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Abstract
In the article, we prove that the double inequality

αL(a,b) + (1 – α)T (a,b) < NS(a,b) < βL(a,b) + (1 – β)T (a,b)

holds for a,b > 0 with a �= b if and only if α ≥ 1/4 and β ≤ 1 –π /[4 log(1 +
√
2)],

where NS(a,b), L(a,b) and T (a,b) denote the Neuman-Sándor, logarithmic and second
Seiffert means of two positive numbers a and b, respectively.
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1 Introduction
For a, b >  with a �= b, the Neuman-Sándor mean NS(a, b) [], the second Seiffert mean
T(a, b) [], and the logarithmic mean L(a, b) [] are defined by

NS(a, b) =
a – b

 sinh–[(a – b)/(a + b)]
, (.)

T(a, b) =
a – b

 tan–[(a – b)/(a + b)]
, (.)

L(a, b) =
a – b

log a – log b
,

respectively. It can be observed that the logarithmic mean L(a, b) can be rewritten as (see
as [])

L(a, b) =
a – b

 tanh–[(a – b)/(a + b)]
, (.)

where sinh–(x) = log(x +
√

 + x), tanh–(x) = log
√

( + x)/( – x) and tan–(x) = arctan(x),
are the inverse hyperbolic sine, inverse hyperbolic tangent, and inverse tangent, respec-
tively.
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Recently, the means NS, T , L and other means have been the subject of extensive re-
search. In particular, many remarkable inequalities for the Neuman-Sándor, second Seif-
fert and logarithmic means can be found in the literature [–].

Let P(a, b) = (a – b)/( sin–[(a – b)/(a + b)]), S(a, b) =
√

(a + b)/, A(a, b) = (a + b)/,
I(a, b) = /e(bb/aa)/(b–a), G(a, b) =

√
ab, and H(a, b) = ab/(a + b) denote the first Seif-

fert, root-square, arithmetic, identric, geometric, and the harmonic means of two positive
numbers a and b with a �= b, respectively. Then it is well known that the inequality

S(a, b) > T(a, b) > NS(a, b) > A(a, b) > I(a, b) > P(a, b) > L(a, b) > G(a, b) > H(a, b)

holds for a, b >  with a �= b.
In [] and [], the authors proved that the double inequalities

S(a, b)α A–α (a, b) < NS(a, b) < S(a, b)β A–β (a, b),

αS(a, b) + ( – α)G(a, b) < NS(a, b) < βS(a, b) + ( – β)G(a, b)

hold for all a, b >  with a �= b if and only if α ≤ /, (log( +
√

) – log )/ log  ≤ β ≤ ,
α ≤ / and β ≥ /[

√
 log( +

√
)].

In [], it was showed that the inequality

Pα (a, b)T –α (a, b) < NS(a, b) < Pβ (a, b)T –β (a, b)

holds for all a, b >  with a �= b if and only if α > / and

β ≤ log

(
 log( +

√
)

π

)
/ log  = . . . . .

Let Lp(a, b) = (ap+ + bp+)/(ap + bp) be the Lehmer mean of two positive numbers a and
b with a �= b. In [], the authors proved the double inequality

Lα (a, b) < NS(a, b) < Lβ (a, b)

holds for all a, b >  with a �= b if and only if α = . . . . is the unique solution of the
equation (p + )/p =  log( +

√
), and β = .

Let

Mp(a, b) =

⎧
⎨

⎩
( ap+bp

 )/p, p �= ,√
ab, p = ,

be the pth power means of two positive numbers a and b with a �= b. In [], the authors
proved the sharp double inequality

Mlog /(logπ–log )(a, b) < T(a, b) < M/(a, b)

holds.
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Gao [] proved the optimal double inequality

I(a, b) < T(a, b) <
e
π

I(a, b)

holds for all a, b >  with a �= b.
Yang [] proved the inequality

A/(p)
p (a, b)G–/(p)(a, b) < L(a, b) < A/(q)

q (a, b)G–/(q)(a, b)

holds for all a, b >  with a �= b if and only if p ≥ /
√

 and  < q ≤ /. And the inequality

M(a, b) < L(a, b) < M/(a, b)

was proved by Lin in [].
In [], the authors present bounds for L in terms of G and A

G/(a, b)A/(a, b) < L(a, b) <



G(a, b) +



A(a, b)

for all a, b >  with a �= b.
The purpose of this paper is to answer the following questions: What are the least value

α and the greatest value β such that

αL(a, b) + ( – α)T(a, b) < NS(a, b) < βL(a, b) + ( – β)T(a, b)

holds for all a, b >  with a �= b ?

2 Lemmas
It is well known that, for x ∈ (, ),

tanh–(x) = x +
x


+

x


+ · · · =

∞∑

n=


n + 

xn+, (.)

tan–(x) = x –
x


+

x


–

x


+ · · · =

∞∑

n=

(–)n

n + 
xn+. (.)

To establish our main result, we need several lemmas as follows.

Lemma . ([]) Let

H(x) =


sinh– x
–

x√
 + x(sinh– x)

.

Then H(x) is strictly increasing on (, ). Moreover, the inequality

H(x) <
x


–
x


(.)
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holds for any x ∈ (, .) and the inequality

H(x) >
x


–
x


(.)

holds for any x ∈ (, ).

Lemma . Let S(x) = /tanh–x – x/[( – x)(tanh–x)]. Then

S(x) < –



x –



x –



x (.)

for any x ∈ (, ) and

S(x) > –



x – x –
x


(.)

for any x ∈ (, .).

Proof Let

G(x) =
(
 – x)(tanh– x

)
[

S(x) +



x +



x +



x
]

.

Then direct computation leads to

G() = , (.)

G′(x) =



g(x) tanh– x, (.)

where g(x) = ( – x – x)tanh–x + x + x – x. It follows that

g ′(x) =


 – x g(x), (.)

where g(x) = (–x – x)( – x)tanh–x – x + x + x. Considering (.), we have

g(x) <
(
–x – x

)(
 – x)

(
x +

x


+

x



)
– x + x + x

=


(
x + x + x – x + x – x)

< x(x – x + x – 
)

< , (.)

for x ∈ (, ). Thus, (.) and (.) as well as g() =  imply g(x) <  for x ∈ (, ). There-
fore, combining (.) and (.), we get G(x) <  for x ∈ (, ). It means inequality (.)
holds.

Let

Q(x) =
(
 – x)(tanh– x

)
[

S(x) +



x + x +
x



]
.
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Direct computation leads to

Q() = , (.)

Q′(x) =



q(x) tanh– x, (.)

where

q(x) = x + x – x +
(
 + x – x – x) tanh– x.

When x ∈ (, .], considering (.) and the fact  + x – x – x = ( – x) + ( +
x – x) > , we can get

q(x) > x + x – x +
(
 + x – x – x)

(
x +

x


+

x



)

= –



x – x –



x –




x +



x

> x
(

–



x –




x +



)
> .

When x ∈ (., .), direct computation leads to

q(.) = . . . . > , (.)

q′
(x) = q(x)/

(
 – x), (.)

where q(x) = x – x – x + (x + x – x + x) tanh– x. Considering (.)
and the fact x + x – x + x < x(x – x + ) < , we can get

q(x) < x – x – x +
(
x + x – x + x

)(
x +

x


+

x



)

=



x +




x +



x –



x – x + x

< x(x – x – 
)

+ x( – x) < . (.)

Thus, (.)-(.) imply that

q(x) >  (.)

holds for any x ∈ (., .).
Therefore, Q(x) >  for x ∈ (, .) follows from (.), (.) and (.). That means

inequality (.) holds. �

Lemma . Let T(x) = /tan–x – x/[( + x)(tan–x)]. Then

T(x) <



x –



x +



x (.)
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for any x ∈ (, ) and

T(x) >



x –



x +
x


(.)

for any x ∈ (, .).

Proof Let

M(x) =
[

T(x) –



x +
x


–




x
](

 + x)(tan– x
).

Differentiating M(x), we have M′(x) = [t(x)tan–x]/, where

t(x) = x + x – x +
(
–x + x – x – 

)
tan–x.

For x ∈ (, ), we have –x + x – x –  < –x – x –  < . Thus from (.), we
can get

t(x) < x + x – x +
(
–x + x – x – 

)(
x –

x



)

= x –



x –



x

< –



x –



x < .

Therefore M′(x) <  for x ∈ (, ). Considering the fact M() = , we get M(x) <  for
x ∈ (, ). So the inequality (.) holds.

Let

N(x) =
[

T(x) –



x +



x –
x



](
 + x)(tan– x

).

Differentiating N(x), we have N ′(x) = n(x)tan–x, where

n(x) =



x +



x –



x –
(

x –



x +



x +



)
tan– x.

Because of
(




x –



x
)

+ x +



> 

for x ∈ (, .), it follows that

n(x) >



x +



x –



x –
(

x –



x +



x +



)
x

= x – x > .

Considering the fact N() = , the inequality (.) holds. �
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Lemma . The function f (x) = λS(x) + ( –λ)T(x) – H(x) is strictly decreasing on (., ),
where λ =  – π/[ log( +

√
)] = . . . . and H(x), S(x) and T(x) are defined as in Lem-

mas ., . and ., respectively.

Proof Direct computation leads to

S′(x) = 
x – tanh– x

( – x)(tanh– x)
,

S′′(x) = 
ϕ(x)

( – x)(tanh– x)
,

where ϕ(x) = ( + x)tanh–x – x – x(tanh–x). It follows that

ϕ′(x) =
R(x)

 – x ,

where R(x) = –( – x)(tanh–x) – (x + x)tanh–x + x. From (.), we can get

R(x) < –
(
 – x)

(
x +

x



)

–
(
x + x

)(
x +

x



)
+ x

=



x +



x –



x < .

Thus ϕ(x) is strictly decreasing on (., ). Considering the fact ϕ(.) = –. . . . < ,
we have ϕ(x) <  for any x ∈ (., ). In other words, S′(x) is strictly decreasing on (., ).

Let φ(x) = λS(x) + ( – λ)T(x). It was proved that T ′(x) is strictly decreasing on (., ) in
Lemma  of []. Thus, from the monotonicity of S′(x) and T ′(x), we have

φ′(x) < λS′(.) + ( – λ)T ′(.) = –. . . . < 

for any x ∈ (., ). That is to say, φ(x) is strictly decreasing on (., ). Considering the
monotonicity of H(x) in Lemma ., the proof is completed. �

Lemma . We have

 – λ


x –
λ + 


x +

 – λ


> 

for x ∈ (, .), where λ =  – π/[ log( +
√

)] = . . . . .

Proof Let

η(x) =
 – λ


x –

λ + 


x +
 – λ


.

Then it is easy to verify that η(x) is decreasing on (,μ), where

μ =
√




×
√

 log( +
√

) – π

π –  log( +
√

)
= . . . . .

Considering η(.) = . . . . > , we have η(x) >  for x ∈ (, .). �
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3 Main results
Theorem . The double inequality

αL(a, b) + ( – α)T(a, b) < NS(a, b) < βL(a, b) + ( – β)T(a, b)

holds for any a, b >  with a �= b if and only if α ≥ / and

β ≤  –
π

 log( +
√

)
= . . . . .

Proof Because NS(a, b), L(a, b), T(a, b) are symmetric and homogeneous of degree , with-
out loss of generality, we can assume that a > b and x := (a – b)/(a + b) ∈ (, ). Let p ∈ (, )
and λ =  – π/[ log( +

√
)] = . . . . . Then by (.)-(.), direct computation leads to

NS(a, b)
A(a, b)

=
x

sinh– x
,

L(a, b)
A(a, b)

=
x

tanh– x
,

T(a, b)
A(a, b)

=
x

tan– x
.

Let

Ft(x) =
tL(a, b) + ( – t)T(a, b) – M(a, b)

A(a, b)

= t
x

tanh– x
+ ( – t)

x
tan– x

–
x

sinh– x
. (.)

Then it follows that

F 


(
+)

= , (.)

Fλ

(
+)

= Fλ

(
–)

= . (.)

Differentiating Ft(x), we have

F ′
t(x) = t

[


tanh– x
–

x
 – x


(tanh– x)

]

+ ( – t)
[


tan– x

–
x

 + x


(tan– x)

]

–
[


sinh– x

–
x√

 + x


(sinh– x)

]

:= tS(x) + ( – t)T(x) – H(x),

where H(x), S(x) and T(x) are defined as in Lemmas .-., respectively.
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On one hand, from inequalities (.), (.) and (.), we clearly see that

F ′



(x) =



S(x) +



T(x) – H(x)

<



(
–




x –



x –



x
)

+



(



x –



x +



x
)

–
(

x


–



x
)

= –



x +



x < 

for any x ∈ (, ). It leads to

F 


(x) < F 


() =  (.)

for any x ∈ (, ). Thus, from (.) it follows that

NS(a, b) >



L(a, b) +



T(a, b)

for all a, b >  with a �= b. Considering L(a, b) < NS(a, b) < T(a, b), we can get

NS(a, b) > αL(a, b) + ( – α)T(a, b) (.)

for all α ≥ / and a, b >  with a �= b.
On the other hand, from inequalities (.), (.) and (.), we have

F ′
λ(x) > –λ

(



x + x +
x



)
+ ( – λ)

(



x –



x +
x



)
–

(
x


–
x



)

= x
[

 – λ


x –
λ + 


x +

 – λ



]

for x ∈ (, .). According to Lemma ., we have

F ′
λ(x) >  (.)

for x ∈ (, .). Lemma . shows that F ′
λ(x) is strictly decreasing on (., ). This fact

and F ′
λ(.) = . . . . >  together with F ′

λ(–) = –∞ imply that there exists x ∈
(., ) such that Fλ(x) is strictly increasing on (, x] and strictly decreasing on [x, ).
Equations (.) and (.) together with the piecewise monotonicity of Fλ(x) lead to the
conclusion that

NS(a, b) < λL(a, b) + ( – λ)T(a, b)

for all a, b >  with a �= b. Considering L(a, b) < M(a, b) < T(a, b), we can get

NS(a, b) < βL(a, b) + ( – β)T(a, b) (.)

holds for β ≤ λ and all a, b >  with a �= b.
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Finally, we prove that L(a, b)/ + T(a, b)/ and λL(a, b) + ( – λ)T(a, b) are the best pos-
sible lower and upper mean bound for the Neuman-Sándor mean M(a, b).

For any ε, ε > , let t = / – ε, t = λ + ε. Then one can get

Ft (x) =
(




– ε

)
x

tanh– x
+

(



+ ε

)
x

tan– x
–

x
sinh– x

, (.)

Ft (x) = (λ + ε)
x

tanh– x
+ ( – λ – ε)

x
tan– x

–
x

sinh– x
. (.)

Let x → + and x → –, then the Taylor expansion leads to

Ft (x) =


εx

 + O
(
x


)
, (.)

Ft (x) = –ε/π + O(x – ). (.)

Equations (.) and (.) imply that if α < /, then, for any ε > , there exists σ ∈ (, )
such that NS(a, b) < (/ – ε)L(a, b) + (/ – ε)T(a, b) for all a, b with (a – b)/(a + b) ∈
(,σ).

Equations (.) and (.) imply that if β > λ, then, for any ε > , there exists σ ∈ (, )
such that NS(a, b) > (λ + ε)L(a, b) + ( – λ – ε)T(a, b) for all a, b with (a – b)/(a + b) ∈
( – σ, ). �

4 Conclusion
In the article, we give the sharp upper and lower bounds for Neuman-Sándor mean in
terms of the linear convex combination of the logarithmic and second Seiffert means.
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