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Abstract
A class of 4-band symmetric biorthogonal wavelet bases has been constructed, in
which any wavelet system the high-pass filters can be determined by exchanging
position and changing the sign of the two low-pass filters. Thus, the least restrictive
conditions are needed for forming a wavelet so that the free degrees can be reversed
for application requirement. Some concrete examples with high vanishing moments
are also given, the properties of the transformation matrix are studied and the
optimal model is constructed. These wavelets can process the boundary
conveniently, and they lead to highly efficient computations in applications.
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1 Introduction
As a generalization of orthogonal wavelets, the biorthogonal wavelets have become a fun-
damental tool in many areas of applied mathematics, from signal processing to numerical
analysis [–]. It is well known that -band orthogonal wavelets, suffering from severe
constraint conditions, such as nontrivial symmetric -band orthogonal wavelets, do not
exist []. Biorthogonal wavelets, multi-band wavelets are designed as alternatives for more
freedom and flexibility [–]. Multi-band wavelets have attracted considerable attention
due to their richer parameter space to have a more flexible time-frequency tiling, to zoom
in onto narrow band high frequency components in frequency responses, to give better
energy compaction than -band wavelets. (Bi)orthogonal real-valued multi-band wavelets
with symmetry have been reported in [–, , ]. In this paper, we can construct in-
numerable wavelet filters with some structure for fast calculation, among which we can
select the best ones for practical applications.

As the case of a dyadic wavelet, a pair (φ(x), ˜φ(x)) of dual scaling functions can be ex-
pressed as the following dilation equations:

φ(x) =
∑

k∈Z

hkφ(dx – k) (.)
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and

˜φ(x) =
∑

k∈Z

˜hk˜φ(dx – k), (.)

respectively, with

〈

φ(· – k), ˜φ(· – j)
〉

= δk–j (.)

or equivalently,

∑

k

hk˜hk+dj = δj, (.)

where δj denotes the Dirac sequence such that δj =  for j =  otherwise δj = .
Recall the sub-band coding scheme or Mallat algorithm associated to a -band biorthog-

onal wavelets. There are eight sequences h = (hn)n∈Z , gi = (gi
n)n∈Z (i = , , ), ˜h = (˜hn)n∈Z ,

˜gi = (̃gi
n)n∈Z (i = , , ), four of which are used for decomposition {h, g, g, g} and the oth-

ers for reconstruction {˜h, g̃, g̃, g̃}. Starting from a data sequence x = (xn)n∈Z , we convolve
with h, g, g, g and retain only one sample out of every four for decomposition

cn =
∑

k

hn–kxk ,

di
n =

∑

k

gi
n–kxk , i = , , .

(.)

The reconstruction operation is

xk =
∑

n

(

˜hn–kcn +


∑

i=

g̃i
n–kdi

n

)

. (.)

Equations (.) and (.) can be rewritten as the form of -circular matrix [], which
can be defined by the -circular operator.

If c is a periodic signal, we rewrite c = (c
 , c

, . . . , c
n)T , which is a whole period.

Let c = (c
, c

, . . . , c
n, d

, d
, . . . , d

n, d
 , d

, . . . , d
n, d

 , d
, . . . , d

n)T . Then there exists a n ×
n -circular matrix Mn generated by {h, g, g, g} such that

c = Mnc. (.)

It is easy to see that (.) is equivalent to (.). Let

c = ˜MT
nc, (.)

where ˜Mn is a -circular n × n matrix generated by {˜h, g̃, g̃, g̃}.
Clearly, (.) is equivalent to (.). Then

∥

∥c∥
∥

 =
(

c)T c =
(

c)T(

MT
nMn

)

c. (.)
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Since MT
nMn is a positive definite matrix, its eigenvalues λi (i = ,  . . . , n) are positive

and there exists an orthonormal matrix Q such that

MT
nMn = QT diag(λ,λ, . . . ,λn)Q. (.)

Let s = Qc = (s, s, . . . , sn)T . Then ‖s‖ = ‖c‖. It follows from (.) and (.) that

∥

∥c∥
∥

 =
(

Qc)T
diag(λ,λ, . . . ,λn)

(

Qc) =
n
∑

i=

λis
i .

Thus,

min{λi}
∥

∥c∥
∥

 ≤ ∥

∥c∥
∥

 ≤ max{λi}
∥

∥c∥
∥

. (.)

Similarly,

min{˜λi}‖c‖ ≤ ‖c‖ ≤ max{˜λi}‖c‖, (.)

where˜λi (i = ,  . . . , n) are the eigenvalues of ˜MT
n ˜Mn.

We try to calculate the eigenvalues of MT
nMn or ˜MT

n ˜Mn. It has been shown that the
eigenvalues of MT

nMn appear in pairs of reciprocals, MT
nMn and ˜MT

n ˜Mn have the same
eigenvalues. It is obvious that max{λi} = max{˜λi} = 

min{λi} = 
min{˜λi} .

This paper is organized as follows. In Section , we design a type of -band biorthogo-
nal wavelets filters for fast calculation, give the construction method. In Section , some
results of the wavelet transform matrix are developed. So a model to minimize the max-
imum eigenvalue is built in Section . An example is provided to illustrate our results in
this paper. Conclusions and future work are summarized in Section .

2 4-band biorthogonal wavelets filters for fast calculation
In this section, a class of -band symmetric biorthogonal wavelet filters for fast calculation
is designed, and the corresponding wavelet filters are constructed.

Assume that

h = {t, t, . . . , tL–, tL–, . . . , t, t}, (.)

˜h = {˜t,˜t, . . . ,˜tL–,˜tL–, . . . ,˜t,˜t}. (.)

The high-pass filters for decomposition are

g
i = (–)L–ihi+, g

i+ = (–)L–i+hi ( ≤ i ≤ L – ),

g
i = (–)ĩhL––i ( ≤ i ≤ L – ),

g
i = (–)ĩg

L––i ( ≤ i ≤ L – ).

(.)

Note that g is symmetric and g and g are antisymmetric.
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The high-pass filters for reconstruction are

g̃
i = (–)L–ĩhi+, g̃

i+ = (–)L–i+̃hi ( ≤ i ≤ L – ),

g̃
i = (–)ihL––i ( ≤ i ≤ L – ),

g̃
i = (–)ig

L––i ( ≤ i ≤ L – ).

(.)

We can see that g̃ is symmetric and g̃ and g̃ are antisymmetric.
For L = , an example of a filter bank {h, g, g, g} is as follows:

⎡

⎢

⎢

⎢

⎣

t t t t t t t t t t t t

t –t –t t t –t –t t t –t –t t

˜t –˜t ˜t –˜t ˜t –˜t ˜t –˜t ˜t –˜t ˜t –˜t

˜t ˜t –˜t –˜t ˜t ˜t –˜t –˜t ˜t ˜t –˜t –˜t

⎤

⎥

⎥

⎥

⎦

.

Clearly, this type of wavelet filter banks are only determined the two low-pass filters h,
˜h, i.e., the high-pass filters can be determined by exchanging position and changing the
sign of the two low-pass filters. Therefore, it can reduce the computational complexity and
facilitate fast computation.

In addition, we assume
∑

k hk =
∑

k
˜hk = . At this time, the basic conditions of biorthog-

onal wavelets are
∑

k

hk˜hk+j = δj,

∑

k

hkg̃n
k+j = , n = , , ,

∑

k

gn
k g̃m

k+j = δn–mδj,  ≤ n, m ≤ .

We have the following theorem for the biorthogonality condition.

Theorem . If

∑

k

hk˜hk+j = δj,

∑

k

g
k
˜hk+j = ,

(.)

then the wavelet filter banks defined by (.)-(.) satisfy the biorthogonality condition.

Proof By direct calculation, we can see that
∑

k hkg̃n
k+j =  (n = , ),

∑

k g
k g̃n

k+j = 
(n = , ),

∑

k gn
k
˜hk+j =  (n = , ),

∑

k gn
k g̃

k+j =  (n = , ).
From

∑

k hk˜hk+j = δj, we can obtain
∑

k gn
k g̃n

k+j = δj (n = , , ). From
∑

k g
k
˜hk+j = , we

can obtain
∑

k hkg̃
k+j = ,

∑

k g
k g̃

k+j = ,
∑

k g
k g̃

k+j = . The proof is complete. �

Remark . According to Theorem ., for L parameters in the wavelet system, (.)
contains L nonlinear equations. We can add constraints such as high vanishing move-
ments for the surplus L parameters.
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Example . We relax the condition of the sum of highest vanishing moments, and let
L =  and the high-pass wavelet filters defined by (.) have , ,  order vanishing mo-
ments, respectively. The parameterized filters are as follows:

t =
–


,x – ,x + ,x – 
,x – x + 

,

t =
–


,x – ,x + ,x – 
,x – x + 

,

t =



,x – ,x – x + 

,x – x + 
,

t =



,x – ,x + ,x – 

,x – x + 
,

t =



,x – ,x + 
,x – x + 

,

t =



,x – ,x + 
,x – x + 

,

˜t = x –



,

˜t = x –



,

˜t = x –



,

˜t = x,

˜t = –x +



,

˜t = –x +



,

where x is a free parameter.

3 The properties of the wavelet transformation matrix
A so-called -circular matrix [], which is generated by the filters h, g, g, g, is denoted
as Mn. For n = , M is as follows:

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

h h h h     h– h– h– h–

h– h– h– h– h h h h    
    h– h– h– h– h h h h

g
 g

 g
 g

     g
– g

– g
– g

–

g
– g

– g
– g

– g
 g

 g
 g

    
    g

– g
– g

– g
– g

 g
 g

 g


g
 g

 g
 g

     g
– g

– g
– g

–

g
– g

– g
– g

– g
 g

 g
 g

    
    g

– g
– g

– g
– g

 g
 g

 g


g
 g

 g
 g

     g
– g

– g
– g

–

g
– g

– g
– g

– g
 g

 g
 g

    
    g

– g
– g

– g
– g

 g
 g

 g


⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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Define

MMT =

⎡

⎢

⎢

⎢

⎣

HHT HGT
 HGT

 HGT


GHT GGT
 GGT

 GGT


GHT GGT
 GGT

 GGT


GHT GGT
 GGT

 GGT


⎤

⎥

⎥

⎥

⎦

,

˜M˜MT =

⎡

⎢

⎢

⎢

⎣

˜H˜HT
˜H˜GT

 ˜H˜GT
 ˜H˜GT


˜G˜HT

˜G˜GT
 ˜G˜GT

 ˜G˜GT


˜G˜HT
˜G˜GT

 ˜G˜GT
 ˜G˜GT


˜G˜HT

˜G˜GT
 ˜G˜GT

 ˜G˜GT


⎤

⎥

⎥

⎥

⎦

,

(.)

where H , G, G, G and ˜H , ˜G, ˜G, ˜G are all n × n -circular matrices generated by
{h, g, g, g}, {˜h, g̃, g̃, g̃}, respectively.

Theorem . Assume that the type of wavelet filter banks defined by (.)-(.) satisfy
(.). Then, for any large enough integer n, MnMT

n and ˜Mn ˜MT
n defined by (.) are similar

matrices.

Proof The element at the jth row and the kth column in GGT
 can be written as

∑

i

g
i+jg


i+k =

∑

i∈Z

(–)(i+j)/h(i+j)+(–)(i+k)/h(i+k)+

+
∑

i∈Z+

(–)(L+–(i+j–)/)h(i+j)–(–)(L+–(i+k–)/)h(i+k)–

=
∑

i∈Z

hi+j+hi+k+ +
∑

i∈Z+

hi+j–hi+k–

=
∑

i

hi+jhi+k .

It is just the element in HHT at the same position. Therefore,

HGT
 = GHT = GGT

 = GGT
 = ,

HGT
 = GGT

 = –GHT = –GGT
 ,

HGT
 = GGT

 = –GGT
 = –GHT ,

GGT
 = GGT

 .

Similarly, we can show that

˜G˜GT
 = ˜H˜HT ,

˜G˜GT
 = ˜G˜GT

 ,

˜H˜GT
 = ˜G˜GT

 = –˜G˜HT = –˜G˜GT
 ,

˜H˜GT
 = ˜G˜GT

 = –˜G˜GT
 = –˜G˜HT ,

˜H˜GT
 = ˜G˜HT = ˜G˜GT

 = ˜G˜GT
 = .
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The element at the jth row and the kth column in GGT
 can be written as

∑

i

g
i+jg


i+k =

∑

i

(–)(i+j)̃hL–(i+j)–(–)(i+k)̃hL–(i+k)–

=
∑

i

˜hL–(i+j)–˜hL–(i+k)–

=
∑

i

˜h–i+j˜h–i+k

=
∑

i

˜hi+j˜hi+k .

It is just the element in ˜H˜HT at the same position.
Therefore,

˜G˜GT
 = HHT , HGT

 = –˜H˜GT
 , HGT

 = –˜H˜GT
 .

Define

B =

⎡

⎢

⎢

⎢

⎣

O O O I
O O –I O
O –I O O
I O O O

⎤

⎥

⎥

⎥

⎦

, B– =

⎡

⎢

⎢

⎢

⎣

O O O I
O O –I O
O –I O O
I O O O

⎤

⎥

⎥

⎥

⎦

,

where In, On are n × n identity matrix and zero matrix, respectively, for convenience, we
omit the subscript n × n when it does not cause any confusion.

We can see that B–
n(MnMT

n )Bn = ˜Mn ˜MT
n . It implies that MnMT

n and ˜Mn ˜MT
n are similar

matrices. �

Corollary . If λ is an eigenvalue of matrix MnMT
n , then /λ is also an eigenvalue of

matrix MnMT
n .

Proof Note that MnMT
n (˜Mn ˜MT

n ) = In. It implies that both MnMT
n and ˜Mn ˜MT

n are posi-
tive definite matrices, and all of eigenvalues of MnMT

n and ˜Mn ˜MT
n are positive. It follows

from Theorem . that MnMT
n and ˜Mn ˜MT

n have the same eigenvalues. The proof is com-
pleted. �

Now we can state the lower bound theorem as follows.

Theorem .

max
≤i≤n

λi ≥ max

{∑

i h
i +

∑

i
˜h

i


,


∑

i h
i +

∑

i
˜h

i

}

. (.)

Proof Assume that the type of wavelet filter banks defined by (.)-(.) satisfy (.). The
elements at the diagonal of matrix MnMT

n are
∑

i h
i or

∑

i g
i .

Thus,

n
∑

i=

λi = n
(

∑

i

h
i +

∑

i

˜h
i

)

.
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According to Corollary ., we have

max
i

λi ≥
∑n

i= λi

n
≥ min

i
λi =


maxi λi

,

this leads to

max
≤i≤n

λi ≥ max

{∑

i h
i +

∑

i
˜h

i


,


∑

i h
i +

∑

i
˜h

i

}

.

The proof is complete. �

Remark . Theorem . shows that there exists a lower bound on the maximum eigen-
value of the wavelet transform matrices which is only related to the filters and independent
of the dimension of the transformation matrix.

4 Optimal model for 4-band biorthogonal wavelets bases
In the former section, it has been shown that the eigenvalues of MT

nMn appear in pairs of
reciprocal, MT

nMn and ˜MT
n ˜Mn have the same eigenvalues. It is obvious that max{λi} =

max{˜λi} = 
min{λi} = 

min{˜λi} . In this section, we shall design wavelets based on minimizing
the maximum eigenvalue.

Optimal model. Assume that the type of wavelet filter banks defined by (.)-(.) with
parameter set � and λ(ω) are the eigenvalues of MT

nMn. The optimal model for -band
biorthogonal wavelet bases is

min
ω∈�

max
≤i≤n

λi(ω). (.)

Example . For L = , the parameterized filters have been given in Example .. We
can use an extra degree of freedom to minimize the maximum eigenvalue. From (.), we
can obtain the solution is x ≈ .. The wavelets are denoted as Op(-). At this
time,

t = ., t = –., t = –.,

t = ., t = ., t = .,

˜t = –., ˜t = –., ˜t = ., ˜t = .,

˜t = ., ˜t = ..

See Figure  for the graphs of the scaling functions and wavelets in this example. We
have

λ(M) = {., ., ., ., ., ., ., ., , ,

, , ., ., ., ., ., ., ., .}.



Zou and Wang Journal of Inequalities and Applications  (2017) 2017:222 Page 9 of 10

Figure 1 The graphs of Op(12-12) in Example 4.1.

Note that x = /; very near .. We can obtain the wavelets with rational filter banks
as follows:

t = /,, t = –,,,,,/,,,,,,

t = –,,,,,/,,,,,,

t = ,,,,,/,,,,,,

t = ,/,, t = ,/,,

˜t = –/, ˜t = –/, ˜t = /, ˜t = /,

˜t = /, ˜t = /.

5 Conclusions and future work
We have constructed a class of -band symmetric biorthogonal wavelet bases, in which
any wavelet system the high-pass filters can be determined by exchanging position and
changing the sign of the two low-pass filters. The transformation matrix is studied and
the optimal model is constructed. A concrete example with high vanishing moments is
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also given which leads to highly efficient computations. We will further study the related
topic that this wavelet bases are applied in numerical calculation and image compression
coding.
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