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Abstract
Let K be a nonempty closed convex and bounded subset of a reflexive Banach space
X . Let A1,A2, . . . ,AN be N-variables monotone demi-continuous mappings from KN

into X . Then: (1) the system of multivariate variational inequalities

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈A1(x1, x2, . . . , xN), y1 – x1〉 ≥ 0, ∀y1 ∈ K ,

〈A2(x1, x2, . . . , xN), y2 – x2〉 ≥ 0, ∀y2 ∈ K ,

· · ·
〈AN(x1, x2, . . . , xN), yN – xN〉 ≥ 0, ∀yN ∈ K ,

has a solution (x∗
1 , x

∗
2 , . . . , x∗

N) ∈ KN ; (2) the set of solutions of this system of multivariate
variational inequalities is closed convex in KN ; (3) if A1,A2, . . . ,AN are also strictly
monotone, this system of multivariate variational inequalities has a unique solution.

Keywords: variational inequality; system of variational inequalities; reflexive Banach
space; dual space; solution

1 Introduction
Let X be a Banach space with the dual space X∗ and let 〈·, ·〉 denote the duality pairing of
X and X∗. Let K be a nonempty closed convex subset of X, A : K → X∗ a mapping. The
classical variational inequality problem is to find x ∈ K such that

〈Ax, y – x〉 ≥ , ∀y ∈ K . (.)

The variational inequality problem has been recognized as one of the suitable mathemati-
cal models for dealing with many problems arising in different fields, such as optimization
theory, game theory, economic equilibrium, mechanics. In the last four decades, since the
time of the celebrated Hartman-Stampacchia theorem (see [, ]), the existence of a so-
lution of a variational inequality and other related problems has become a basic research
topic, which continues to attract attention of researchers in applied mathematics (see e.g.,
[–] and the references therein).

In , Hartman and Stampacchia [] proved the following result.
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Theorem . ([]) Let K be a nonempty closed convex and bounded subset of Rn. Let A :
K → Rn be a continuous mapping. Then the variational inequality (.) has a solution
x∗ ∈ K .

In , Browder proved the following more general result (see []).

Theorem . ([]) Let K be a nonempty compact convex subset of a locally convex topo-
logical vector space X. Let A : K → X∗ be a continuous mapping. Then the variational
inequality (.) has a solution x∗ ∈ K .

The variational inequality (.) is called the Hartman-Stampacchia variational inequality.
It is an important classical variational inequality which is also a classical and powerful tool
in nonlinear analysis and other mathematical fields.

Definition . ([]) Let X be a normed space, A : X → X∗ a mapping, x ∈ X. A is said
to be demi-continuous at x, if for any given y ∈ X, A(x + tny) weak∗ converges to A(x)
wherever tn → , tn ≥ .

In , Chang [] proved the following result in reflexive Banach spaces.

Theorem . ([]) Let K be a nonempty closed convex and bounded subset of a reflexive
Banach space X. Let A : K → X∗ be a monotone demi-continuous mapping. Then

() the variational inequality (.) has a solution x∗ ∈ K ;
() the set of solutions of (.) is closed convex;
() if A is strictly monotone, then (.) has a unique solution.

In , Plubtieng and Sombut [] proved the following result.

Theorem . Let X be a reflexive Banach space, let K be a compact convex subset of X, and
let A, B : K → X∗ be two continuous mappings. Then the system of variational inequalities

⎧
⎨

⎩

〈A(x), z – y〉 ≥ , ∀z ∈ K ,

〈B(y), z – x〉 ≥ , ∀z ∈ K ,
(.)

has a solution (x, y) ∈ K × K and the set of solutions of (.) is closed.

Multivariate calculus is a more general mathematical branch which paly a more impor-
tant role in mathematical and applied fields. In recently, multivariate fixed point theo-
rems and the system of N-variables nonlinear operators have been studied by some au-
thors. Many interesting results and the applications have also been given. In , Su et
al. [] presented the concept of multivariate fixed point and proved a multivariate fixed
point theorem for N-variables contraction mappings which further generalizes Banach
contraction mapping principle. In , Luo et al. [] presented the concept of multi-
variate best proximity point and proved the multivariate best proximity point theorems in
metric spaces for N-variables contraction mappings. In , Xu et al. [] presented the
concept of multivariate contraction mapping in a locally convex topological vector spaces
and proved the multivariate contraction mapping principle in such spaces. In , Guan
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et al. [] studied a kind of system of N-variables pseudocontractive operator equations
and proved the existence theorem of solutions.

The purpose of this paper is to study a kind of system of multivariate variational inequal-
ities and to prove the existence theorem of solutions. The results of this paper improve and
extend the results of [, ] in reflexive Banach spaces. In order to get the expected results,
an ingenious mathematical method is used in this paper.

2 Preliminaries
Let us introduce some conclusions which will be useful for our main results.

Lemma . ([]) Let X be a Banach space with the norm ‖ · ‖. We consider on the Carte-
sian product space XN = X × X × · · · × X the following functional:

‖x‖∗ =

√
√
√
√

N∑

i=

‖xi‖, ∀x = (x, x, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a Banach space.

Lemma . ([]) (XN ,‖ · ‖∗)∗ = ((X,‖ · ‖)∗)N .

Lemma . ([]) Let X be a reflexive Banach space with the norm ‖ · ‖, XN = X × X ×
· · · × X be Cartesian product space of X. Let

‖x‖∗ =

√
√
√
√

N∑

i=

‖xi‖, ∀x = (x, x, . . . , xN ) ∈ XN .

Then (XN ,‖ · ‖∗) is a reflexive Banach space.

3 Main results
Let K be a nonempty subset of a normed space X, Ai : KN → X∗ a N-variables mapping for
all i = , , . . . , N . We consider the following system of multivariate variational inequalities:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

· · ·
〈AN (x, x, . . . , xN ), yN – xN 〉 ≥ , ∀yN ∈ K .

(.)

Definition . Let K be a nonempty subset of a normed space X. A N-variables mapping
A : KN → X∗ is said to be monotone, if

〈
A(x, x, . . . , xN ) – A(y, y, . . . , yN ), xi – yi

〉 ≥ , ∀i = , , . . . , N ,

for all (x, x, . . . , xN ), (y, y, . . . , yN ) ∈ KN . A N-variables monotone mapping is said to be
strictly monotone, if

〈
A(x, x, . . . , xN ) – A(y, y, . . . , yN ), xi – yi

〉
= , ∀i = , , . . . , N ,

implies (x, x, . . . , xN ) = (y, y, . . . , yN ).



Tang et al. Journal of Inequalities and Applications  (2017) 2017:208 Page 4 of 10

The following is the main result of this paper.

Theorem . Let K be a nonempty closed convex and bounded subset of a reflexive Banach
space X. Let Ai : KN → X∗ be a N-variables monotone demi-continuous mapping for all
i = , , . . . , N . Then:

() the system of variational inequalities (.) has a solution (x∗
 , x∗

, . . . , x∗
N ) ∈ KN ;

() the set of solutions of (.) is closed convex in KN ;
() if Ai is strictly monotone for all i = , , . . . , N , then (.) has a unique solution.

Proof Let A∗ : KN → (X∗)N be a mapping defined by

A∗(x, x, . . . , xN ) =
(
A(x), A(x), . . . , AN (x)

)
,

for any x = (x, x, . . . , xN ) ∈ KN , where

A(x) = A(x, x, . . . , xN ),

A(x) = A(x, x, . . . , xN ),

· · ·
AN (x) = AN (x, x, . . . , xN ).

From Lemma . and Lemma ., we know (X∗)N = (XN )∗ and hence A∗ is a mapping from
KN into (XN ,‖ · ‖∗)∗.

Next, we prove that A∗ is a monotone mapping from KN into (XN ,‖ · ‖∗)∗. Since Ai is a
monotone mapping from K into (X,‖ · ‖)∗ for all i = , , . . . , N ,

〈
A∗x – A∗y, x – y

〉

=
〈(

A(x) – A(y), A(x) – A(y), . . . , AN (x) – AN (y)
)
, x – y

〉

=
N∑

i=

〈
Ai(x) – Ai(y), xi – yi

〉 ≥ ,

for any x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ KN .
We also need to prove A∗ is demi-continuous on KN . For any given x ∈ KN and any

given y = (y, y, . . . , yN ) ∈ KN such that x + tny ∈ KN , we have

A∗(x + tny)(x) =
〈(

A(x + tny), A(x + tny), . . . , AN (x + tny)
)
, x

〉

=
N∑

i=

〈
Ai(x + tny), xi

〉

→
N∑

i=

〈
Ai(x), xi

〉
(tn → )

= A∗(x)(x), ∀x = (x, x, . . . , xN ) ∈ KN .

Then A∗ is demi-continuous on KN .
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It is easy to see that KN is a nonempty closed convex and bounded subset of Banach space
(XN ,‖ · ‖∗). By using Theorem ., we know that the following variational inequality:

〈
A∗x, y – x

〉 ≥ , ∀y = (y, y, . . . , yN ) ∈ KN , (.)

has a solution x∗ = (x∗
 , x∗

, . . . , x∗
N ) ∈ KN . That is,

〈
A∗x∗, y – x∗〉 ≥ , ∀y = (y, y, . . . , yN ) ∈ KN . (.)

We rewrite (.) as follows:

N∑

i=

〈
Ai

(
x∗

 , x∗
, . . . , x∗

N
)
, yi – x∗

i
〉 ≥ , ∀y = (y, y, . . . , yN ) ∈ KN . (.)

For any y ∈ K , let yi = (y, x∗
, . . . , x∗

N ) ∈ KN in (.), we get

〈
A

(
x∗

 , x∗
, . . . , x∗

N
)
, y – x∗


〉 ≥ , ∀y ∈ K . (.)

For any y ∈ K , let yi = (x∗
 , . . . , x∗

j–, y, x∗
j+, . . . , x∗

N ) ∈ KN in (.), we get

〈
Aj

(
x∗

 , x∗
, . . . , x∗

N
)
, y – x∗

j
〉 ≥ , ∀y ∈ K , (.)

for all j = , , . . . , N – . For any y ∈ K , let yi = (x∗
 , x∗

, . . . , x∗
N–, y) ∈ KN in (.), we get

〈
AN

(
x∗

 , x∗
, . . . , x∗

N
)
, y – x∗

N
〉 ≥ , ∀y ∈ K . (.)

From (.)-(.), we know that x∗ = (x∗
 , x∗

, . . . , x∗
N ) is a solution of (.). This completes the

proof of conclusion ().
On the other hand, let x = (x, x, . . . , xN ) be an arbitrary solution of (.). We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

· · ·
〈AN (x, x, . . . , xN ), yN – xN 〉 ≥ , ∀yN ∈ K ,

which implies

〈
A∗x, y – x

〉
=

〈
(Ax, Ax, . . . , AN x), y – x

〉

=
N∑

i=

〈
Ai(x, x, . . . , xN ), yi – xi

〉 ≥ , ∀y ∈ KN .

Then x = (x, x, . . . , xN ) is a solution of the variational inequality (.) in reflexive Banach
space (XN ,‖ · ‖∗). From the above, we claim that the system of multivariate variational
inequalities (.) is equivalent to the variational inequality (.). By using Theorem .,
we know that the set of solutions of the variational inequality (.) is closed convex. This
completes the proof of conclusion ().
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Finally, if A is strictly monotone, then

〈
A∗x – A∗y, x – y

〉
= ,

implies x = y. Hence A∗ is also strictly monotone. By using Theorem ., the variational
inequality (.) has a unique solution and hence the multivariate variational inequalities
(.) has a unique solution. This completes the proof. �

Corollary . Let K be a nonempty closed convex and bounded subset of a reflexive Ba-
nach space X. Let A : K → X∗ be a N-variables monotone semi-continuous mapping.
Then:

() the multivariate variational inequalities

〈
A(x, x, . . . , xN ), y – xi

〉 ≥ , ∀y ∈ K ,∀i = , , . . . , N (.)

has a solution (x∗
 , x∗

, . . . , x∗
N ) ∈ KN ;

() the set of solutions of (.) is closed convex in KN ;
() if A is strictly monotone, then (.) has a unique solution.

Proof Let Ai = A for all i = , , . . . , N in Theorem ., we can get the conclusion. �

Corollary . Let K be a nonempty closed convex and bounded subset of a reflexive Ba-
nach space X. Let A : K → X∗ be a N-variables monotone semi-continuous mapping. Then

() the multivariate variational inequalities

〈

A(x, x, . . . , xN ), y –

N

N∑

i=

xi

〉

≥ , ∀y ∈ K , (.)

has a solution (x∗
 , x∗

, . . . , x∗
N ) ∈ KN ;

() the set of solutions of (.) is closed convex in KN ;
() if A is strictly monotone, then (.) has a unique solution.

Proof From (.), we have


N

N∑

i=

〈
A(x, x, . . . , xN ), y – xi

〉 ≥ , ∀y ∈ K .

That is,

〈

A(x, x, . . . , xN ), y –

N

N∑

i=

xi

〉

≥ , ∀y ∈ K .

This completes the proof. �

Next, we prove an existence theorem of solutions for the system of variational inequal-
ities (.) in normed spaces.
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Theorem . Let X be a normed space, let K be a compact convex subset of X, and let
A, B : K → X∗ be two continuous mappings. Then the system of variational inequalities
(.) has a solution (x, y) ∈ K × K and the set of solutions of (.) is closed.

Proof Let A(x, y) = A(y), B(x, y) = B(x) for all (x, y) ∈ K × K , then the system of variational
inequalities (.) is equivalent to

⎧
⎨

⎩

〈A(y, x), z – y〉 ≥ , ∀z ∈ K ,

〈B(y, x), z – x〉 ≥ , ∀z ∈ K .
(.)

Let C∗ : K × K → X∗ × X∗ = (X × X)∗ be defined by

C∗(x, y) =
(
A(x, y), B(x, y)

)

for all (x, y) ∈ K × K . It is easy to see that C∗ is a continuous mapping from the nonempty
compact convex subset K × K into the dual space (X × X)∗ of normed space X × X. By
using Theorem ., there exists an element (x∗, y∗) ∈ K × K such that

〈
C∗(x∗, y∗), (z, z) –

(
x∗, y∗)〉

∗ ≥ , ∀(z, z) ∈ K × K ,

where 〈·, ·〉∗ denotes the duality pairing of X × X and X∗ × X∗ = (X × X)∗. This implies

〈(
A

(
x∗, y∗), B

(
x∗, y∗)),

(
z – x∗, z – y∗)〉

∗ ≥ , ∀(z, z) ∈ K × K .

Hence

〈(
A

(
y∗), B

(
x∗)),

(
z – x∗, z – y∗)〉

∗ ≥ , ∀(z, z) ∈ K × K .

From the definition of 〈·, ·〉∗, we have

〈
A

(
y∗), z – x∗〉 +

〈
B
(
x∗), z – y∗〉 ≥ , ∀(z, z) ∈ K × K . (.)

Let z = y∗ and z = x∗ in (.), respectively, we get

⎧
⎨

⎩

〈A(y∗), z – x∗〉 ≥ , ∀z ∈ K ,

〈B(x∗), z – y∗〉 ≥ , ∀z ∈ K .

Then (x∗, y∗) ∈ K × K is a solution of the system of variational inequalities (.). Since A,
B are continuous, so the set of solutions of (.) is closed. This completes the proof. �

It is obvious that Theorem . is a special form of Theorem . in reflexive Banach
spaces.

Corollary . (Theorem .) Let X be a reflexive Banach space, let K be a compact con-
vex subset of X, and let A, B : K → X∗ be two continuous mappings. Then the system of
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variational inequalities

⎧
⎨

⎩

〈A(x), z – y〉 ≥ , ∀z ∈ K ,

〈B(y), z – x〉 ≥ , ∀z ∈ K ,

has a solution (x, y) ∈ K × K and the set of solutions of (.) is closed.

We give an example to show the mathematical and physical significance of the main
results of this paper.

Example . Let R = (–∞, +∞), K = [a, b]. Let f (x, x, . . . , xN ) be a continuous real
N-variables function with f ∈ C()(KN , R). Then there exists an element x = (x,, x,,
. . . , x,N ) ∈ KN such that

f (x,, x,, . . . , x,N ) = min
(x,x,...,xN )∈KN

f (x, x, . . . , xN ).

This element x must be a solution of the following system of multivariate variational
inequalities:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈 ∂f
∂x

(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

〈 ∂f
∂x

(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

· · ·
〈 ∂f

∂xN
(x, x, . . . , xN ), yN – xN 〉 ≥ , ∀yN ∈ K .

(.)

In fact, we have

∂f
∂xi

(x,, x,, . . . , x,N )

⎧
⎪⎪⎨

⎪⎪⎩

= , x,i ∈ (a, b),

≥ , x,i = a,

≤ , x,i = b,

for all i = , , . . . , N . Hence x must satisfy (.). In addition, the system of multivariate
variational inequalities (.) is equivalent to

〈
grad f (x), y – x

〉 ≥ , ∀y ∈ KN , (.)

where

grad f (x) =
(

∂f
∂x

,
∂f
∂x

, . . . ,
∂f
∂xN

)

.

This example is actually a practical background of Theorem ., where Ai = ∂f
∂xi

for all
i = , , . . . , N and grad f (x) = A∗.
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4 Conclusion
In this article, we use an ingenious mathematical method to prove the existence theorem
of solutions for a kind of system of multivariate variational inequalities:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

〈A(x, x, . . . , xN ), y – x〉 ≥ , ∀y ∈ K ,

· · ·
〈AN (x, x, . . . , xN ), yN – xN 〉 ≥ , ∀yN ∈ K .

Here K is a nonempty closed convex and bounded subset of a reflexive Banach space X and
A, A, . . . , AN are N-variables monotone demi-continuous mappings from KN into X∗.
This system of multivariate variational inequalities has a solution. The set of solutions of
this system of multivariate variational inequalities is closed convex in KN . If A, A, . . . , AN

are also strictly monotone, this system of multivariate variational inequalities has a unique
solution.
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