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1 Introduction
For f € C(R{) and x € R} (R} = [0,00)), Szasz [1] introduced the well-known operators

00 & k
Sn(f;x) =e "™ Z (HI:) f(;>! (1)

k=0

such that S, (|f];x) < co. Several generalizations of Szasz operators have been introduced in
the literature and authors have studied their approximation properties. In [2], the author
considered Baskakov-Szasz type operators and studied the rate of convergence for ab-
solutely continuous functions having a derivative equivalent with a function of bounded
variation. In [3], the authors introduced the g-Baskakov-Durrmeyer type operators and
studied the rate of convergence and the weighted approximation properties. In [4] the au-
thors proposed the S-operators based on g-integers and established some direct theorems
by means of modulus of continuity and also studied the weighted approximation and bet-
ter approximation using King type approach. For exhaustive literature on approximation
by linear positive operators one can refer to [5-7] and the references therein.
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Now let us recall some results on multiple Appell polynomials [8]. Let g(z) = Y oo a,2",
g(1) #1, be an analytic function in the disc |z| <r, r > 1 and pi(x) be the Appell polyno-
mials having the generating function g(u)e"* = Y 2, pr(x)uk, with g(1) # 0 and py(x) > 0,
Vx € Rj.

Jakimovski and Leviatan [9] proposed a generalization of Szdsz-Mirakjan operators by
means of the Appell polynomials as follows:

Py(fsx) = ;1) Zpk () ()

For g(u) = 1, these operators reduce to Szdsz-Mirakjan operators (1).
A set of polynomials {py, «, (x)},fib:o with degree k; + ky for ki, k, > 0 is called multiple
polynomial system (multiple PS) and a multiple PS is called multiple Appell if it is gener-

ated by the relation
A(tl, tz)ex(t1+t2) — Z pl;{l,/:,z( ' t{q LJZQ’ (3)
k1=0 k=0 1:R2
where A is given by
Ak k:
Alti, 1) = ZZ ATl e, (4)

k1=0 ko =0
with A(O, 0) =4o,0 7(0

Theorem 1.1 For multiple PS, {p, k, (¥)}3; 1,-0» the following statements are equivalent:
(@) {pr i (x)},‘zikFO is a set of multiple Appell polynomials.
(b) There exists a sequence {akl,kz},fikzzo with ag o # 0 such that

ki [k
Phy, kz(x) = Z Z < i) < 2>gk1 —rp ko rzxr1+r2

r1=0ry=0

(c) Forevery ky + ky > 1, we have

Pl ®) = Kipig 1,6, (%) + Kapig -1 (%).

Varma [10] defined a sequence of linear positive operators for any f € C(Rf), by

p/qkz( ) k1+k2
Kalfix) = 20, 1)ZZ kitks! < " > o

k1=0ky=0

provided A(1,1) #O0, Zkllkf) > 0 for ki, k; € N, and the series (3) and(4) converge for |¢1| < Ry,
lt2] < Ry (Ry, Ry > 1), respectively.
Fora >0, p>0andf:R] — R, being integrable function, Paltdnea [11] defined a mod-

ification of the Szész operators by

= > apert(apt) Pt B
LO(f;x) = » - f(t)d **£(0), R{. 6
(i) ;s ,k(x)/o O dr+ €A O), xR ©)
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Motivated by [11], for f € Cg(R}), the space of all continuous functions satisfying |f(¢)| <
Ke™ (t > 0) for some positive constant K and a, we propose an approximation method by
linking the operators (6) and the multiple Appell polynomials by

e Pkl,kz(%) 00 n,oe‘”"t(npt) (k1+ka)p
LO(f;%) = t)dt
nlfi%) A(1,1)%:%: TSN T(ky + ko) f()

ky+ka>1

e(_l 1)P0 0 (nx)/(o),

and establish a quantitative Voronovskaya type theorem, a Griiss Voronovskaya type the-
orem, a local approximation theorem by means of the Steklov mean, a Voronovskaya type
asymptotic theorem and error estimates for several weighted spaces. Lastly, we study the
rate of convergence of functions having a derivative of bounded variation.

2 Basicresults

In order to prove the main results of the paper, we shall need the following auxiliary results.
Lemma 2.1 For K,,(t;;x),i=0,1,2,3,4, we have

(i) Ku(Lx)=1,

Atl (1) 1) + Atz (11 1)

(i) Ku(t;x)=x+ nA(1,1)

’

(i) K (£%5%) = o> + —{1+A(f )(Atl(l 1)+ A (1 1))}

n
1
+ m {At1 (LD +A,10L1D) + Ay (1L,1) + 244, (11) + Agy, (1, 1)}’
. 3 2 1
(iv) Ku(x) =4+ %{1 ALY = ([An (LD + A4, 1))} : {1

YT ——(24,(1,1) + 24, (L1) + Ay (1,1) + 244, (L, 1) + Apyyy (1, 1))}

1
+ M{Atl (1, 1) +At2 (1,1) + 3A£1t1 (1, 1) + 6At1t2 (1, 1)

+ 3At2t2 (17 1) + Atltltl (]-r 1) + At2t2t2 (1r 1) + 3At1t1t2 (11 1) + 3At2t2t1 (11 1)}:

3 2
v) I<n(t4;x)=x4+%{6+A(Ll)(Atl(l,l)+A¢2(1,1))}+%{7

6
7 D —— (34, (1,1) + 34, (L1) + Ay (1,1) + 244, (1, 1) + Apyyy (1, 1))}
X 1
+ E{l 10D ——— (144, (1,1) + 144,,(1,1) + 1844, (1,1) + 36A,,,,(1,1)

+ 18At2t2 (1) 1) + 4At1 ity (1, 1) + 4At2t2t2 (L 1) + 12At1 t1ty (1) 1)

1
+ 124415 (1, 1))} +— Ay (1,1) + A, (L1) +7A,, (L,1)

n A(l,l){
+ 14'At1t2 (1) 1) + 7At2t2 (11 1) + 6At1t1t1 (1! 1) + 6At2t2t2 (11 1)
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+ 18At1t1t2 (1) 1) + 18At2t2t1 (1; 1) + Atltltltl (11 1) + Atztztztz (1) 1)

+ 4'At1t]t1t2 (17 1) + 4'At2t2t2t1 (17 1) + 6At1t1t2t2 (1’ l) }

The values of the moments K,(¢;x) for i = 0,1,2 are given in [10] while the values of
K, (t};x) for i = 3,4 have been obtained by us after simple calculations and hence the details

are omitted.
Lemma 2.2 For the sequence of linear positive operators Ly (t;x), i = 0,1,2,3, 4, we find

(i) LLx) =1,

At1 (1’ 1) + Atz (1, 1)
nA(1,1)

2.y _ .2, % 1 2
(iii) Lo(%x) =« + {(1+ )+A—(l,l)(Atl(l’l)+At2(1’1))}

(i) LOtx)=x+

’

n o
1

1
R { (1 + ;> (An(1,1) + A, (LD) + Ay (1,1)

+ 2At1t2 (1» 1) + At2t2 (1» 1) };

BN

(iv) Eﬁ(ts;x) =%+ Bniz{(l + %) + (Atl(l, 1) + A, (1, 1))}

1
L1)
x 3 2 3 1

+ ﬁ{(“ o ?) Y AOD <2(1+ ;)(Atl(l,l) +A5,(1,1))

+ Atltl (17 1) + 2At]t2 (1’ 1) + At2t2 (1’ 1)) }

1 3 2

VA (1 00 4u00)
1

+3 <1 + ;) (Ann (L1) + 244, (1,1) + Ay, (1L1)) + Apyn (1,1)

+ At2t2t2 (1) 1) + gAtltltz (1’ 1) + 3At2t2t1 (1) 1) }’

3 1 4
V) Lo(thx)=a"+ %{6(1 + ;) + A0 (A,(1,1) +At2(1,1))}

x? 18 11 6 1
+ ;{(7 + ; + E) + AL <3(1+ ;)(Atl(l,l) +At2(1,1))

X 6 11 6
+ A, (L) +24,,(1L,1) + Ay, (L1) ) ¢ + P 1+ ; + P + —

1 36 22
TALD ((14 "t F) (Aa LD+ A, (11)

1
+18 (1 + ;) (Aun (L) + 2445, 1,1) + Apy, (L1)) + 44444, (1,1)

+4As 06 (1L 1) + 124444, (1,1) + 12444, (1, 1)) }
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L 1 6 .6 (4, (1,1) + A, (L,1D))
+ +—+—+— ,1) + ,
n*A(1,1) p p> )00 .

18 1
+ (7 + " + ;> (Aun (L) + 244, 1,1) + Agyyy (L, 1)

1
+6 (1 + ;) (Atltltl (1, ].) + At2t2t2 (1, ].) + 3At1t1t2 (1, 1) + 3At2t2t1 (1, 1))
+ Atltltltl (11 1) + Atztztztz (l’ 1) + 4At1t1t1t2 (1! 1)

+ 4At2t2t2t1 (1,1) + 6At1t1t2t2 (1,1) }
Consequently,

ﬁg((t—x)z;x) = ;—C(l + %) + #(1,1){(1 + %)(Atl(]-’l) +AL’2(17 1))

+ At1t1 (11 1) + 2At1t2 (1) 1) + Atztz (11 1)}

E(1+l>(1+x)
n P

52,(x)  (say), 7)

IA

where

C:max( 1A LD] + A, L]+ 1Ay, (L] + 2140, 11| + [Ar, (1,1)]
|A(L,1)]

and

3x? 2 1 x 6 11 6
£Z((t—x)4;x)=?{l+—+—2}+—|:(1+—+—2+E)

A(l 1) { )(At1 (1,1) + A, (1, 1))

(1 + —) Apn(1,1) + 2444, (L1) + Ay, (1,1))

- 6At1t1t1 (11 1) - 6At2t2t2 (11 1)}]'

The expression for £4((t — x)% x) has not been included in Lemma 2.2 because it is very
lengthy and complicated. It will be required to prove the quantitative Voronovskaya type
theorem.

Remark 2.3 From Lemma 2.2, we obtain

AL +A,(11)

A1) ’ ®

hm nﬁp((t x); )

lim nﬁ"((t x)%; ) x<1 + l), 9)

n—00 I()
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2 1
lim L0t -x)%%) =351+ = + = |, (10)
n—0oQ n p p2
3 3 1
lim n3£ﬁ ((t —x)6;x) =15x3 (1 t—+ =+ —3> (11)
=00 o P> P

3 Main results
Theorem 3.1 Letf € Cg(R}). Thenlim,_. o L, (f;) = f (x) uniformly on each compact sub-
set of R.

Proof Considering Lemma 2.2, it follows that lim,,_,, £, (¢5;x) = %/, i = 0,1,2, uniformly
on every compact subset of R{. Applying the Bohman Korovkin theorem, we obtain the
desired result. g

For f € Cp(R{), the space of bounded and continuous functions on R§ endowed with
the norm ||f|| = sup,. RS |f(x)], the first and second order modulus of continuity are, re-

spectively, defined as

o(f;8)= sup  sup V(x+h)—f(x)

0<|h|<8 x,x+heR5

wr(f;8) = sup sup [f(x+2h)—2f(x+h) +f(x)|, §>0.

0<|h| <8 x,x+hx+2heR]

)

Further, for f € Cg(R}), the Steklov mean of second order [12] is defined as

4 5 (%
fulx) = ﬁ / / [2f(x +U+V) —f(x +2(u + V))] dudv, h>0. 12)
o Jo
Hence
4 W2 phr
F6)=fil) = - / / A2, f(x)dudy, and
o Jo
1
V(%) = 3 (SAﬁ,lf(x) - Aif(x)).
Thus, it follows that
Ifs =f Il < walf, ). (13)
Further, f},f;" € Cp(R}) and
! 5 !’ 9
Il < Lot h), I5 ] < a2 h). (14)
Theorem 3.2 For f € Cg(R{) and x € R{, we have
13
’Eﬁ(f,x) _f(x)’ =< sw(f; Sn,p(x)) + ?w2 (f; (sn,p(x)):

where 8,,,(x) is defined by equation (7).



Neer and Agrawal Journal of Inequalities and Applications (2017) 2017:244 Page 7 of 20

Proof Using the Steklov mean f;, defined by (12), we may write

|L0(f52) = f )| < |Lo((F —fudsx) | + | L4 (fu®) = fulx)s %) |
+ [ﬂ, —f(x) | (15)

Applying Lemma 2.2, we have

[2aO] =< i, (16)

Using inequality (16) and equation (13), we have

|L2((F = fi)i%)| < If ~fill
=< wZ(f’ h)

Now by Taylor’s expansion and applying the Cauchy-Schwarz inequality, we have

L (/t(t —u)fy) (u) du;x)
;x)

550 ity )| < |25~ 2V e)) +

t
< Il1eo(ie - x|+ wncz(\ [ 1e-ua
= VIR (=225 + S I 20 -27)

Applying Lemma 2.2, equations (13), (14) and choosing / as §,,,(x), we get the required
result. U

Theorem 3.3 For f € CE(R}), we obtain

Ay (1,1) + A, (1,1)

x 1 !
AL f'(%) + §(1+ ;)f (%),

lim n[L£(fx) —f ()] =
uniformly in x € [0,al, a > 0.
Proof By Taylor’s expansion of f for some fixed x € [0, ], we obtain

f(&) —f(x) = (£ =x)f (%) + %(t - x)*f"(x) + E(t,%)(¢ — %), 17)

where £(t,x) € Ce(R{) and lim,_,, £(¢,x) =0
Hence by linearity of the operators £}, from equation (17), we get

n[L7(f2) = f®)] = nLy(t - x0)f (x) + %nﬁﬁ ((t = %)% 2)f" (x)
+nLh (&t x)(t - x)%x). (18)

Applying the Cauchy-Schwarz inequality in the last term of equation (18), we have

nL(E (62— x5) < \/n2LCh (¢ - x)%52) Ch (628, 2)s ). 19)
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From Remark 2.3, it follows that

2 1
lim n*L((t - x)*; %) = 34 <1 v —>, (20)

n—00 ,02

uniformly in x € [0, a].
Further, let £2(¢,x) = v(¢,%), x > 0, then v(¢,x) € Ce(R}) and hence from Theorem 1.1, we
get
lim £0(&%(t,x);x) = lim L5 (v(t,%);%) = v(x,%) =0, (21)

n—00 n—00

Hence from equation (19), we obtain
lim (nL0 (&t %)(t - %)% %)) =0, (22)
n—0oQ

uniformly in x € [0,4]. Now taking the limit # — oo in (18) and using Remark 2.3, we get
the desired result. This completes the proof. d

4 Weighted approximation
Let 6(x) > 1 be a weight function on Rj. We consider the weighted space defined on R{:

By(R}) = {f : |f(%)| < MfO(x),¥x € Rj and My > 0}.
Further, let
Co(R}) = {f € By(Rg) :f is a continuous function on R} }

and

Ci(R) = {fe Co(R]) ;xlggo% K< oo}.

We define the norm in the space By(R]) as

1l = sup L2

xERa 9(96) ’

The usual modulus of continuity of the function f on [0, p] is defined as

wp(f;8) = sup sup [f(t) -f(x)]. (23)

[t-x(<8 t,xe[0,p]

Let us denote || - ||c[4,4) as the supremum norm on [a, b]. Throughout the paper we have
taken 0(x) = 1 + x2.

Theorem 4.1 Forx € [0,c] and f € Cy(R]), we have

120G =l o < 4Mr(1+ )z, + 2061 (F50p),

where Tli,p = MaXye[0,c] (La((t- xz);x))‘
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Proof Letx € [0,c] and £ > ¢+ 1 then £ —x > 1. Then, for f € Cy(R}), we have

V(t) —f(x)’ < Mf(2 + 1 +x2)
= My (2 +2x% + (£ — %) + 2%(¢ — %))
< My(t-x)*(3 + 247 + 2x) < 4My(1+x%)(¢ - x). (24)
For x € [0,c] and ¢ € [0, ¢ + 1], we have

[t —x|

\ﬂn—quSwﬁmﬁu—ﬂ)s(1+ )wﬁmﬁ&. (25)

From equations (24) and (25), for x € [0,¢] and ¢ > 0, we have

|t —x]

If() —f(x)| < 4Mp(1+4%) (¢ —x)* + (1+ )a)m(f;S).

Applying the Cauchy-Schwarz inequality and choosing § = /7, ,, we get

|Lo(F;%) = f ()| < AMy(1+x%)L0((£—2%);%) + (1 + %Lﬁ(lt —xl;x))wm(f;(S)
< 4M;(1+ ), ,(€) + 200 (f3 1, (€).
This completes the proof. O

Theorem 4.2 Forf € Cy(R{), we have

i sup VAU /@)

=0

2)1 ’
00 gy (1 + x2)l*n

where 1 is some positive constant.

Proof Since [f(x)| < ||flla(1 +x2), for fixed y > 0, we may write

1La(f5%) - f )] _ q L3 (f;%) —f ()] sup L (f;%) —f )]

sup

xERa (1 + x2)1+n o x€[0,y] (1 + xz)lﬂ7 x€(y,00) (1 + 3‘:2)”'7
IIf 1l
P(f..) _
= ”‘Cn(f’ ) f”C[O,y] + (1 +y2)17

I£AQ + ;%)
+1flg sup ————-1=

26
xe(poo)  (L+a2)14m 26)

Using Theorem 3.1, for a given € > 0, there exists k € N such that

> k.

€
|£ﬁ(1+t2;x)—1+x2} < m, Vn >

or

€

3Iflle”

L1+ 5x) <1+x%+




Neer and Agrawal Journal of Inequalities and Applications (2017) 2017:244 Page 10 of 20

Hence,

IIflo

< Vn > k.
@ +y2)n

Lo(l+t%5x Iflle €
I1/1le (1 + x2)L+7 (1+x2)1“7( 3|[f||0)
€
Ty

Therefore,

Lh+e%5x) _ lflle €
|V||9xffyl§o) L =yt 3 forall n > k. (27)

Let us choose y so large that

e e
T+ =6 29

Also, in view of Theorem 4.1, for € > 0 there exists a # > [ such that

€
P(F. ) _ <
||£n(f, ) fHC[O,y] <3 > 1. (29)
Taking m = max(k, /) and combining equations (26)-(29), we get

L(f3%) -
SUPM<E7 an‘
xeR} (1+x)+’l

This completes the proof. g
Following [13], the weighted modulus of continuity w(g; §) for g € Cy(R{) is defined as

P lg(x + 1) — g()]
Peid)= 0<\hg§gceR5 A+ +a?) (30

Also, for g € C;(Rf), the weighted modulus of continuity has the following properties:
;E’)Ig) ®(g;8)=0
and
a(g;A8) <2(L+ A1) (1+6%)a(g;8), A>0. (31)
For g € Cy(RY), from equations (30) and (31)

lg(®) —g(®)| < (L+ (- %)) (1 +2%)o(g; |t —x])
< 2(1 - @) (1+8%)o(g:8)(1 + (£ —x)*) (1 + 7). (32)
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Theorem 4.3 For f € C;(R{), we have

L3 (f3%) = f ()] , \F
T )

where C is a positive constant independent of n.
Proof By the linearity and positivity of the operators £}, we get

|L2(F;0) —f ()| < L2([f () - f(@)];%)

Using equation (32) and the Cauchy-Schwarz inequality, we get

|L8(f%) — f(@)] < 2(1+8%)@(f;6)(1 +x2)55(<1 ' |’f;x|)(l .\ (t_x)z);x)
<21+ #)a) (1) | £4053) + L5 - 973)

(e —aha) + %E£(|t—xl(t—x>2:x)}

=9}

<2(1+8%)o(f;8)(1+4%) {Lﬁ(l;x) + L0((t - %)% %)

¥ é\/ﬁﬁ((t — X)) + é\/ﬁﬁ((t N (A } (33)
Using Lemma 2.2, we obtain
Lo~ 75) < G (14) (34)
and
Lo((-053) < Cos (1447, (35)

for some positive constants C; and C, dependent on p and A(#y, £,). Now combining equa-

tions (33)-(35) and taking § = \/g, we have

PAGDRI{O] = 2(1 + %)5(f; \/3 (1 +x2){1 ‘ C1%(1 +22)
*Em+ﬁ\/(l+x2)\/5\/(l+xz)}.

Hence, we get

185 ) Sm(ﬂ 1),

wery  (1+x%)? n

where C = 2(1 + MC} + /C; + /C14/C,). This completes the proof. O
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5 Quantitative Voronovskaya theorems
In the following result, we discuss a quantitative Voronovskaja type theorem by using the
weighted modulus of smoothness (f; §). Recently, many researchers [14—18] have made

remarkable contributions in this area.

Theorem 5.1 Forf,f', " in C;(R}) and any x € R}, we have

T e R TN

1 1
+ m{(l + ;)(Aqu,l) +Ay(L1)

+ At1t1 (1, 1) + 2At1t2 (1» 1) + Atztz (ly 1) }] ’

= O(I)E(f”; %), as n— oo.

Proof Let x,t € R}, then, by Taylor’s expansion, we have

f// (x)

T(t - x)2 + E(t, x),

F@&) =f@x) +f @)t - x) +

where E(¢,x) = W(t —x)? and ¢ lies between ¢ and x.

Now, we get

< L2 (|Et%)

).

£ /)~ WL (¢ 25) -T2 (025

Multiplying by # on both sides of the above inequality and using Lemma 2.2, we obtain

Ag(LD) + A, (1, 1)) '@ [f (1 l)
A(1,1) 2! | n +p

n(L2(F33) () —f’(x)<

1 1
+ V[ZA—(LI) { <1 + ;> (Atl (1, 1) + Atz (1, 1))
+ A, (1L,1) +24,,(1,1) + Agyp, (1,1) }:| ‘

<nLh(|Et %) ;). (36)
Using the property of weighted modulus of smoothness given by (32), we get

1) —f" (%)

5 < %E(f”;lgo—x|)(1+(<p—x)2)(1+x2)

< ("5t l) (L (6~ 2) 1+ 2)

< (1+ =) 14 2)m(o)
5

x (L+ (£ —2)?) (L +47).
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Also,

2(1+ 82)%(1 + x¥)o(f"; ), [t —x| <4,
2(1+682)%(1 + xz)(t;—f)za(}”’;é), [t —x| > 6.

1) - f" (%)

<
2! -

Now for 0 < § <1, we obtain

‘f//(ﬁp)z_!f//(x) < 8(1 + xZ)w(f//;(S) (1 + (¢ g:c)4 )

Therefore, we get

|E(t,%)| < 8(1+x%)a(f";9) ((t —x)?+ (¢ ;:6)6 )

Now by the linearity and positivity of the operator £}, and using Remark 2.3, forany x € R},

we obtain

LO(|E@x)];x) < 8(1 +x2)E(f";3){£ﬁ((t—x)2;x) + S%L:ﬁ((t—x)G;x)}

<8(1 +x2)6(f”;8){0<%) - o<%) }

Choosing § = ﬁ, we obtain

1
Lo(|E@x)|;x) < 8(1+4%)@ ”;n%)O(Z). (37)
Hence combining (36) and (37), we reach the required result. a

6 Griiss-Voronovskaya-type theorem

For the first time Gal and Gonska [19], studied the Griiss Voronovskaya type theorem for
the Bernstein, Péltinea and Bernstein-Faber operators by means of the Griiss inequality
which concerns the non-multiplicavity of these operators. For more papers in this direc-
tion we refer the reader to (c¢f [20-22] etc.) Next, we study the non-multiplicativity of the

positive linear operator £}.

Theorem 6.1 For f'(x),g (x),f"(x),g" (%), (fg) (%), (fg)"(x) € C;(R), we have the following
equality:

nli)rgon{ﬁﬁ(fg;x) — LO(f3%)L0(g %)} = x(l + %)j/(x)g/(x).
Proof We have

(f2)" (%) =f"(x)g(x) + 2f' (x)g () + " (x)f (x).
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By making an appropriate arrangement, we get

n{ £ () %) - L1(f32)L1(g5 )}
= n{ﬁﬁ (()sx) = f(x)g(x) = (f2) (W)L (¢ - x5%) %!(X)

f// ( x)

Ly ((t - x)z;x)

—g(x)(ﬂﬁ(f;x) —f(x) —f/(x))ﬂﬁ(t —X;3%) — Efl((t —x)z;x)

2
- L5(f32) (L5 (g5%) — (%) = (€)' (%)) L (¢ = x3.6) — %

Pl(s _ 2.
B2, (1) - 545,

Ly ((t - x)z;x)

Pl w2
. 2Wf/(x))(g)’(x)) +@'®)

+ (@) ) LL(E - %2) (f () - L (f5%)) }

Applying Theorem 3.1, for each x € R}, L, (f;x) — f(x) as n — oo and for f” € C}(R}),
x € R{, by Theorem 5.1, we have

n—00 2

lim ([,ﬁ(f;x) —f(x) —f' (%)L ((t - x);x) —f (‘x) Lo ((t - x)z;x)) =0.
Therefore, using Remark 2.3, we get the desired result. O

7 Rate of approximation of functions having derivative of bounded variation
In the last decade, the degree of approximation for the functions having a derivative of
bounded variation has been studied by several researchers. Ispir et al. [23] considered the
Kantorovich modification of Lupas operators based on Polya distributions and studied the
rate of approximation of the functions having a derivative of bounded variation. For other
significant contributions in this direction cf. [16, 24—27] etc. Motivated by these studies,
we shall discuss the rate of approximation of functions with a derivative of bounded vari-
ation on R}, for the operators £},.

Let DBV(R{) be the subspace of By(R{) of all absolutely continuous functions f having
a derivative f” equivalent with a function of bounded variation on every finite subinterval

of Rj. We observe that the functions f € DBV(R;) possess a representation

) - fo “g(®)dt + £(0),

where g € BV(R}), i.e., g is a function of bounded variation on every finite subinterval
of k.
In order to discuss the approximation of functions with derivatives of bounded variation,

we express the operators £/, in an integral form as follows:

LO(f;) = / YKo 00 at, (38)
0
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where the kernel K, (x, t) is given by

Pl t) =

Z Zpkl kz( %) npe~"Pt(npt) kitka)e

A(l 1) k1!k2. F(kl + kz)p

ky ky+ko>1 ka

e nx 5
A(l 1)l700< ) )

3(t) being the Dirac-delta function.

Lemma 7.1 For a fixed x € R} and sufficiently large n, we have

y Ca+Ha+x) 1
O &wn = [ Kinodes =~ L 0<y<x
0 n (x=-2)
o0 cCa+Ha+x) 1
(ii) l—Sn”(x,z):/ K (x,t)dt < £ , X<zZ<00.
p (z—x)?
Proof (i) Using Lemma 2.2, we get
y Y —t\2
£l (x,y) =/ K,‘,’(x,t)dt</ ( ) KP(x,t)dt
0 x=y
< L0t -x)%x)(x—y)2
Ca+Ha+x) 1
< L )
- n (x—)?
The proof of (ii) is similar; hence the details are omitted. O

Theorem 7.2 Let f € DBV(RY). Then, for every x € R} and sufficiently large n, we have

|L2(f3%) - f(x)]
1 ! 4 Atl(l’l) Atz(lxl) 1 1
§E(f(x+)+f(x—))<W)+2V(x+ " (00— )| (1+;>(1+x)
x+x//n
+%<1+;) 1+x)[f(2) f) - xf(x+)|+— \/ ()

S0 DE VS0 Joen( )
+ |f ()| <1+ —)(1 +x),

where \/Z f(x) denotes the total variation of f(x) on |a, b] and f] is defined by

@) -f'(x=), 0<t<x
f;(t) = 07 t =X, (39)
f'(@&)—f'(x+) x<t<oo.
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Proof Since L5(1;x) = 1, using (38), for every x € (0,1) we get
L) -0 = [ Kiw (70 ~fw) de
0
[e%e] t
= / K’ (x, t)/ f'(u)dudt. (40)
0 x
For any f € DBV(R}), from (39) we may write

fW=(f),0+ %(f/(x+) +f(x-)) + %(f’(x+) —f'(x-)) sgn(v - x)

"EA) [f/(v) - %(f/(’”) +f /("‘))]’ (41)
where
1, v=ux
E.(u) = I
0, v#x.
We get
/oo</t(f/(lfi) - %(f’(x+) +f/(x—)))Ex(v) dv)](,f(x, t)dt =0. (42)
0 x

Using Lemma 2.2 and applying the Cauchy-Schwarz inequality, we obtain

/ h ( / t S0+ ) dv)K,’,’(x, £)dt
0 x

1

= 5(}” "(+) +f'(x-)) /0 oo(t — %)K? (x, t) dt

- %(f’<x+> f ()LL) = 5 (F r0) +f’(x—))<

. Ay (L1) + A, (1,1)) (43)

nA(1,1)
and

/Ool(f(x, t) (/t l(f/(x+) —f'(x-)) sgn(v - x) dv) dt
0 x 2

1/2
< /

If () = f(x=) [ (L0 (2 - %)% %))
< %lf/(x+) _f/(x—)| % (1 + %)(1 +X). (44)
Using Lemma 2.2 and equations (40)-(44), we obtain

1 / / At1 (11 1) Atz (1: 1)
|£5(f5%) - f(%)| < 3 (f'(x+) + f'(x-)) (W)

+ %[f’(x+) - f'(x-)| /§<1 + l)(1 +x) + || + L), (45)
n\ o
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where

=[] (7)) )2, 2
0 Jx

and

Iz_/ / (V)dv K7 (x,t) dt.

Since we know fab di&) (x,t) <1, for all [, b] C R}, using integration by parts and applying
Lemma 7.1 and substituting y = x — x//n, we get

L = ’f / V)dv ) di&f (%, )’

= /0 éjl’(x,t)(f/)x(t)dt‘
y x

< [0, 0lls s 0l e+ [ 1) (0 g 0] de
0 y

- %)(nx) | yQ((f’m(x-t)-de [ Vi

Substituting v = x/(x — £), we get

X

C 1 x—x//n -
;(1+;>(1+x)/0 =0 \/((),)ds

Z(1+—)(1+x)x1/ ((f'),) av

x—x/u

§g<1+l>1+x _IZ/kH y

" xx/k
C 1 Wnl x
)0

k=1 x—x/k

IA

Thus,

=S (DS V @02 V@) )
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Again, using integration by parts, applying the Cauchy-Schwarz inequality, Lemma 7.1 and
substituting z = x + (1 —x)//n, we get

L] = / / v)dv K”(x,) ‘
_ /2/ ). () dv)d, (1 - &0 (x, 1)) / / ), () dv)K? (x, 1) d ’

= [/x ((f),mdv)(1- 5f(x,t))}2x

+

)01 - 200) dt‘

X

/ ((F'0) =f"(x+)) dv) K (x, 1) dt‘

<

2x
(1,00 -&0)ds

2%
| (). 0d) 0w 20)|
+|f @)

/ ((t - %))KP (x, 1) dt

/ YKo dt|

b SF@OK? (x,t) dt
2x

+V(x+)|
§£<1+l)(l+x)
n o) x%
+g(l+ 1)(1+x)
n o

/ KP(x, ) dt
2x

+

x+x//n
/ fi(@) dt‘

(OK? (x,1) dt‘

2x
/ ((f' ) = f(x+)) dv

X

2x
/ (t —x)fL(t) dt| +
x+x//n

00 1/2
+[f ()] +|f (x4)] ( (t —x)*K’ (x,1) dt> . (47)
2x

By substituting ¢ = x + 7 and proceeding in a similar way to I;, we get

x+x/ /1
o] < %(1+%>(1;x) @0 =16 = @l + 2=\ (5)

[Vr) x+x//k o]
o YET s

F1f o) %(1 R %)(1 ), (48)

+|f ()

/ KP(x,¢) dt
2x

Now for ¢ > 2x, we may write ¢t < 2(¢ — x) and x < ¢ — x. Now using Lemma 7.1, we ob-

tain

‘/OOM(I + ) K0 (x, ) dt + |f ()] /OOK,f(x,t)dt
2x

2%

M [ 2 > 2
<= (£ —x)°KF (x, t) dt + 4M (& —x)°KF (%, t)dt
x* Jox 2x
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If

il /2 :O(t-x)21<5(x, t)dt

+
x
C 1 M
5—(1+—)(1+x)<w +4M). (49)
n 0 x
Collecting the estimates (45)-(49), we get the required result. a

8 Conclusion

A link between Szasz-Durrmeyer type operators and multiple Appell polynomials has
been established. The quantitative Voronovskaya type theorem and the Griiss-
Voronovskaya type theorem have been proved. A local approximation result and the
weighted approximation theorem have been discussed besides the approximation of func-
tions whose derivatives are locally of bounded variation.
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