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1 Introduction
In this article, we consider the following quasi-linear elliptic problem:

—2 «
— gt = P P 2 Bl P 2 in €2, w
u=0 ona2

where @ C RN (N > 3) is a bounded domain with the smooth boundary 92 such that
0 € Q. Apu = div(|VulP~2Vu) is the p-Laplacian operator of #, 1 < p < N,A > 0 is a positive

real number. 0 < u < (W = % is the best Hardy constant). 1 < g < p and p* = NN—i

is the critical Sobolev exponent. 0 <@ <p -1, 0 < 8 < B (B is the first eigenvalue that
-2

-Apu—p ‘”‘Ii‘ -2 = |x|*P|u|P~2u under Dirichlet boundary condition).

Definition 1.1 The function u € W;’p (R2) is called a weak solution of (1.1) if u satisfies

p—2
[ |Vu|p’2Vu-Vv—//,|u|—uv dx
Q ||

= f (|u|p*’2uv+,B|x|“’p|u|p’2uv+)»|u|q’2uv) dx (1.2)
Q

for all v e Wp”(Q).

In this paper, we use the following norm of W,”():

Jul = (/Q(Wuw - u%) dx)}?.
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By the Hardy inequality (see [1, 2])

|uf?

1
dx< = | |VulPdx, Yue W,*(Q),
o %P uwJa

1
so this norm is equivalent to (f, |Vu|? dx)?, the usual norm in Wé’p ().
The norm in L?(2) is represented by ||ul|, = ([, |ul? dx)l%. According to Hardy inequal-
ity, the following best Sobolev constant is well defined for 1 <p <N, and 0 < u <

3
w0 = .

] & (1.3)
ueWo?@\O) ([, lul?” dx)?"

The quasi-linear problems on Hardy inequality have been studied extensively, either in
the smooth bounded domain or in the whole space RN. More and more excellent results
have been obtained, which provide us opportunities to understand the singular problems.
However, compared with the semilinear case, the quasi-linear problems related to Hardy
inequality are more complicated [3—16]. Abdellaoui, Felli and Peral [3] considered the ex-
tremal function which achieves the best constant S, o, and gave the properties of the ex-
tremal functions. The conclusions obtained in [3] can be applied in the problems with
critical Sobolev exponent and Hardy term.

Wang, Wei and Kang [10] investigated the following problem:

A= 20 = )l 4 gl P, xEQ, w

ulx)=0, x€0L,

where 1 < g < p,u > 0, f and g are non-negative functions and p* = NN—i is the critical
Sobolev exponent. The property of the Nehari manifold was used to prove the existence
of multiple positive solutions for (1.4). Furthermore, Hsu [11, 12] improved and comple-
mented the main results obtained in [10]. Recently, Goyal and Sreenadh [13] investigated
a class of singular N-Laplacian problems with exponential nonlinearities in RY. Very re-
cently, Xiang [14] established the asymptotic estimates of weak solutions for p-Laplacian
equation with Hardy term and critical Sobolev exponent.

We should mention that Liu, Guo and Lei [17] studied the existence and multiplicity
of positive solutions of Kirchhoff equation with critical exponential nonlinearity. Inspired
by [17, 18], we study the problem (1.1) on critical Sobolev exponent. Comparing with the
main results obtained in [4, 6, 10—12], in this paper, on the one hand, we will analysis the
effect of B|x|*?|u|?~2u, and the more careful estimates are needed. On the other hand, we
establish an lower bound for A, (A, is defined in Theorem 1.1).

Define the energy functional associated to problem (1.1) as follows:

1 1 . A
Ix(mz—uunp—éf |u|P|x|“-de——/ up dx——/ ul? dx. (L5)
p pJa JZE ) qJa

We obtain the following result.

Theorem 1.1 Suppose that 1 < q < p, 0 <« < p — 1. Then there exists L, > 0 such that
problem (1.1) admits at least two solutions and one of the solutions is a ground state solution
forall . € (0, Ay).
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2 Preliminaries
Firstly, we introduce the Nehari manifold

Ny = {1 € WoP (N0} : {1} (u), ) = 0}.

Furthermore u € N, if and only if

||u||P—/ |u|f’*dx—ﬁf IulpIxI“‘de—)»/ = .
Q Q Q

Let

() = ||ull”—ﬂf |u|1’|x|“-f’dx—/ |u|P*dx—A/ ) d,
Q Q Q

then

(W' (), ) = pllull ~ pp /Q P2l dx - p* /Q ul?" dx - g /Q ul? dx.

N, can be divided into the following three parts:
= {M € Ny :pllull? —pﬁ/ | |ul? dx
Q

—p*/ |u|p*dx—qA/ |u|qu>0},
Q Q

A = {ueM:puun"—pﬁ/ ("l dix
Q

—p*/ |u|P*dx—qx/ |u|qu=0},
Q Q

Ny = {MGNx:pllull"—Pﬂ/ % |ul? dx
Q

—p*/ |u|p*dx—qk‘/ |u|qu<0}.
Q Q
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(2.2)

(2.3)

(2.4)

Applying the Holder inequality and the Sobolev inequality, for all u € WS' (€2)\{0} we have

[t ([ a) ([1ae) " 20l ([ o)’

Lemma 2.1 Assume that ) € (0, T1) with

* . q-p

Br=-B)o-r*)\ 5% ¢ 4=p \i: 5 opv*

T—( Bi(g-p*) )P (p—*)ppsﬂo
1= r*—q
|2] #*

Then (i) Nt #0, and (i) N? = ¢

(2.5)
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Proof (i) We define a function ® € C(R*,R) by
d(s) = (1 - ﬁ) PP ||| —,\sq—P*/ |u|? dx.
B Q

Let ®'(s) = 0, that is,

P'(s) = (1 - ﬁ) (p-p")s"? Mull? - 1(q - p*)st* / |ul? dx = 0.
B Q

We can deduce that

Smax =S

[(ﬁl B)(p - p)nuup]‘p
Birlg —p*) [olulddx]

It is easy to check that ®’(s) > 0 for all 0 < s < smax and ®'(s) < 0 for all s > spax. Conse-

quently, O(s) attains its maximum at Sy, that is,

B[ Bi=Bo—p)lul? 177 77"
Jul

d max/) = 1-—
omd = (1= Buq ") Il d

[ Bi=Be -l T [
A{[ﬁlx(q—p*)fg|u|qalx} } /g'“' o

(q-p*)

:(wl—ﬁ)(p—p*))%(q—p) a7
Bi(q - p*) p-pr* ()\fg|u|qu)%

Since

~ % * s«
D(s) :=s"7 ||u||P - Bs"F /Iulplxl"“pdx—)\sq‘p /Iulqu
Q Q

> 7" (1— ﬁ)”u”"—ksq"p*/ [u|? dx.
B Q

By (1.3) and (2.5), we have

B(smae) - / ul’ dx
Q

Z(b(smax)—/ lul?” dx
Q

s«

:<<ﬁ1—ﬂ><p—p*>>%<q—p> )" —/IulP*dx
* p-r* Q

Bi(g - p*) p-p (n fQ |u|9 dx) TP
S <(ﬁ1—,3)(P:P*)>W<q_p*) el G T /IuIP dx
Bilg - p*) p-p [K|Q| > f lul?” dx) p*] q-p

* *

={<(ﬂ1—ﬁ)(p—p*)>”’q-’2(q—p> 1 ( Jue? )‘”’_1}
/31(61—17*) p-p* [MSN%]% (f9|u|l’*dx)[%
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X / |ul?”" dx
Q

s

W)(”) L) [
2{( ﬁl(q—P*) p-p* [A|Q|m pp* "0 /Q|u| X

T

>0,
where 0 < A < T}. Thus, there exist constants s* and s~ such that

0<s" =s"(u) <smax <8 =s(u), s‘ueN;andsueh,.
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(ii) We prove that N? = ¢ for all A € (0, T;). By contradiction, assume that there exists

uo # 0 such that uy € V. From (2.1), we have
faol? = [ ot d—p [ uolal*ds i [ uottdy -0,
Q Q Q
combining with (2.3), we obtain

(p-p)luol” = (p—p*)ﬁ/ luo P |x* 7 dx + (p* —q)xf |uo | dx.
Q Q

Equations (2.6) and (2.7) imply that

(p—q)||u0||p—(p—q)/3/9|u0|”|x|“’pdx:(p*—q)/gluow* dx,

that is,

f luol?” dx > ﬂ(l— ﬁ) o 1.
Q P —q B

Similarly,

(B =P ) uoll? = (p—p*)B | luol’|x|“? dx=2(q-p*) | luol”dx,
Q Q

that is,

x/ Iuolquzp_p (l—ﬁ)lluoll”.
Q q-p* B

Note that (1.3) holds for u € N?\{0}. Then

1275 ol
P q-r ugl|| 7 "
0 := e e / luolP dx
“a—p + G= Q
S/ZOP (fg(uo)q dx) @p

q-pr*

[ 1 ( ll o 1P ) P
> q-p* A
S N luol” d)”

- 1] / luol?” dx > 0.
Q

(2.6)

(2.8)

(2.9)
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It follows from (2.8) and (2.9) that

)i

B

A S U il -
Sﬂq](—)p ()yfQ )qu a2
g pr*
QT e el _(p—q
57 (- £y P

p'-q pp* pr*

|:(|Q| o )qp = (

= 2\ _ BN
5#‘{0’” (=)A= )] a7

<0,

for 0 < A < T;. This is a contradiction.

Lemma 2.2 I, is coercive and bounded below on N,

p—q)(l
pP*-q

Proof For u € N;, we can deduce from (1.3) and (2.5) that

L) - }9||u||ﬂ——f |u|P|x|“de——/ Pa dx——f ul? dx
(5o = (5= )8 s (2= [ s
p p
(2
p P B q Pp*

Note that 1 < g < p and 0 < 8 < 1, we see that I is coercive and bounded below on

From Lemma 2.1, we know that N/ . and M‘ are nonempty. Furthermore, taking into

account Lemma 2.2, we define
i, = inf I, (), k7 = inf L (n),
A ueN, A( ) A ue./\/')\* A( )

Lemma 2.3 «, <k, <O0.

Proof For u € N}, using (2.1) and (2.2), we have

*_

Ky = uiel}\Z‘ L (u).

B

B

2] #* S,L,%Ilullq.

(p—q)llull"—(p—q)ﬁfgIul”IxI“"’dx>(p*—q)/glulp dx

and

- q)||u||p<1 - —>

that is,

/w dre 21 ( ﬁ)uunp
8

_q / |u|p dx,

B

1) lluto]l”
—1)} l[uto]1”
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By (2.10), we get

5 - (é——)nunp G——) p [ iapr - ( )/Iul" dx
()6 -1
(Al

<0.

N

Therefore, we have «; <« <0. O

Lemma 2.4 For u € N,, there exist ¢ >0 and a dlﬁerentiablefunctionf:f(w) :B(0,¢) C
WP (Q) — R* such that

f0)=1,  fl@u+w)eN,, VYoeB0,e).
Proof Define

F:Rx W”(Q) — R
as follows:

|lu + wl?
|cl?

f(s,w):sp‘qf(|v(u+w)|P—M )dx—sp_qﬁ/ i+ wlP|x|* 7 dx
o Q
—sp*_q/|u+w|p*dx—)»/|M+w|qu; ueN,.
Q Q
It is clear that

f(l,O):/(W |p—,um>dx /3/ |ul?|x|*P dx — /|u|p dx — A/ |u|? dx
Q

and

fs(s,w)=(10—q)5"’q‘l/ (!V(u+w)!p—u|u+w|p)dx
Q

P
—(p-g) P / 4+ P x| dx
Q

- (p*—q)s fﬂ |u+ ol dx,

which implies that

E(LO):(p—q)/Q(NuW Mu>dx—(p—q)ﬂ/9|ul"lx|“‘”dx

|x

- (p* —q)/ﬂluV?* dx.
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Lemma 2.1 tells us that E(1,0) # 0. Thus, by the implicit function theorem at the point

(0,1), there exist ¢ > 0, and a differentiable function
F:B(0,8) C W,*(Q) — R*
such that
f0)=1,  f@)>0 and flw)u+w)eN;, Voeb,e). O

Lemma 2.5 For u € N, there exist ¢ >0 and a déﬁ”erentiablefunctionf =?(V) :B(0,¢) C
Wé’p(Q) —> R* such that

F0)=1 and Fo)u+v)eN], VveB(0,s).
Proof The proof is similar to that of Lemma 2.4, and we omit it here. d

Lemma 2.6 If{u,} C N, is a minimizing sequence of I, for every ¢ € Wé’p(Q), then

£ Ol ]l + el

n

_w (2.11)

< ([ (un), ) <

Proof 1t follows from Lemma 2.2 that I, is coercive on A;. Using the Ekeland variational

principle [19], we can find a minimizing sequence {u,} C N, of I, satisfying
1 1
Li(un) <+ P L (uy) < Li(w) + p Iw—u,l  YweN;. (2.12)

Without loss of generality, we can assume that u,, > 0. By Lemma 2.2, we know that {u,} is
bounded in W&’p (€2). As a consequence, there exist a subsequence (still denoted by {u,})
and u, in WS’”(Q) such that

uy — u, weakly in W, (Q),
u, — u, strongly in L#(2) (1 < p < p¥), (2.13)

U,(x) > uy(x) a.e. in Q.

From Lemma 2.4, for s > 0 sufficiently small and ¢ € Wé""(Q), and set u = u,, w = s¢ €
Wé’p(Q), we can find that f;,(s) = f,(s¢) such that £,(0) = 1 and f;,(s) («,, + s¢p) € N,. Since

lanl? - / nl?” dx— / P | = / gl dx = 0. (2.14)
Q Q Q

By (2.12), we obtain

L0 = 1l + N1 = %nfn(s)(un +5¢) -ty

n

> I (un) — L [fu() (0 + 59)]. (2.15)
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Notice that
L (6) (1 + 59)] = yv<s<un+s¢>||P ﬁfuwv Yty + s)|” dx

—E‘/Q[ﬁ,(s)(un+s¢)|p* dx—;/ﬂ[ﬁq(s)(u,,+s¢)|qu
»

_fus) y
)4

+s¢|” - gf,f(s) /Q %172 | (s + 59)|” dix

G vk ’
o /Q‘(u,ﬁsqb)‘ dx qfnq(s)/g‘(un+s¢)‘ dx.

Therefore
L(un) = L[f(8) (u + 59)]
1 P " . 1 .
=—||un||p—&||unnp+f—fs)f R e N
p p p Q P Jo
A A B i
+—f,?(s)/ |un+s¢|qu——f |u,,+s¢|qu+—ff(s)/ |%|“7P|u, + s dx
q Q Q
P P 1 .
—é/|x|“-fﬂ|un+s¢|ﬁdx TS e - f()n n+s¢||l’+—f|un+s¢|1’ dx
pJa p Z N
1 * A
——/ 17914 dx+—/ |u,,+s¢|qu——/ |1, |7 dx
p*Ja qJo qJa
B / %Pl + s dx— D / P | dix
pPJa pJa

V2 "
=in(S)||Mnllp+JLl_1f |Mn+s¢|p*dx+%(fnq(s)—1)/ |y, + s¢|1 dx
Q Q

+—(f"’s) 1) /|x|“ Plu, + spl? dx +fn()(

K €3 )\.
+—<f luy, + so|? dx—/ |t |P dx>+—/(|u,,+s¢|q—|un|q)dx
p*\Ja Q qJa

+ é/[Iun+S¢|p—Iunlp]lxla’pdx.
pJa

lsall?” = 12t + 5117

Dividing by s > 0 and taking the limit for s — 0, combining with (2.14) and (2.15), we have

£ Ozl + NIl

n

> _f/Olunl? +£10) / unl?” dx + 1£(0) / ual dix
Q Q
+,3f,;(o)/ |u,,|1’|x|“-1’dx—/ |V, P2 Vu, Vo dx
Q Q
p-2 .
,U«f de+/ |24, P _1¢dx
Q | |? Q

A / P+ B / 4P PP e
Q Q
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=—ﬁ:<0>[nunnp— [t s [ wiax-p | Iunlplxlo"pdx]—gj\,qﬁ)
Q Q Q
:_<I;\’¢>.

Consequently

_w <(1,,9) (2.16)

for every ¢ € W&’p(Q). Note that (2.16) holds equally for —¢, we see that (2.11) holds. [

Lemma 2.7 (see [8, 10]) Set DY?(RN) = {u € L”" (RN) : |[Vu| € L?(RN)}. Assume that 1 <
p<N and 0 < p <. Then the limiting problem

~pu = pi = inRY\(o,
u>0 in RN\{0}, (2.17)

u € DY?(RN)

has radially symmetric ground states

=N x =N ||
Ve)=e 7 Upu| - ) =€ 7 Upu| — ) Ve>0,

such that

| Ve ()1 . 5
/RN<|vv€(x)|"—M p;; )dx=AN|VE(x)|p dx=S",

where the function U, ,(x) = Uy, (|x|) is the unique radial solution of the above limiting

problem with

Uy, (1) = (NJ(\[L__;)) ptp.

N
In the following, we define A = S/ .

Lemma 2.8 Let {u,} C N, be a minimizing sequence for I, with k; < A — DAF , where

—alp* - g 1 /8 _ B\ p7a
D:p_q[p—qmzf%sﬂf’o(ﬁ;\[ﬂﬁ) ‘T " (2.18)
r Lra ’ }

Then there exists u € W(}"’(sz) such that u, — u in LP" ().

Proof Since

L(u,) — k;, asn— +oo. (2.19)
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By Lemma 2.2, we know that {#,} is bounded in Wé’p(Q). In fact, we can deduce from (1.3)
and (2.19) that

L+ k5 +o(lluall)
1
> L (un) - —(1 (), th)
1
——||”n||p——/ |24 16" "’dx——f |4 ”” dx——/ || dx
——*<||Mn||p—/ |14, P dx—k/ |un|qu_/3f Iunlplxlo"”dx>
p Q Q Q
1 1 1 1
(__ _*)”un”P_ (‘ ——*>ﬁ/ 2
pp p p Q
1

+
V4
1 1 1 1
z(———)(1—ﬁ)||un||f”+(———>x 4l dx
p p* B Pt q Q
1 1
> (— - —*> (1— ﬁ)nunnp
p p A
X L
+(—*—_))\|Q| </ |un|p dx>
V4
11 ﬁ) 11 v -4
>(--—)(1-% ||un||p+(———))»|9| 7S olluall?,
(p p*)( B roq .

where 0 < 8 < 1, 1 < g < p, we see that {u,} is bounded in Wé’p(Q). We can choose a
subsequence (still denoted by {u,}) and u € wor (€2) satisfying

u, — u  weakly in Wo*(Q),

U, —> U

strongly in LP(2) (1 < p < p*). (2.20)
u,(x) > u(x) a.e.in Q.

In term of the concentration compactness principle, going if necessary to a subsequence,

there exist an at most countable set 7, a set of points {x;};c; C 22\ {0}, and real numbers
Wj» Vj, Xo such that

Vitnl? = dp = [Vul? + 3 118 + 12080,

jed
P = dv = [ul”” + Y vd,; + vodo,
jed
p p
nl? ol
|x|p | |[7 XO 0

where ij is the Dirac mass at x;

Let € be sufficient small satisfying 0 ¢ B(xj,€) and B(x;,€) N B(x;,€) = @ for i # j,i,j =
1,2,...,k. Let ¥ j(x) be a smooth cut-off function centered at x; such that 0 < v ;(x) <1
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Ve j(x) = 1for x € B(xj, 5), Ve j(x) = 0 for x € Q\B(x;,€) and [V j(x)| < g, Note that

(1)1(”71)’ Un 1/fe,j(x)>
|1

- / VitnlP e () dx + / Vit P2V Vs d— o [0 ) i
Q Q a IxP

- / |47 e (%) dx — 2 f |14 T (%) dx — B f |24 P 1% * P j(x) dx.
Q Q Q
Furthermore, we have
lim / Vit P ()l = / Ve ) dp > / Vil oy a) e+ 11,
n— 00 Q Q Q

lim f 4P e ) i = / Vey() v = / Ul ey () i+ v,
n— 00 Q Q Q

=0,

lim lim ‘ / |Vt [PVt - Ve ()
e—>0n—>00 Q
2P
— e i(x
/Q [P veix)

By (1.3), we deduce that
< / o, |7 dx
B(xj,s)
N £
P P P
§(f 4,7 @ dx) (/ dx)
B(xi,e) B(x,v,e)
r'-q
7Z p*
< sufgnunnq( / dx)
B(x/,e)
ri—q

lim lim =0.
e—>0n—o00

’f 4|1 j dx
Q

_Z € p*
S%(/ rN‘ldr) AR
0
r*-aq
1 p* _1% N(Pi*ﬂl)
()" Sibe 7 Ml

and

*—p

p p
r r* p*a-p) Vi
< ( [l dx) ( [ w5 dx)
B(xj,e) B(xj,e)
. ) p*-p
- P pla=p r*
< (/ |24, P P dx) (/ e — x| 7 dx)
B(x/,e) B(xi,é)

€ P*(a-p) EEIE
sS,:onunnP( / AL dr)
0

p*-p

_ p Na\
:SM}OHWH}?(AWG » )

| / P 51 ()
Q

*

s
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Since {u,} is bounded in Wé’p(Q), and u,, — u weakly in P (), we conclude that

lim hm/|un|q¢€](x)dx 0

e—>0n—o0

and

lim lim / 24 1F %" P e j(x) dx = 0.

e—~>0n—o0

By (2.11), we have

0 = lim lim (I (), n Ve (%)) = pj — vy,

e—~>0n—
£ N
Since Sy, ov < uj, we have p1; = v; = 0 or u; > (So,0) 7
On the other hand, let € > 0 be sufficiently small satisfying x; ¢ B(0, €),Vj € J. Let ¥ o (x)
a smooth cut-off function centered at the origin such that 0 < ¥ o(x) <1, ¥ o(x) =1 for
x| < 5, Yeo(x) = 0 for [x| > € and [V o(x)] < %. Hence, we have

lim / Vit e ) = / Vool dp = / IV itl Vo) e + 120,
n— 00 Q Q Q

lim f 4l o () e = / Vool dv = / 4l Yo () dx + vo,
n— 00 Q Q

|

im [y ) d - / Veo@d¥ = [ oy @ dx+ 5o,

n—oo Jo |x|P o |xf?

e—>0n—00

lim lim ‘/ Un| Vit P 2V, - Vipeo(x) dx| =
Q

lim lim / |1t | TWe o(x) dx = O

e—>0n—o00

and

e—>0n—o0

lim lim / [t4,, 17 |%|* P e 0(x) dx = 0.
Therefore

= lim Tim (£} (u,), t4nVre,0 (%)) = 0 = 130 = vo-

e—~>0n—

P
*

Combining the definition of S, o, we get that S, 0v{ < o — o < vo, which implies that
N N N
vo =0 or vy > (S,,0) 7 . Now, we prove that 1; > (Sp,0)# and vy > (S,.0) 7 are not true. If

not, we have

Ky = lim |:Ik(u,,) —%(Il/\(u,,), u,,):|

n—00

. 1 1 1 1 v 1
> lim [ | == — P’ + | — = = |AQI 7 S, Hllual?
n—oo| \p  p* JZ '
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jed

s«

*

r —q

1.y 1 1 1 r'=a
> =S ot llulf + — - — Al ”
N 2’|

O T1 1 1 rog 4
= im | = luull” + | — = = JAIQL 7" S, ol
o) N p* q My
1 1

1 -
> ﬁ(llull” Y+ o —MXO) + (p

1L;q _1% q
p A 7S o llul

_4
S, lull?

1 X 1 * p*-q _4

= NS+ R = g el S
1 X r

> ﬁS:o — DAr1,
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where D is defined in (2.18). Hence, we conclude that A — DA <kj<A- DA , which
is a contradiction. It follows that v; = 0 for j € {0} U 7, which means that fQ |y P dx —

Jo |ul?" dx as n — 0o. The proof is completed.

O

In the following, we need some estimates for the extremal function V. defined in
Lemma 2.7. Given R > 0, let ¢(x) € Wé’p(Q), 0<¢k) <1 ¢k =1for |x| <R, px)=0
for |x| > 2R. Set v(x) = p(x)Vc(x). For 1 < p < N and 1 < g < p*, we have the following

estimates (see [4, 6]):
8 b(u)p+p-N
[Vell? = (Su0)? +O(e ),
N
p

+ 00PN,

/ Vel dx = (S,0)
Q

then
N+q(1-X) N
Ce f{ o <4<ps
/S;'Vé'qu: CEN+q(1_F)|]n€| q= %,
N
CEq(h(M)pr) 1<q< %ﬂ)’

where b(u) is the zero of the function

fE)=(p-D&" -(N-p)e"" +p, £20,0=<p<m,

I N-, N-
satisfying 0 < Tp <b(u) < Ff'

Lemma 2.9 There exists Ly > 0 such that

sup i (sve) < A —DM%‘I, for x € (0,A0)

5>0

where A and D are defined in Lemma 2.8.

’

(2.21)

(2.22)

(2.23)

Proof For two positive constants so and s; (independent of €, 1), we show that there

exists s > 0 with 0 < 59 < sc < s; < 00 such that sup. o 1,(sve) = L1 (seve). In fact, since

limg_, o0 15 (sve) = —00, we can deduce that

v |IP - pst! /Q Ve P|x|% P dx — 5771 /Q vel?" dx — 117! /Q [ve|9dx =0 (2.24)
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and
=01l = - DBt [ b7 ds
- (p* - I)Sf*_z‘/g; [vel?" dx — (g—- 1))\sZ‘2 /Q [ve|Tdx < 0. (2.25)
Equations (2.24) and (2.25) imply that
(B =DsZ2vel” = (p - DBst 2] Vel lal* P dx — (p* = 1)s7" 2[ jucl”" dx
<lq-15 el = (g =152 [ weblal®? ds— (g -0 [ vt d
That is,
=0l = =B [ Pl P (=) [l (226)
Hence, we can obtain from (2.26) that s, is bounded below. Moreover, it is clear to see from

(2.24) that s, is bounded above for all € > 0 small enough. Therefore, our claim holds.
Set

*

s s
seve) = vl = [l
p pr*Ja
In the following, we prove that
N
h(scve) < A + O(ep(b<”“)_7+l>). (2.27)
Let
~ sP st .
)= vl = [ v s
p b Ja

Direct computations give us that limHooZ(s) = —00 and Z(O) = 0. Thus sup. Z(s) is
obtained at some S, > 0, and

o (_lvlr_ \F
 \Jglveldx)

Since Z,(S)|5€ =0, that is,

-1 *-1 *
S vellP - 82 / [vel? dx = 0.
Q

It is easy to check that A(s) is increasing in [0, S¢), according to (2.21) and (2.22), we have

h(seve) < h(Se)

_(1 i) (lvel?)7>
PP ([l dn)7 e
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*

P+P‘N))p -»

(l_i)((suo)" + O(eH
P ((Sp0)” + O(ebp™N)) 5

o
< (l _ i) Suo)? 7> o)
(

(2.28)

Therefore, by (2.27), we have

s rs?
€/|ve|”|x|“-f’dx——€/ Vel dx
Q q Ja

N As?
< A+ CePPupD _ ésg / |Vel? |47 dx — =2 / ve|? dx. (2.29)
p Ja q Ja

L (seve) = h(seve

Now, we consider the following cases:
1 -2 bw-¥+)
(i) 0 <4<p Choose € = A P PC-5*D for h < Ap = (%) N-¢6( | we have

N+q(-3)
N )2 N .
C PP _ 5 eV (1= = CuAP — ACy D~ +)
N+q(-5)
=CiA pL G, ), P ;t—MH)
= AP (Cp - CuA T -**“)
L
—D)r-1

é _(C1+D)

(i) g = bl We still choose € = 3 #0009~ ,for A< Xy:i=e G 7, we have

N+q(1—%])
pa oM
P Ine| = CAFT — ACsA P 0®0-5+0 |1 3|
N+q(1—1l)

—Cl)np i —C;s ) - q)b(u)—f*rl) [InAl

G PBU=541) _ o CyeN -

271 (Cy - Cs)In )

L
< —=D)r-
where C3 = m.
P~ <APq for A < Az: —(C2 )PW’ with C; > D, we have

(111)1<q< m) Pute

N
C P50 _ 5 0, 15 - 7 aCyni
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Consequently, for A < A¢ := min{}A, 13, 13}, we deduce that

»r

Li(seve) < A —DAP4, O

3 Proof of main result
We can find a constant § > 0 such that A —D)Lp%q >0 for A < §. Let A, = min{73, 8, Ao}. For
A €(0,A,), Lemmas 2.1-2.4, 2.6 and 2.8 hold.

Let {u,} C N, be a minimizing sequence of I;. It is easy to see that {u,} is bounded in
Wé’p (€2) and there exist a subsequence of {u,} (still denoted by {u,}) and u, € Wé'p ()
such that

uy — u;  weakly in W, (Q),
u, — u, strongly in L*(Q) (1 <s < p*), (3.1)

U, (x) > u,(x) a.e.in Q,

as n— o0.
Firstly, by Lemma 2.4, we can know that f; (0) is bounded with respect to # € N. Letting
n — o0 in (2.11), we deduce that

p-2
/IVu*I"‘ZVu*-Vaﬁ—M/ Ll
Q o |xP
- / 0P+ / 0, + B / PRSI (3.2)
Q Q Q

for all ¢ € Wé’p (2). Equation (3.2) implies that u; is a solution of (1.1). We claim that
uy, # 0. If not, u, = 0, since u,, € N,, we have

* —
IIMnII”—/ |ul? —,3/ [ [P |21 p—A/ |un]? = 0.
Q Q Q

Note that
lim / |, [P |x|“P dx = 0, lim [ |u,|?dx=0.
H—>0Q Q n—00 Q

p*

Put lim,,_, o ||, || = m, we conclude that m > Sﬁ%hp) . By Lemma 2.8, we obtain

i, = lim I(u,)

1 1 . A
lim [—Ilunll” _F |t l? | * 7 — —/ |unl? dx - —/ |Mn|qu:|
n—oo| p pJa 2 qJe

. 1 1
> lim | = = — )l l”
n—>00\ p p*

- pp* 22
1 N
= ﬁ‘slf,O’

which contradicts with «; < A — DM%I (from Lemma 2.9).
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Secondly, we prove that u; € N} . Suppose that this is not true, i.e., u; € N, . From
Lemma 2.1, we can find positive numbers s* and s~ with s* < sy, < s~ = 1 such that
stu; e N}, s7u, € Ny and

Ky < I (S*M)\) <1 (S_Mx) =L(w.) =,

which is a contradiction. Hence u; € N, .r. Furthermore, combining with Lemma 2.3, we
can obtain

L(u) =k; =k, <0.

Therefore, we see that u; is a non-negative ground state solution of problem (1.1).

In the following, we prove that problem (1.1) has a second solution v; with v, € N} .
Since I, is coercive on N, according to the Ekeland variational principle and Lemma 2.9,
there exists a minimizing sequence {v,,} C N, of I, such that

() L) <ii +

(i) L() = L(vy) = )l — vyl forall u € N

Note that {v,} is bounded in Wol'p (€2), there exist a subsequence (still denoted by {v,})
and v, € W,” () such that

v, — v, weakly in Wo?(),
vy, — v, strongly in L5(Q2) (1 <s < p¥), (3.3)

Vu(x) = vi(x) ae. in €,

as 1 — 00.

Similar to the above discussion, we can deduce that v,, — v, in Wé’p (2) and v;, is a non-
negative solution of (1.1). Thirdly, we show that v, # 0 in Q. According to v, € N, , we
obtain

-l = (o —q fw dx+(p— qﬂ/|vn|1’|x|“-f’dx

* P * :3
<(p*=4)S,.0 lvall? +(P—q)ﬂ—llvn||p,
1

hence

*

[@—mﬂ—ﬁ 7

_1
1vall > )Sﬂ’o]p*p,
pr —q

Vv, € N, (3.4)

together with v, — v, in WS"”(Q) means that v, # 0.
Lastly, we show that v, € M’. We only need to prove that N{ is closed. In fact, for
{va} C N, it follows from Lemmas 2.8 and 2.9 that

n— o0

lim |vn|p dx = /Ivﬂ” dx.
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In addition

@ -)lvall” - (p* - q) /Q [val? dx - (p—q),B/Q [v,l? %] dx < 0.
Thus

- DInl? - (7" - q) /Q o lP” dx - (p—q)ﬂ/Q v, Pl dx <0,

which means that v, € /\ff U M‘. Combining with Lemma 2.1 and v, = 0, we see that M‘
is closed. Note that ;' NN =, we know that u; and v; are different.

4 Conclusions
In this paper, we study the existence and multiplicity of positive solutions for the quasi-
linear elliptic problem which consists of critical Sobolev exponent and a Hardy term.

The main conclusions of this work:

(1) Adding a linear perturbation in the nonlinear term of elliptic equation.

(2) The main challenge of this study is the lack of compactness of the embedding

Wé'p < L”". We overcome it by the concentration compactness principle.
(3) We apply the Ekeland variational principle to obtain a minimizing sequence with

good properties.

5 Discussion
In the future, a natural question is whether the multiplicity of positive solutions for (1.1)

can be established with negative exponent u% (0<y<1).
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