mild solutions for the nonlinear time fractional reaction-diffusion equation

⎧
⎪⎪⎨

⎪⎪⎩

CDν,μ
t u(x, t) – a(t)�u(x, t) = f (t, u(x, τ(t)), . . . , u(x, τm(t))), t ∈ J ,

u(x, t) = , x ∈ ∂�, t ∈ J ,

u(x, ) = ϕ(x), x ∈ �,

(.)

introduced by Ouyang [] and Zhu, Liu, and Wu [], where � is the Laplace operator,
� ∈ Rm is a bounded domain with a sufficiently smooth boundary ∂�, f : J × Rm → R is a
nonlinear function, and ϕ ∈ L(�).

The rest of this paper is organized as follows: In Section , we recall some basic known
results and introduce some notations. In Section , we discuss the existence theorems of
mild solutions for problem (.). At last, two examples are presented to illustrate the main
results.

2 Preliminaries
In this section, we briefly recall some basic known results. Throughout this work, we set
J = [, b], where b >  is a constant. Let E be a Banach space with the norm ‖ · ‖, and let
the pair (A, B) generate a propagation family {W (t)}t≥ (see Definition .). We denote by
B(E) the Banach space of all bounded linear operators from E to E and denote by C(J , E)
the Banach space of all continuous E-valued functions on the interval J with norm ‖u‖ =
maxt∈J ‖u(t)‖. Let

Cν,μ(J , E) =
{

u ∈ C
(
J ′, E

)
: lim

t→+
t(–ν)(–μ)u(t) exists and is finite

}
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with norm ‖ · ‖ν,μ defined by

‖u‖ν,μ = sup
≤t≤b

∣
∣t(–ν)(–μ)u(t)

∣
∣.

Evidently, Cν,μ(J , E) is a Banach space.
For completeness, we recall the following definitions from fractional calculus.

Definition . The Riemann-Liouville fractional integral of order α of a function f :
[,∞) → R is defined as

Iα
+f (t) =


	(α)

∫ t


(t – s)α–f (s) ds, t > ,α > ,

provided that the right-hand side is pointwise defined on (,∞).

Definition . The Riemann-Liouville derivative of order α with the lower limit zero for
a function f : [,∞) → R can be written as

Dα
+ f (t) =


	(n – α)

dn

dtn

∫ t



f (s)
(t – s)α+–n ds, t > , n –  < α < n.

Definition . The Caputo fractional derivative of order α for a function f : [,∞) → R
can be written as

cDα
+ f (t) = Dα

+

[

f (t) –
n–∑

k=

tk

k!
f (k)()

]

, t > , n –  < α < n,

where n = [α] + , and [α] denotes the integer part of α.

If u is an abstract function with values in E, then the integrals appearing in Defini-
tions . and . are taken in Bochner’s sense.

Definition . (Hilfer fractional derivative; see []) The generalized Riemann-Liouville
fractional derivative of order  ≤ ν ≤  and  < μ <  with lower limit a is defined
as

Dν,μ
a+ f (t) = Iν(–μ)

a+
d
dt

I(–ν)(–μ)
a+ f (t)

for functions such that the expression on the right-hand side exists.
Recently (Hilfer et al. []), this definition for n –  < μ ≤ n, n ∈ N ,  ≤ ν ≤ , was rewrit-

ten in a more general form:

Dν,μ
a+ f (t) = Iν(n–μ)

a+
dn

dtn I(–ν)(n–μ)
a+ f (t)

= Iν(n–μ)
a+ Dμ+νn–μν

a+ f (t),

where Dμ+νn–μν
a+ is the Riemann-Liouville fractional derivative, and Iν(n–μ)

a+ is the Riemann-
Liouville integral.
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Remark .
(i) When ν = ,  < μ < , and a = , the Hilfer fractional derivative corresponds to the

classical Riemann-Liouville fractional derivative:

D,μ
+ f (t) =

d
dt

I–μ
+ f (t) = Dμ

+f (t).

(ii) When ν = ,  < μ < , and a = , the Hilfer fractional derivative corresponds to the
classical Caputo fractional derivative:

D,μ
+ f (t) = I–μ

+
d
dt

f (t) = cDμ
+f (t).

Now, we recall the basic definitions and properties of the Kuratowski measure of non-
compactness.

Definition . ([]) Let E be a Banach space, and let �E be the bounded subsets of E.
The Kuratowski measure of noncompactness is the map α : �E → [,∞) defined by (here
B ∈ �E)

α(B) = inf

{

ε >  : B =
n⋃

i=

Bi and diam(Bi) ≤ ε for i = , . . . , n

}

,

where diam Bi = sup{|x – y| : x, y ∈ Bi}.

Lemma . ([]) Let S and T be bounded sets of E, and let a be a real number. Then the
noncompactness measure has the following properties:

() α(S) =  if and only if S is a relatively compact set.
() S ⊂ T implies that α(S) ≤ α(T).
() α(S) = α(S).
() α(S ∪ T) = max{α(S),α(T)}.
() α(aS) = |a|α(S).
() α(S + T) ≤ α(S) + α(T).
() α(coS) = α(S), where coS is the convex closure of S.
() |α(S) – α(T)| ≤ dh(S, T), where dh(S, T) denotes the Hausdorff distance between the

sets S and T , that is,

dh(S, T) = max
{

sup
x∈S

d(x, T), sup
x∈T

d(x, S)
}

,

where d(·, ·) denotes the distance from an element of E to a set of E.

Lemma . ([]) Let E be a Banach space, and let D ⊂ E be bounded. Then there exists
a countable set D ⊂ D such that α(D) ≤ α(D).

Lemma . ([]) Let E be a Banach space, and let � ⊂ C(J , E) be equicontinuous and
bounded. Then α(�(t)) is continuous on J , and α(�) = maxt∈J α(�(t)).
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Lemma . ([]) Let � = {un}∞n= ⊂ C(J , E) be a bounded and countable set. Suppose that
there exists a function m ∈ L(J , R+) such that, for every n ∈ N ,

∥
∥un(t)

∥
∥ ≤ m(t), a.e. t ∈ J .

Then α(�(t)) is the Lebesgue integral on J , and

α

({∫

J
un(t) dt : n ∈N

})

≤ 
∫

J
α
(
�(t)

)
dt.

Definition . ([]) Let E be a Banach space, and let S be a nonempty subset of E. A
continuous mapping Q : S → E is said to be k-set contractive if there exists a constant
k ∈ [, ) such that, for every bounded set D ⊂ S,

α
(
Q(D)

) ≤ kα(D).

Lemma . ([]) Let E be a Banach space. Assume that D ⊂ E is a bounded closed convex
set on E and that the operator Q : D → D is k-set-contractive. Then Q has at least one fixed
point in D.

We recall the abstract degenerate Cauchy problem []:

⎧
⎨

⎩

d
dt Bu(t) = Au(t), t ∈ J ,

Bu() = Bu.
(.)

Definition . (See [], Definition .) A strongly continuous operator family {W (t)}t≥

of D(B) to a Banach space E such that {W (t)}t≥ is exponentially bounded, which means
that, for any u ∈ D(B), there exist a >  and M >  such that

∥
∥W (t)u

∥
∥ ≤ Meat‖u‖, t ≥ ,

is called an exponentially bounded propagation family for (.) if for λ > a,

(λB – A)–Bu =
∫ ∞


e–λtW (t)u dt, u ∈ D(B). (.)

In this case, we also say that (.) has an exponentially bounded propagation family
{W (t)}t≥.

Moreover, if (.) holds, we also say that the pair (A, B) generates an exponentially
bounded propagation family {W (t)}t≥.

Lemma . ([]) Problem (.) is equivalent to the integral equation

Bu(t) =
Bu

	(ν( – μ) + μ)
t(ν–)(–μ)

+


	(μ)

∫ t


(t – s)μ–[Au + Bf

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))]
ds, t ∈ J . (.)
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Lemma . If integral (.) holds, then we have

u(t) = Sν,μ(t)u +
∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds, (.)

where

Sν,μ(t) = Iν(–μ)
+ Kμ(t), Kμ(t) = μ

∫ ∞


σ tμ–ξμ(σ )W

(
tμσ

)
u dσ .

Proof Let λ > . Applying the Laplace transform

û(λ) =
∫ ∞


e–λtu(t) dt,

v(λ) =
∫ ∞


e–λt f

(
t, u

(
τ(t)

)
, . . . , u

(
τm(t)

))
dt

to (.), we have

Bû(λ) = λ(–ν)(–μ)–Bu +

λμ

Aû(λ) +

λμ

Bv(λ).

Then

(
λμB – A

)
û(λ) = λν(μ–)Bu + Bv(λ),

and thus

û(λ) = λν(μ–)(λμB – A
)–Bu +

(
λμB – A

)–Bv(λ)

= λν(μ–)
∫ ∞


e–(λμ)sW (s)u ds +

∫ ∞


e–(λμ)sW (s)v(λ) ds, (.)

provided that the integral in (.) exists, where I is the identity operator on E.
We consider the following one-sided stable probability density in []:

�μ(σ ) =

π

∞∑

n=

(–)n–σ –μn– 	(nμ + )
n!

sin(nπμ), σ ∈ (,∞),

whose Laplace transform is given by

∫ ∞


e–λσ�μ(σ ) dσ = e–λμ

, μ ∈ (, ). (.)

Then, by s = tμ and (.) we have

∫ ∞


e–λμsW (s)u ds

=
∫ ∞


μtμ–e–(λt)μW

(
tμ

)
u dt

=
∫ ∞



∫ ∞


e–(λtσ )μtμ–�μ(σ )W

(
tμ

)
u dσ dt
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= μ

∫ ∞



∫ ∞


e–λθ θμ–

σμ
�μ(σ )W

(
θμ

σμ

)

u dθ dσ

=
∫ ∞


e–λτ

[

μ

∫ ∞



τμ–

σμ
�μ(σ )W

(
τμ

σμ

)

u dσ

]

dτ

=
∫ ∞


e–λt

[

μ

∫ ∞



tμ–

σμ
�μ(σ )W

(
tμ

σμ

)

u dσ

]

dt. (.)

∫ ∞


e–λμsW (s)v(λ) ds

=
∫ ∞


μtμ–e–(λt)μW

(
tμ

)
(∫ ∞


e–λsf

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

)

dt

=
∫ ∞



∫ ∞


e–(λtσ )μtμ–�μ(σ )

× W
(
tμ

)
(∫ ∞


e–λsf

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

)

dσ dt

= μ

∫ ∞



∫ ∞


e–λθ θμ–

σμ
�μ(σ )

× W
(

θμ

σμ

)(∫ ∞


e–λsf

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

)

dθ dσ

= μ

∫ ∞



(∫ ∞



∫ ∞

s
e–λt (t – s)μ–

σμ
�μ(σ )

× W
(

(t – s)μ

σμ

)

f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
dt ds

)

dσ

= μ

∫ ∞



(∫ ∞



∫ t


e–λt (t – s)μ–

σμ
�μ(σ )

× W
(

(t – s)μ

σμ

)

f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds dt

)

dσ

=
∫ ∞


e–λt

[

μ

∫ t



∫ ∞



(t – s)μ–

σμ
�μ(σ )

× W
(

(t – s)μ

σμ

)

f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
dσds

]

dt. (.)

Thus, it follows from (.), (.), and (.) that, for t ∈ J ,

û(λ) = λν(μ–)
∫ ∞


e–λt

[

μ

∫ ∞



tμ–

σμ
�μ(σ )W

(
tμ

σμ

)

u dσ

]

dt

+
∫ ∞


e–λt

[

μ

∫ t



∫ ∞



(t – s)μ–

σμ
�μ(σ )

× W
(

(t – s)μ

σμ

)

f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
dσds

]

dt.

Since the Laplace inverse transform of λν(μ–) is

L–(λν(μ–)) =

⎧
⎨

⎩

tν(–μ)–

	(ν(–μ)) ,  < ν < ,

δ(t), ν = ,
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where δ(t) is the delta function, we invert the last Laplace transform to obtain

u(t) =
(

L–(λν(μ–)) ×
(∫ ∞


μ

tμ–

σμ
�μ(σ )W

(
tμ

σμ

)

dσ

)

(t)
)

u

+ μ

∫ t



∫ ∞



(t – s)μ–

σμ
�μ(σ )W

(
(t – s)μ

σμ

)

f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
dσ ds

=
∫ t



tν(–μ)–

	(ν( – μ))

∫ ∞


μσ tμ–ξμ(σ )W

(
tμσ

)
u dσ

+ μ

∫ t



∫ ∞


σ (t – s)μ–ξμ(σ )

× W
(
(t – s)μσ

)
f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
dσ ds

=
(
Iν(–μ)

+ Kμ(t)
)
u +

∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

= Sν,μ(t)u +
∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds, (.)

where ξμ is the probability density function defined on (,∞) by

ξμ(σ ) =

μ

σ
–– 

μ �μ

(
σ

– 
μ
) ≥ .

This completes the proof. �

Based on Lemma ., we give the following definition of a mild solution of problem (.).

Definition . By a mild solution of problem (.) we mean a function u ∈ C(J ′, E) that
satisfies

u(t) = Sν,μ(t)u +
∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds, t ∈ J ′. (.)

Remark .
(i) By (.) it is easy to see that

Dν(–μ)
+ Sν,μ(t) = Kμ(t), t ∈ J ′.

(ii) When ν = , the fractional equation (.) simplifies to the classical Riemann-
Liouville fractional equation studied by Zhou et al. []. In this case,

S,μ(t) = Kμ(t), t ∈ J ′.

(iii) When ν = , the fractional equation (.) simplifies to the classical Caputo fractional
equation studied by Zhou and Jiao []. In this case,

S,μ(t) = Sμ(t), t ∈ J ,

where Sμ(t) is defined in [].
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Lemma . Assume that {W (t)}t≥ is a norm-continuous family for t > , ‖W (t)‖ ≤ M for
any fixed t > , {Kμ(t)}t>, and {Sν,μ(t)}t> are linear operators, and for any u ∈ E,

∥
∥Kμ(t)

∥
∥ ≤ Mtμ–

	(μ)
,

∥
∥Sν,μ(t)

∥
∥ ≤ Mt(ν–)(μ–)

	(ν( – μ) + μ)
.

Proof Noting that
∫ ∞

 ξμ(σ ) dσ = , we get

∥
∥
∥
∥

∫ ∞


ξμ(σ )W

(
tμσ

)
dσ

∥
∥
∥
∥ ≤ M.

By [] direct calculation gives that

∫ ∞


σξμ(σ ) dσ =

∫ ∞




σμ

�μ(σ ) dσ =


	( + μ)
.

Hence, we have

∥
∥Kμ(t)

∥
∥ ≤ Mtμ–

	(μ)
, t > .

For t ∈ J ′ and u ∈ E, we have

∥
∥Sν,μ(t)u

∥
∥ =

∥
∥Iν(–μ)

+ Kμ(t)u
∥
∥

=
∥
∥
∥
∥


	(ν( – μ))

∫ t


(t – s)ν(–μ)–Kμ(s)u ds

∥
∥
∥
∥

=
∥
∥
∥
∥

t(ν–)(–μ)

	(ν( – μ))

∫ 


( – s)ν(–μ)–Kμ(s)u ds

∥
∥
∥
∥

≤ t(ν–)(–μ)M
	(ν( – μ))	(μ)

∫ 


( – s)ν(–μ)–sμ– ds‖u‖

=
Mt(ν–)(μ–)

	(ν( – μ) + μ)
‖u‖.

This completes the proof. �

Lemma . Assume that {W (t)}t≥ is a norm-continuous family for t > , ‖W (t)‖ ≤ M,
and {Kμ(t)}t> and {Sν,μ(t)}t> are strongly continuous for t > .

Proof For any u ∈ E and  < t < t ≤ b, we have

∥
∥Kμ(t)u – Kμ(t)u

∥
∥

≤
∥
∥
∥
∥

∫ ∞


μσξμ(σ )

[
tμ–
 W

(
tμ
 σ

)
– tμ–

 W
(
tμ
 σ

)]
u dσ

∥
∥
∥
∥

≤
∫ ∞


μσξμ(σ ) dσ

[
tμ–


∥
∥W

(
tμ
 θ

)
– W

(
tμ
 θ

)∥
∥ +

∥
∥tμ–

 – tμ–


∥
∥W

(
tμ
 σ

)]·∥∥u
∥
∥

≤ 
	(μ)

[
tμ–


∥
∥W

(
tμ
 θ

)
– W

(
tμ
 θ

)∥
∥ +

∥
∥tμ–

 – tμ–


∥
∥W

(
tμ
 σ

)] · ‖u‖.
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Since W (t) is a norm-continuous family for t > , we have

∥
∥Kμ(t)u – Kμ(t)u

∥
∥ →  as t → t.

For u ∈ E and  < t < t ≤ b, we get

∥
∥Sν,μ(t)u – Sν,μ(t)u

∥
∥

=


	(ν( – μ))

∥
∥
∥
∥

∫ t


(t – s)ν(–μ)–Kμ(s)u ds –

∫ t


(t – s)ν(–μ)–Kμ(s)u ds

∥
∥
∥
∥

≤ 
	(ν( – μ))

∥
∥
∥
∥

∫ t

t

(t – s)ν(–μ)–Kμ(s)u ds
∥
∥
∥
∥

+


	(ν( – μ))

∥
∥
∥
∥

∫ t



(
(t – s)ν(–μ)– – (t – s)ν(–μ)–)Kμ(s)u ds

∥
∥
∥
∥

≤ Mtμ–


	(ν( – μ))	(μ)


ν( – μ)
(t – t)ν(–μ)‖u‖

+
M

	(ν( – μ))	(μ)

∥
∥
∥
∥

∫ t



(
(t – s)ν(–μ)– – (t – s)ν(–μ)–)ds

∥
∥
∥
∥‖u‖.

Consequently, we have

∥
∥Sν,μ(t)u – Sν,μ(t)u

∥
∥ →  as t → t,

that is, {Sν,μ}t> is strongly continuous. This completes the proof. �

3 Main results
In this section, we will state and prove our main results. First of all, we introduce the
following assumptions:

(H) {W (t)}t≥ is a norm-continuous family for t >  and uniformly bounded, that is, there
exists M >  such that ‖W (t)‖ ≤ M.

(H) For some r > , there exist a constant ρ >  and functions hr ∈ Lp(J , R+) (p > 
μ

> )
such that, for any t ∈ J and uk ∈ E satisfying ‖uk‖ ≤ r for k = , , . . . , m,

∥
∥f (t, u, u, . . . , um)

∥
∥ ≤ ht(t), lim

r→+∞ inf
‖hr‖Lp

r
= ρ < +∞,

Iμ
+hr ∈ C

(
J ′, R+)

, and lim
t→+

t(–ν)(–μ)Iμ
+hr(t) = .

(H) There exist positive constant Lk (k = , , . . . , m) such that, for any bounded equicon-
tinuous and countable sets Dk ⊂ E (k = , , . . . , m),

α
(
f (t, D, D, . . . , Dm)

) ≤
m∑

k=

Lkα(Dk), t ∈ J .

Theorem . Assume that the nonlinear function f : J × Em → E is continuous and satis-
fies assumptions (H)-(H). Then problem (.) has at least one mild solution in Cν,μ(J , E),
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provided that

Mρt(–ν)(–μ)

	(μ)
lp,μbμ– 

p <  (.)

and

Mbμt(–ν)(–μ)

	( + μ)

m∑

k=

Lk <



.

Proof We consider the operator Q : Cν,μ(J , E) → Cν,μ(J , E) defined by

(Qu)(t) = Sν,μ(t)u +
∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds, t ∈ J ′. (.)

By direct calculation we know that the operator Q is well-defined. From Definition .
it is easy to verify that the mild solution of problem (.) is equivalent to the fixed point
of the operator Q defined by (.). In the following, we will prove that the operator Q :
Cν,μ(J , E) → Cν,μ(J , E) has at least one fixed point by applying the fixed point theorem
with respect to a k-set-contractive operator. Our proof will be divided into four steps.

Let Br := {u ∈ Cν,μ(J , E) : ‖u(t)‖ν,μ ≤ r, t ∈ J}. Then Br is a closed and convex subset of
Cν,μ(J , E). Observe that, for all u ∈ Br ,

lim
t→+

t(–ν)(–μ)Sν,μ(t)u

= lim
t→+

t(–ν)(–μ)

	(ν( – μ))

∫ t


(t – s)ν(–μ)–Kμ(s)u ds

= lim
t→+


	(ν( – μ))

∫ 


( – s)ν(–μ)–Kμ(s)u ds

= lim
t→+


	(ν( – μ))	(μ)

∫ 


( – s)ν(–μ)–sμ–u ds

=
u

	(ν( – μ) + μ)
.

Define t(–ν)(–μ)(Qu)(t) as follows:

t(–ν)(–μ)(Qu)(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

t(–ν)(–μ)Sν,μ(t)u

+ t(–ν)(–μ) ∫ t
 Kμ(t – s)f (s, u(τ(s)), . . . , u(τm(s))) ds, t ∈ J ′,

u
	(ν(–μ)+μ) , t = .

Step . We show that there exists r >  such that QBr ⊂ Br . Suppose this is not true. Then
for each r > , there exists ur(·) ∈ Br such that ‖(Qur)(t)‖ > r for some t ∈ J . Combining
Lemma ., assumptions (H) and (H), and the Hölder inequality, we get that

r <
∥
∥t(–ν)(–μ)(Qur)(t)

∥
∥

≤ ∥
∥t(–ν)(–μ)Sν,μ(t)u

∥
∥
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+
∥
∥
∥
∥t(–ν)(–μ)

∫ t


Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

≤ M‖u‖
	(ν( – μ) + μ)

+
Mt(–ν)(–μ)

	(μ)

∫ t


(t – s)μ–hr(s) ds

≤ M‖u‖
	(ν( – μ) + μ)

+
Mt(–ν)(–μ)

	(μ)

(∫ t


(t – s)(μ–)/(– 

p ) ds
)– 

p
·
(∫ t


hp

r (s) ds
) 

p

≤ M‖u‖
	(ν( – μ) + μ)

+
Mt(–ν)(–μ)

	(μ)
(
lp,μbμ– 

p ‖hr‖Lp
)
, (.)

where lp,μ = ( p–
pμ– )

p–
p .

Dividing both sides of (.) by r and taking the lower limit as r → +∞, by (.) we get

 ≤ Mρt(–ν)(–μ)

	(μ)
lp,μbμ– 

p < ,

which is a contradiction. Therefore Q(Br) ⊂ Br for some r > .
Step . Now we show that Q is continuous from Br into Br . To show this, for any u, un ∈

Br , n = , , . . . , with limn→∞ ‖un – u‖ν,μ = , we get

lim
n→∞ un(t) = u(t)

for all t ∈ J . By the continuous of the nonlinear function f , for any t ∈ J and  ≤ τk ≤ t,
k = , , . . . , m, we get that

lim
n→∞

∥
∥f

(
t, un

(
τ(t)

)
, . . . , un

(
τm(t)

))
– f

(
t, u

(
τ(t)

)
, . . . , u

(
τm(t)

))∥
∥ = .

On the one hand, by assumption (H) we get that, for all t ∈ J ,  ≤ s ≤ t, and  ≤ τk(s) ≤ s,
k = , , . . . , m,

(t – s)μ–∥∥f
(
s, un

(
τ(s)

)
, . . . , un

(
τm(s)

))
– f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))∥
∥ ≤ (t – s)μ–hr(s).

On the other hand, the function s → (t – s)μ–hr(s) is integrable for s ∈ [, t) and t ∈ J . By
the Lebesgue dominated convergence theorem we have

∫ t


(t – s)μ–∥∥f

(
s, un

(
τ(s)

)
, . . . , un

(
τm(s)

))

– f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))∥
∥ds →  as n → ∞.

For t ∈ J and un, u ∈ Br , we have

∥
∥t(–ν)(–μ)(Qun)(t) – t(–ν)(–μ)(Qu)(t)

∥
∥

≤ Mt(–ν)(–μ)

	(μ)

·
∫ t


(t – s)μ–∥∥f

(
s, un

(
τ(s)

)
, . . . , un

(
τm(s)

))
– f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))∥
∥ds

→  as n → ∞,
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which implies that Qun → Qu uniformly on J as n → ∞, and so Q : Br → Br is a continu-
ous operator.

Step . We will prove that {Qu : u ∈ Br} is an equicontinuous family of functions. For
any u ∈ Br and  ≤ t < t ≤ b, by (.) and assumptions (H) and (H) we get that

∥
∥t(–ν)(–μ)

 (Qu)(t) – t(–ν)(–μ)
 (Qu)(t)

∥
∥

≤ ∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥‖u‖

+
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

≤ (∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥

+
∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥
)‖u‖

+
∥
∥
∥
∥

∫ t

t

t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

= I + I + I + I + I,

where

I =
(∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥
)‖u‖,

I =
(∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥
)‖u‖,

I =
∥
∥
∥
∥

∫ t

t

t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥,

I =
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥,

I =
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥.
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Here we calculate

∥
∥t(–ν)(–μ)

 (Qu)(t) – t(–ν)(–μ)
 (Qu)(t)

∥
∥ ≤

∑

i=

‖Ii‖. (.)

Therefore we have to check that ‖Ii‖ tend to  as t → t, i = , , . . . , .
For I, by Lemma . we get

I =
(∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥
)‖u‖

≤ ∥
∥t(–ν)(–μ)


(
Sν,μ(t) – Sν,μ(t)

)∥
∥‖u‖ →  as t → t.

For I, by Lemma . we get

I =
(∥
∥t(–ν)(–μ)

 Sν,μ(t) – t(–ν)(–μ)
 Sν,μ(t)

∥
∥
)‖u‖

≤ Mb(ν–)(μ–)

	(ν( – μ) + μ)
∥
∥t(–ν)(–μ)

 – t(–ν)(–μ)


∥
∥ →  as t → t.

For I, by Lemma . and (H) we have

I =
∥
∥
∥
∥

∫ t

t

t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

≤ Mt(–ν)(–μ)

	(μ)

∫ t


(t – s)μ–hr(s) ds

= Mt(–ν)(–μ)
 Iμ

+hr(t) →  as t → t.

For I, by Lemma . and (H) we have

I =
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

≤ M
	(μ)

∫ t



[
t(–ν)(–μ)
 (t – s)μ– – t(–ν)(–μ)

 (t – s)μ–]hr(s) ds,

and
∫ t

 –t(–ν)(–μ)
 (t – s)μ–hr(s) ds exists. Then by the Lebesgue dominated convergence

theorem we have

∫ t



[
t(–ν)(–μ)
 (t – s)μ– – t(–ν)(–μ)

 (t – s)μ–]hr(s) ds →  as t → t.

For I, by Lemma . and (H) we have

I =
∥
∥
∥
∥

∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

–
∫ t


t(–ν)(–μ)
 Kμ(t – s)f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥
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≤
∥
∥
∥
∥

∫ t


t(–ν)(–μ)


[
Kμ(t – s) – Kμ(t – s)

]
f
(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

∥
∥
∥
∥

≤ ∥
∥Kμ(t – s) – Kμ(t – s)

∥
∥

∫ t


t(–ν)(–μ)
 f

(
s, u

(
τ(s)

)
, . . . , u

(
τm(s)

))
ds

→  as t → t.

In conclusion,

∥
∥t(–ν)(–μ)

 (Qu)(t) – t(–ν)(–μ)
 (Qu)(t)

∥
∥ → 

as t → t, which means that the operator Q : Br → Br is equicontinuous.
Let H = coQ(Br). Then it is easy to verify that Q maps H into itself and H ⊂ Br is equicon-

tinuous.
Step . Now, we prove that Q : H → H is a condensing operator. For any D ⊂ H , by

Lemma . there exists a countable set D = {un} ⊂ D such that

α
(
Q(D)

) ≤ α
(
Q(D)

)
.

By the equicontinuity of H we know that D ⊂ D is also equicontinuous.
For t ∈ J , by the definition of Q and (H) we have

α
(
Q(D)(t)

)

= α

({

t(–ν)(–μ)Sν,μ(t)u

+
∫ t


t(–ν)(–μ)Kμ(t – s)f

(
s, un

(
τ(s)

)
, . . . , un

(
τm(s)

))
ds

})

≤ M
	(α)

t(–ν)(–μ)
∫ t


(t – s)μ–α

({
f
(
s, un

(
τ(s)

)
, . . . , un

(
τm(s)

))})
ds

≤ M
	(α)

t(–ν)(–μ)
∫ t


(t – s)μ–[Lα

(
D

(
τ(s)

))
+ · · · + Lmα

(
D

(
τm(s)

))]
ds

≤ M
	(μ)

m∑

k=

Lkt(–ν)(–μ)
∫ t


(t – s)μ–α

(
D(s)

)
ds

≤ Mbμt(–ν)(–μ)

	( + μ)

m∑

k=

Lkα(D).

Since Q(D) ⊂ H is bounded and equicontinuous, we know from Lemma . that

α
(
Q(D)

)
= max

t∈I
α
(
Q(D)(t)

)
.

Therefore we have

α
(
Q(D)

) ≤ Mbμt(–ν)(–μ)

	( + μ)

m∑

k=

Lkα(D) ≤ α(D).
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Thus, Q : Br → Br is a k-set-contractive operator. It follows from Lemma . that Q has
at least one fixed point u ∈ Br , which is just a mild solution of problem (.) on the inter-
val J . �

We further present two special cases.
Case . When B = I , then D(B) = E. We assume that A-generate a norm-continuous semi-

group {W (t)}t≥ of uniformly bounded linear operators on E. Then from the proof of The-
orem . we have the following theorem.

Theorem . Assume that the nonlinear function f : J × Em → E is continuous and the
assumptions (H)-(H) are satisfied, then the problem

{
Dν,μ

+ u(t) = Au(t) + f (t, u(τ(t)), . . . , u(τm(t))), t ∈ J ,
I(–ν)(–μ)

+ u() = u,

has at least one mild solution in Cν,μ(J , E).

Case . When B = I and ν = , D(B) = E. We assume that A-generate a norm-continuous
semigroup {W (t)}t≥ of uniformly bounded linear operators on E. Then from the proof of
Theorem . we have the following theorem.

Theorem . Assume that the nonlinear function f : J × Em → E is continuous and the
assumptions (H)-(H) are satisfied. Then the problem

{
CDμ

+u(t) = Au(t) + f (t, u(τ(t)), . . . , u(τm(t))), t ∈ J ,
u() = u,

(.)

has at least one mild solution in C(J , E).

Remark . For problem (.), see [] for more detail.

4 Applications
In this section, we present two examples, which illustrate the applicability of our main
results.

Example . We consider the following fractional diffusion equations of Sobolev type
with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dν,μ
+ (u(t, x) – ∂u(t,x)

∂x )

= ∂

∂x u(t, x) + f̃ (t, u(τ(t), x), . . . , u(τm(t), x)), x ∈ �, t ∈ J ,

u(t, x) = , x ∈ ∂�, t ∈ J ,

I(–ν)(–μ)
+ (u(, x) – ∂

∂x u(, x)) = ϕ̃(x), x ∈ �,

(.)

where Dν,μ
+ is the Hilfer fractional derivative,  ≤ ν ≤ ,  < μ < , τk : J → J are continu-

ous functions such that  ≤ τk(t) < t, k = , , . . . , m, � ⊂ Rm is a bounded domain with a
sufficiently smooth boundary ∂�, and f̃ : J × Rm → R is continuous.
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Let E = L(�) be the Banach space with the L-norm ‖ · ‖. We define

D(A) = D(B) = H(�), Au =
∂u
∂x , Bu = u –

∂u
∂x ,

where H(�) is the completion of the space C(�) with respect to the norm

‖u‖H(�) =
(∫

�

∑

|μ|≤

∣
∣Dμu(x)

∣
∣ dx

) 


,

C(�) is the set of all continuous functions on R that have continuous partial derivatives
of order less than or equal to . In view of [], it is easy to see that the pair (A, B) generates
a propagation family W (t) of uniformly bounded operators, and similarly to the proof of
(.), (.), and (.) in [], we can see that {W (t)}t≥ is norm-continuous for t >  and
‖W (t)‖ ≤ , that is, assumption (H) is satisfied.

Let

f
(
t, u

(
τ(t), x

)
, . . . , u

(
τm(t), x

))
= B–̃f

(
t, u

(
τ(t), x

)
, . . . , u

(
τm(t), x

))
,

ϕ(·) = u = B–ϕ̃(·).

Then equation (.) can be rewritten in the abstract form as (.).
To study this problem, we assume the following conditions:
(i) There exists a essential bounded function hr(t) such that, for any t ∈ [, b], x ∈ �, and

u ∈ L(�) satisfying (
∫

�
|u(x)|dx) 

 ≤ r for some r > , we have

(∫

�

∣
∣̃f

(
t, u

(
τ(t), x

)
, . . . , u

(
τm(t), x

))∣
∣ dx

) 
 ≤ hr(t).

(ii) The function f̃ (t, u(τ(t), x), . . . , u(τm(t), x)) is Lipschitz with respect to variables
u(τ(t), x), . . . , u(τm(t), x) with positive constants lk for any x ∈ � and k = , , . . . , m.

Theorem . If assumptions (i)-(iii) are satisfied, then problem (.) has at least one mild
solution, provided that

Mbμt(–ν)(–μ)

	( + μ)

m∑

k=

Lk <



. (.)

Proof By assumptions (i)-(ii) we can easily verify that conditions (H)-(H) are satisfied
with Lk = lk (k = , , . . . , m). Furthermore, also from assumptions (i)-(ii), combined with
assumption (.), we know that (.) are satisfied. Therefore, Theorem . follows. �

Example . We consider the initial boundary value problem to the following nonlinear
time fractional reaction-diffusion equation with delay introduced in [, ]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dν,μ
+ (u(x, t) – a(t)�u(x, t)) – a(t)�u(x, t)

= f̃ (t, u(τ(t), x), . . . , u(τm(t), x)), x ∈ �, t ∈ J ,

u(t, x) = , x ∈ ∂�, t ∈ J ,

I(–ν)(–μ)
+ (u(, x) – a()�u(, x)) = ϕ̃(x), x ∈ �.

(.)
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where Dν,μ
+ is the Hilfer fractional derivative,  ≤ ν ≤ ,  < μ < , J = [, b], m is a posi-

tive integer number, the diffusion coefficient a(t) is continuous on J and |a(t) – a(t)| ≤
C|t – t|γ ,  < γ ≤ , t, t ∈ J , C is a positive constant independent of t and t, � is the
Laplace operator, τk : J → J are continuous function such that  ≤ τk(t) < t, k = , , . . . , m,
� ⊂ Rm is a bounded domain with a sufficiently smooth boundary ∂�, f̃ : J × Rm → R is
continuous, and ϕ ∈ L(�).

Let E = L(�) be the Banach space with the L-norm ‖ · ‖. We define

D(A) = D(B) = H(�) ∩ H
(�), Au = a(t)�u, Bu = u – a(t)�u,

where H(�) is the completion of the space C(�) with respect to the norm

‖u‖H(�) =
(∫

�

∑

|μ|≤

∣
∣Dμu(x)

∣
∣ dx

) 


.

(C(�) is the set of all continuous functions on � that have continuous partial derivatives
of order less than or equal to .) H

(�) is the completion of C(�) with respect to the
norm ‖u‖H(�), and C

(�) is the set of all functions u ∈ C(�) with compact supports on
the domain �. In view of [], it is easy to see that the pair (A, B) generates a propagation
family W (t) of uniformly bounded, and similarly to the proof of (.), (.), and (.)
in [], we can see that {W (t)}t≥ is norm-continuous for t >  and ‖W (t)‖ ≤ , that is,
assumption (H) is satisfied.

Let

u(t) = u(·, t),

f
(
t, u

(
τ(t)

)
, . . . , u

(
τm(t)

))
(·) = g

(
t, u

(·, τ(t)
)
, . . . , u

(·, τm(t)
))

= B–̃f
(
t, u

(
τ(t), x

)
, . . . , u

(
τm(t), x

))
,

ϕ(·) = u – a()�u = B–ϕ̃(·).

Then the initial boundary value problem of the nonlinear time fractional reaction-
diffusion equation with delay (.) can be transformed into the abstract form of prob-
lem (.).

Theorem . Suppose that the following assumptions are satisfied:
(i) There exists an essentially bounded function hr(t) such that, for any t ∈ [, b], x ∈ �,

and u ∈ L(�) satisfying (
∫

�
|u(x)|dx) 

 ≤ r for some r > ,

(∫

�

∣
∣̃f

(
t, u

(
τ(t), x

)
, . . . , u

(
τm(t), x

))∣
∣ dx

) 
 ≤ hr(t);

(ii) The function f̃ (t, u(τ(t), x), . . . , u(τm(t), x)) is Lipschitz in variables
u(τ(t), x), . . . , u(τm(t), x) with positive constants lk for any x ∈ � and k = , , . . . , m.
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Then problem (.) has at least one mild solution, provided that

Mbμt(–ν)(–μ)

	( + μ)

m∑

k=

Lk <



. (.)

Proof By assumptions (i)-(ii) we can easily verify that conditions (H)-(H) are satisfied
with Lk = lk (k = , , . . . , m). Furthermore, also from assumptions (i)-(ii) combined with
assumption (.) we know that (.) are satisfied. Therefore, our Theorem . follows. �

5 Conclusions
In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equa-
tions with delay by using the Hilfer fractional derivative, which generalizes the famous
Riemann-Liouville fractional derivative. The definition of mild solutions for the studied
problem was given based on an operator family generated by the operator pair (A, B) and
probability density function. Combining the techniques of fractional calculus, measure
of noncompactness, and fixed point theorem with respect to a k-set-contractive opera-
tor, we obtain a new result on the existence of mild solutions with the assumption that
the nonlinear term satisfies some growth condition and noncompactness measure con-
dition. The results obtained improve and extend some related conclusions on this topic.
When ν = , the fractional equation (.) simplifies to a classical Caputo fractional differ-
ential equation of Sobolev type with nonlocal conditions studied by Li et al. []. When
B = I , D(B) = E. We assume that A-generate a norm-continuous semigroup {W (t)}t≥ of
uniformly bounded linear operators on E. Then the fractional equation (.) simplifies to
evolution equation with Hilfer fractional derivative studied by Gu et al. [].
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