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1 Introduction
Let f : � → C be an ACL (absolute continuous on lines) homeomorphism in a domain
� ⊂C that preserves orientation. If f satisfies

Df =
|fz| + |fz|
|fz| – |fz| ≤ K a.e.

for some K ≥ , then f is a K-quasiconformal mapping, where

fz =



(fx – ify) and fz =



(fx + ify),

and Df is called the dilatation of f .
In  Beurling and Alhfors solved the boundary value problem for quasiconfor-

mal mappings []. If M ≥ , they gave an explicit formula for the extension of an M-
quasisymmetric function h : R → R to a quasiconformal mapping f = u + iv from H onto
itself, where H denotes the upper half-plane. The mapping f is called the Beurling-Alhfors
extension of h. In particular f satisfies (see [])


Cy ≤ Jf (z)

v ≤ C
y ,

where Jf denotes the Jacobian of f and C = C(K) >  depends on K = K(M), the maximal
dilatation of f . Thus, for each measurable subset E of H, it holds that

AH(E)
C

≤ AH
(
f (E)

) ≤ CAH(E),

where AH(·) denotes the hyperbolic area in the half-plane H.
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In  Astala [] proved that if f is a K-quasiconformal mapping from the unit disk
D onto itself, normalized by f () = , and if E is any measurable subset of the unit disk,
then Ae(f (E)) ≤ a(K)Ae(E)/K , where Ae(·) denotes the Euclidean area and a(K) →  when
K → +.

In  Reséndis and Porter [] obtained some results about area distortion under quasi-
conformal mappings on the unit disk D onto itself with respect to the hyperbolic measure.
They also showed the existence of explodable sets; this kind of sets has bounded hyper-
bolic area, but under a specific quasiconformal mapping its image has infinite hyperbolic
area.

In recent years harmonic quasiconformal mappings have been extensively studied, see
[–] and the papers cited therein. The following two recent results are very close to the
results presented in this paper.

In  Knežević and Mateljević [] proved the following Schwarz-Pick type distortion
theorem.

Theorem  Let f be a K-quasiconformal harmonic mapping from the unit disk D onto
itself, then


 + k

 – |f (z)|
 – |z| ≤ ∣∣fz(z)

∣∣ ≤ 
 – k

 – |f (z)|
 – |z| ,

where k is defined by k := K–
K+ .

In  Min Chen and Xingdi Chen [] studied the class of (K , K ′) quasiconformal maps
from H onto itself, and they obtained the following result about area distortion of har-
monic mappings.

Theorem  Let f (z) = u(z) + iv(z) be a harmonic mapping from H onto itself and continu-
ous on H∪R with f (∞) = ∞. In particular, f has the form f (z) = f (x + iy) = u(x, y) + icy for
some c >  (see []). If f is K-quasiconformal and E ⊂H is any measurable set, then

(i) Ae(f (E)) ≤ cKAe(E),
(ii) AH(f (E)) ≤ KAH(E),

(iii)  < ux ≤ c(K++
√

(K+)–)
 ,

(iv) |uy| ≤ c

√

(K + ) K++
√

(K+)–
 .

In this paper we use the following hyperbolic density definitions:

|dz|
 – |z| and

|dw|
Im w

for the unit disk D and the upper half-plane H, respectively, see [] and []. We denote
also by AH the hyperbolic area in the unit disk D.

2 Results and discussion
Our purpose in this article is to continue the study of the hyperbolic area distortion under
K-quasiconformal mappings from the upper half-plane H onto itself or from the unit disk
D onto itself. Due to the existence of explodable sets (see []), we study some particular
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classes of quasiconformal mappings. First we apply the result of Knežević and Mateljević
[] to estimate the hyperbolic area distortion under harmonic quasiconformal mappings
from D onto itself, and we remove the hypothesis of harmonicity in Theorem .

Additionally, we generalize even more the class studied by Chen and Chen in []. More
precisely, the main result of this paper is the following.

Theorem  Let f be a K-quasiconformal mapping from H onto itself such that f maps a
family of horocyclics with a common tangent point onto a family of horocyclics. Then, for
each measurable set E ⊂ H, the following inequalities hold:


K AH(E) ≤ AH

(
f (E)

) ≤ KAH(E).

These bounds are asymptotically sharp when K → +.

Additionally, we obtain some results about radial and angular quasiconformal mappings.
Motivated by the generalization mentioned above, we finally describe a set that contains
the region of values of the partial derivatives of K-quasiconformal mappings.

2.1 Harmonic quasiconformal mappings
In this part we use Theorem  to estimate the hyperbolic area distortion under quasicon-
formal harmonic mappings from the unit disk onto itself and analyze the hyperbolic and
Euclidean area distortion under quasiconformal mappings f (z) = f (x + iy) = u(x, y) + icy,
with c > , from H onto itself, without the hypothesis of harmonicity of f (see []), and
we sketch the proof of items (i) and (ii) of Theorem  as a corollary of this result and get
better bounds than the ones obtained in items (iii) and (iv) in the same theorem. See []
and [] for results in hyperbolic geometry.

Theorem  Let f be a K-quasiconformal harmonic mapping from the unit disk D onto
itself. If E ⊂D is a measurable set, then


K

AH(E) ≤ AH
(
f (E)

) ≤
(

K + 


)

AH(E).

These bounds are asymptotically sharp when K → +.

Proof Let w = f (z) = u(z) + iv(z), z ∈ D. By hypothesis and Theorem , the mapping f sat-
isfies

(


 + k
 – |f (z)|

 – |z|
)

≤ ∣
∣fz(z)

∣
∣

≤
(


 – k

 – |f (z)|
 – |z|

)

.

Moreover, the Jacobian Jf of f satisfies

(
 – k)|fz| ≤ Jf = |fz| – |fz| ≤ |fz|.
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Thus, for each measurable set E ⊂D, the following equalities hold:

AHf (E) =
∫

f (E)

du dv
( – |w|) =

∫

E

Jf (z)
( – |f (z)|) dx dy,

 – k

( + k) AH(E) ≤
∫

E

Jf (z) dx dy
( – |f (z)|) ≤ 

( – k) AH(E)

and the result follows immediately. �

Theorem  Let f be a K-quasiconformal mapping from the upper half-plane H onto itself
given by f (z) = f (x + iy) = u(x, y) + icy, with c > . If there exists M >  such that |fz(z)| –
|fz(z)| ≤ M a.e., then for any measurable subset E of H the following inequalities hold:

(i) Ae(f (E)) ≤ MKAe(E),
(ii) AH(f (E)) ≤ MK

c AH(E).

Proof Since f is a K-quasiconformal mapping, f satisfies |fz| + |fz| ≤ K(|fz| – |fz|) a.e. in H,
and by hypothesis we get Jf = (|fz| + |fz|)(|fz| – |fz|) ≤ KM a.e. in H. Then, for any measur-
able set E ⊂H,

Ae
(
f (E)

)
=

∫

f (E)
du dv =

∫

E
Jf dx dy ≤ KMAe(E)

and for the second result we have

AH
(
f (E)

)
=

∫

f (E)

du dv
(Im w) =

∫

E

Jf dx dy
(cy) ≤ MK

c AH(E). �

If we additionally suppose that f is a harmonic mapping, then there exists a holomorphic
function g : H →C such that f (z) = Re g(z) + icy. Thus

|fz| =


∣
∣g ′(z) + c

∣
∣ and |fz| =



∣
∣g ′(z) – c

∣
∣.

Since

|fz|
|fz| ≤ k or equivalently

∣
∣g ′(z) – c

∣
∣ ≤ k∣∣g ′(z) + c

∣
∣,

we obtain that g ′(z) belongs to the circle D with center ( +k

–k c, ) and radius ck
–k . Hence,

for each w ∈ D, we get the estimations

|w + c| – |w – c| ≤ c and |w + c| + |w – c| ≤ Kc.

In particular we have

|fz| – |fz| ≤ c and |fz| + |fz| ≤ Kc.

So we obtain Theorem  as a corollary of Theorem .
We note that Theorem  gives some information about the partial derivatives, in specific

we obtain that if f satisfies the hypothesis of the last theorem, then fz and fz are bounded.
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The previous sketch gives us also some idea to study quasiconformal mappings of the form
f (x + iy) = u(x, y) + iv(y).

2.2 Quasiconformal mappings f (x + iy) = u(x, y) + iv(y)
We now generalize the class studied by Cheng and Chen (see []) in two directions. First,
we will show that it is possible to avoid the harmonic hypothesis, and second, we will prove
that the class of K-quasiconformal mappings given by f (x + iy) = u(x, y) + iv(y) is a family
that accepts asymptotically sharp bi-bounds for the area distortion.

Let  ≤ K < ∞ and � ⊂ C be a domain. Suppose that f : � → C is a K-quasiconformal
mapping given by

f (x + iy) = u(x, y) + iv(x, y). ()

Then f satisfies

∣∣
∣∣
fz

fz

∣∣
∣∣ ≤ k, a.e. or equivalently

∣∣
∣∣
fz

fz

∣∣
∣∣



≤ k, a.e. ()

Inequality () is satisfied if and only if

(ux – vy) + (vx + uy) ≤ k((ux + vy) + (vx – uy)) a.e.

or equivalently

u
x + u

y + v
x + v

y –
 + k

 – k uxvy +
 + k

 – k uyvx ≤  a.e.

Define

α = α(k) :=
 + k

 – k ≥ . ()

Then f satisfies inequality () if and only if

u
x + u

y + v
x + v

y – αuxvy + αuyvx ≤  a.e. ()

From now on each expression that involves partial derivatives will be true almost every-
where (a.e.) and � will denote a domain of the complex plane C.

In this part we focus on K-quasiconformal mappings f from H onto itself given by f (x +
iy) = u(x, y) + iv(y). In particular f can be extended homeomorphically to H, u(x, y) is ACL
and v(y) is absolutely continuous. We know that f satisfies

u
x + u

y + v
y – αuxvy ≤  a.e. ()

Despite the fact that v depends only on the variable y, we write vy instead of v′ to emphasize
the dependence on y. The next result gives the principal characteristics of the mapping f ,
and most of them are consequences of its quasiconformal properties (the rest are easy to
prove).



Hernández-Montes and Reséndis O Journal of Inequalities and Applications  (2017) 2017:211 Page 6 of 25

Proposition  Let f be a K-quasiconformal mapping from H onto itself given by f (x + iy) =
u(x, y) + iv(y). Then

- The function y �→ v(y) is a homeomorphism from [,∞) → [,∞) that is absolutely
continuous and differentiable a.e.

- For almost every y ∈ [,∞), the function x �→ u(x, y) is a homeomorphism from R onto
itself that is absolutely continuous and differentiable a.e.

- The K -quasiconformal inverse mapping f – : H →H has the same form as f , that is,
f –(x + iy) = w(x, y) + iv–(y).

- Let y ∈ (,∞) be fixed. The function h : H →H defined by
h(x + iy) = u(x, y + y) + i[v(y + y) – v(y)] is a K -quasiconformal mapping. In
particular each function x �→ u(x, y) is quasisymmetric.

- If g : H →H is a K ′-quasiconformal mapping given by g(x + iy) = l(x, y) + iw(y), then
f ◦ g is a KK ′-quasiconformal mapping of the same form.

- The mapping f leaves invariant the family of horocyclics with tangential point at
infinity.

We study inequality () in more detail. To get this, we complete in () the square in vy,
so we obtain

(ux – αvy) + u
y ≤ v

y
(
α – 

)
a.e.

This inequality defines a circle a.e., thus ux and vy satisfy in particular

αvy – vy
√

α –  ≤ ux ≤ αvy + vy
√

α –  a.e.

and

–vy
√

α –  ≤ uy ≤ vy
√

α –  a.e.

In fact, the circle is a subset of the square described by the previous inequalities. Observe
that

K = α +
√

α –  ()

and


K

= α –
√

α – ,

where K is the maximal dilatation of f . Let C =
√

α – . Then  ≤ C. With this notation
the last inequalities can be written as follows:

vy

K
≤ ux ≤ Kvy a.e. ()

and

–Cvy ≤ uy ≤ Cvy a.e. ()
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Given  ≤ x, we integrate () on the interval [, x]

∫ x



vy(y)
K

dt ≤
∫ x


ux(t, y) dt ≤

∫ x


Kvy(y) dt.

If we choose any fixed y ∈ (,∞) such that u(x, y) is absolutely continuous with respect to
x, then we obtain

x
K

vy(y) + u(, y) ≤ u(x, y) ≤ Kxvy(y) + u(, y) ()

for each x ∈ R and almost every y ∈ (,∞). Using the left-hand side of the last inequality,
we get

lim sup
y→+

[
vy(y)x

K
+ u(, y)

]
≤ lim sup

y→+
u(x, y),

and since u(x, y) is continuous, we obtain

x
K

lim sup
y→+

vy(y) ≤ u(x, ) – u(, ) < ∞.

For this reason, lim supy→+ vy(y) exists and consequently lim infy→+ vy(y) exists too. We
define v+

y () := lim supy→+ vy(y) and v–
y () := lim infy→+ vy(y). With this notation, we ob-

tain from ()

v+
y ()x

K
+ u(, ) ≤ u(x, ) ≤ Kv–

y ()x + u(, ). ()

On the other hand, we choose any fixed x ∈ [,∞) such that u(x, y) is absolutely contin-
uous with respect to y, and we integrate () on the interval [, y]. So

∫ y


–Cvy(t) dt ≤

∫ y


uy(x, t) dt ≤

∫ y


Cvy(t) dt

and, since v(y) is absolutely continuous, we obtain

–Cv(y) + u(x, ) ≤ u(x, y) ≤ Cv(y) + u(x, )

for y ∈ [,∞) and almost every x ∈ [,∞). By an argument of continuity of the mapping f
and density, we have

–Cv(y) + u(x, ) ≤ u(x, y) ≤ Cv(y) + u(x, ) ()

for all (x, y) ∈ [,∞) × [,∞). Setting x =  in the previous inequality, we get

–Cv(y) + u(, ) ≤ u(, y) ≤ Cv(y) + u(, ). ()

Thus, combining () and (), we have

vy(y)x
K

– Cv(y) + u(, ) ≤ u(x, y) ≤ Kxvy(y) + Cv(y) + u(, )
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for each x ∈ R and almost every y ∈ (,∞). In the same way we use () and () to obtain

x
K

v+
y () – Cv(y) + u(, ) ≤ u(x, y) ≤ Kxv–

y () + Cv(y) + u(, ).

We combine the left- and right-hand sides of the previous inequalities to get

x
K

vy(y) – Cv(y) + u(, ) ≤ u(x, y) ≤ Kxv–
y () + Cv(y) + u(, ) ()

and

x
K

v+
y () – Cv(y) + u(, ) ≤ u(x, y) ≤ Kxvy(y) + Cv(y) + u(, ) ()

for each x ∈R and almost every y ∈ (,∞). Since the left- and right-hand sides of inequal-
ities () and () represent linear equations in the variable x, we compare their slopes and
the fact that x ≥  to conclude

vy(y)
K

≤ Kv–
y () and

v+
y ()
K

≤ Kvy(y)

for each x ∈R and almost every y ∈ (,∞). Hence

v+
y ()
K ≤ vy(y) ≤ Kv–

y ()

for each x ∈ R and almost every y ∈ (,∞). We recall that v(y) is absolutely continuous,
and we integrate the above inequalities on the interval [, y]


K

∫ y


v+

y () dt ≤
∫ y


vy(t) dt ≤ K

∫ y


v–

y () dt

to get


K v+

y ()y ≤ v(y) ≤ Kv–
y ()y. ()

In particular  < v–
y () ≤ v+

y () < ∞ and v has right Dini’s derivatives at . If x < , we obtain
the same relation as () and have the next result.

Theorem  Let f be a K-quasiconformal mapping from H onto itself given by f (x + iy) =
u(x, y) + iv(y). Then v∗

y () = lim supy→+ vy(y) and v–
y () = lim infy→+ vy(y) are finite, and the

partial derivatives of f satisfy the following inequalities:
. 

K v+
y () ≤ vy(y) ≤ Kv–

y () for almost every y ∈ (,∞).
. 

K v+
y () ≤ ux(x, y) ≤ Kv–

y () for almost every x + iy ∈H.
. |uy(x, y)| ≤ K (K–)

 v–
y () for almost every x + iy ∈H.

In particular by Proposition  the partial derivatives of f belong to some truncate solid
cone.

We can combine the previous result with items (iii) and (iv) of Theorem  to obtain the
following result.
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Corollary  Let f be a harmonic K-quasiconformal mapping from H onto itself with
f (∞) = ∞. In particular there exists c >  such that f (x + iy) = u(x, y) + icy. Then

c
K ≤ ux ≤ A(K)c

and

|uy| ≤ B(K)c

with

A(K) =

⎧
⎨

⎩
K if K ∈ [, a],
K++

√
(K+)–
 if K ∈ [a,∞),

B(K) =

⎧
⎪⎨

⎪⎩

K (K–)
 if K ∈ [, b],

√

(K + ) K++
√

(K+)–
 if K ∈ [b,∞),

where a = . . . . and b = . . . . are the solutions of the equations K =
K++

√
(K+)–
 and K (K–)

 =

√

(K + ) K++
√

(K+)–
 , respectively.

Proof The left-hand side of the first inequality is immediate from item  of Theorem . We
now consider the right-hand side estimations of ux in item  of Theorem , with v–

y () =
v+

y () = c and item (iii) of Theorem . Then

ux ≤ min

{
cK,

c(K +  +
√

(K + ) – )


}
.

We consider the equation

K =
K +  +

√
(K + ) – 


and obtain the value of a by solving K – K – K +  =  that has only two real solutions
K =  and K = . . . . = a.

We now consider the estimations of |uy| in item  of Theorem  and item (iv) of Theo-
rem . Thus

|uy| ≤ min

{
cK(K – )


, c

√

(K + )
K +  +

√
(K + ) – 


}
.

The value of b is given by the real solution of

K(K – )


=

√

(K + )
K +  +

√
(K + ) – 


that can be reduced to the equation
(

K + 


)(
K – K + K – 

)
=

√
(K + ) – ,
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and the real solution of this equation is K = . . . . = b. This value is obtained through
the equation

(
(K + )



)(
K – K + K – 

) = (K + ) – 

discarding the value K = . . . . that obviously is not a solution of the original equa-
tion. �

The last corollary shows that these estimations are asymptotically sharp when K → +

improving the result obtained in [].

Theorem  Let f be a K-quasiconformal mapping from H onto itself given by f (x + iy) =
u(x, y) + iv(y). Then

. There exists M >  such that |fz| – |fz| ≤ M and |fz| + |fz| ≤ KM a.e.
. The mapping f is Lipschitz in H.
. The mapping f is hyperbolically Lipschitz in H.

Proof
. Since

|fz| – |fz| =



√
(ux + vy) + u

y –



√
(ux – vy) + u

y

≤ 


√

(
u

x + v
y + u

y
)

a.e.

We estimate the last expression using Theorem  to obtain




√

(
u

x + v
y + u

y
)

≤
√




√
(
Kv–

y ()
) +

(
Kv–

y ()
) +

(
K – 


Kv–

y ()
)

=
Kv–

y ()√


√

K +  +
(

K – 
K

)

=
Kv–

y ()√


√
K + K + 

K

=
Kv–

y ()


√



√
K + K +  a.e.

Thus we choose M = Kv–
y ()


√



√
K + K + .

. Let z, z ∈H and l be the Euclidean segment that joints z with z. Then

∣
∣f (z) – f (z)

∣
∣ ≤

∫

f (l)
|df |

=
∫

l

(|fz| + |fz|
)|dz|

≤ MK |z – z|.
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. Let z, z ∈H and l be the hyperbolic segment that joints z with z. Then

dH
(
f (z), f (z)

) ≤
∫

f (l)

|dw|
Im w

=
∫

l

|df |
v

≤
∫

l

(|fz| + |fz|
) |dz|

v
≤ MK

∫

l

|dz|
v

≤ LMKdH(z, z),

where L = K

v+
y () and dH denotes the hyperbolic metric. �

Now we can extend even more the result obtained by Min Chen and Xindy Chen [].

Theorem  Let f be a K-quasiconformal mapping from H onto itself given by f (x + iy) =
u(x, y) + iv(y). Then, for each measurable set E ⊂H,

. (v+
y ())

K Ae(E) ≤ Ae(f (E)) ≤ K(v–
y ())Ae(E).

. 
K ( v+

y ()
v–

y () )AH(E) ≤ AH(f (E)) ≤ K( v–
y ()

v+
y () )AH(E).

Since v–
y () ≤ v+

y (), we have


K AH(E) ≤ AH

(
f (E)

) ≤ KAH(E),

and these inequalities are asymptotically sharp when K → +.

Proof Let E ⊂ H be a measurable set. The Jacobian of f is Jf = uxvy. By () and item  of
Theorem ,

(v+
y ())

K ≤ Jf ≤ K(v–
y ()

) a.e.

The Euclidean area of f (E) is

∫

E
Jf dx dy = Ae

(
f (E)

)

and in consequence

(v+
y ())

K Ae(E) ≤ Ae
(
f (E)

) ≤ K(v–
y ()

)Ae(E).

On the other hand, for the hyperbolic area only, we see that from () it follows


K

(v+
y ()

v–
y ()

)

AH(E) ≤ AH
(
f (E)

) ≤ K
(v–

y ()
v+

y ()

)

AH(E). �

Now, we can prove Theorem .

Proof of Theorem  If f : H→H is a K-quasiconformal mapping that leaves invariant the
family of horocyclics with common tangent point at ∞, then f (x + iy) = u(x, y) + iv(y) and
is exactly Theorem .

We now suppose that f : H →H is a K-quasiconformal mapping such that f maps horo-
cyclics with tangential point at x ∈ R onto horocyclics with tangential point at x ∈ R.
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For i = , , let Hi be a horocyclic with tangential point at xi and Hi∞ ⊂ H be a horocyclic
with tangential point at infinity. Then there exist Möbius transformations Ti such that
Ti(Hi) = Hi∞. We define f̂ : H∞ → H∞ by f̂ (z) = (T ◦ f ◦T–

 )(z), then f̂ is K-quasiconformal
and can be written in the form f̂ (x+ iy) = u(x, y)+ iv(y). By Theorem  we have that if E ⊂H

is a measurable set, then f̂ satisfies


K AH

(
T(E)

) ≤ AH
(
f̂
(
T(E)

)) ≤ KAH
(
T(E)

)
.

Since the hyperbolic area in H is invariant under the Möbius transformations Ti, the result
follows immediately. The other case is similar. �

Corollary  Let f be a K-quasiconformal mapping from H onto itself given by f (x + iy) =
u(x, y) + iv(y). Then, for each measurable set E ⊂H,

(i) If v is differentiable at , then

(v′
y())

K Ae(E) ≤ Ae
(
f (E)

) ≤ K(v′
y()

)Ae(E).

(ii) If v is continuously differentiable in a neighborhood of ,

(v′
y())

K Ae(E) ≤ Ae
(
f (E)

) ≤ K(v′
y()

)Ae(E).

These inequalities are asymptotically sharp when K → +.

Proof If v is differentiable at , then from () we get v–
y ()
K ≤ v′

y() ≤ Kv+
y (). If v is con-

tinuously differentiable in a neighborhood of , then v–
y () = v′

y() = v+
y (). We prove the

corollary applying item  of Theorem . �

The following examples of quasiconformal mappings are not harmonic, thus we are gen-
eralizing the results obtained in [].

Example 
. Let f : H →H given by

f (x + iy) = x +
i

(
y arctan y + πy – ln

(
 + y)).

Then f is a π
 -quasiconformal mapping with

v+
y () = v–

y () = v′() = π .

Thus, for each measurable set E ⊂H, we have


π Ae(E) ≤ Ae

(
f (E)

) ≤ π


Ae(E)

and


,π AH(E) ≤ AH

(
f (E)

) ≤ ,π


AH(E).
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. Let f : H →H given by f (x + iy) = x + sin(x + y) + iy. Then f is a
+

√


 -quasiconformal mapping with

v+
y () = v–

y () = v′() = .

It is enough to observe that the dilatation of f is given by

Df (x, y)

=
√

cos(x + y) + ( + cos(x + y)) +
√

cos(x + y) + ( + cos(x + y))
√

cos(x + y) + ( + cos(x + y)) –
√

cos(x + y) + ( + cos(x + y))

and the function Df (x, a – x) depends only on a, more precisely

Df (x, a – x) =
√

cos a + ( + cos a) +
√

cos a + ( + cos a)
√

cos a + ( + cos a) –
√

cos a + ( + cos a)
.

The maximum of Df (x, a – x) is attained at the critical points a = lπ ,
l = ,±,±, . . . and the maximal dilatation of f is

√
 +

√
√

 –
√


=

 +
√




.

Thus, for each measurable set E ⊂H, we have

(


 +
√



)

Ae(E) ≤ Ae
(
f (E)

) ≤
(

 +
√




)

Ae(E)

and

(


 +
√



)

AH(E) ≤ AH
(
f (E)

) ≤
(

 +
√




)

AH(E).

2.3 Angular and radial quasiconformal mappings
In this part we obtain the results of area distortion for radial and angular mappings. In the
case of angular mappings, we use the hyperbolic model of the unit disk D.

Proposition  Let f : � →C be an ACL mapping. If f (reiθ ) = u(reiθ ) + iv(reiθ ), then for a.e.
in �

|fz| =
(

ur +
vθ

r

)

+
(

vr –
uθ

r

)

, ()

|fz| =
(

ur –
vθ

r

)

+
(

vr +
uθ

r

)

()

and the Jacobian of f is

Jf =

r

(urvθ – uθ vr). ()
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A mapping f : H → H is said to be radial at x ∈ R if f leaves invariant all Euclidean rays
in H that meet at x.

Let f : H → H be a radial mapping at x. Since hyperbolic area is invariant under hori-
zontal translations, we can assume that the point x ∈ R, where the Euclidean rays meet,
is x = . If f is a radial mapping, then f can be written in polar coordinates (r, θ ) as
f (z) = f (reiθ ) = ρ(r, θ )eiθ , with ρ(r, θ ) : (,∞] × (,π ) → (,∞) if z = reiθ .

Lemma  Let f be an ACL mapping from H onto itself. Suppose that f is a radial mapping
at . Then its Jacobian is Jf = ρρr

r a.e. If f preserves orientation, then ρr >  a.e.

Proof Since f (z) = f (reiθ ) = ρ(r, θ )eiθ , then u(r, θ ) = ρ(r, θ ) cos θ and v(r, θ ) = ρ(r, θ ) sin θ ,
and the proof is immediate from (). �

Proposition  Let f be a K-quasiconformal mapping from H onto itself. Suppose that f is
a radial mapping at . Then the function ρ satisfies the following:

. For  ≤ r < ∞,

r

K ≤ ρ(r, θ )

ρ(, θ )
≤ rK ;

. For  < r < ,

rK ≤ ρ(r, θ )
ρ(, θ )

≤ r

K .

Proof We first prove that the function (,∞) � r �→ lnρ(r, θ ) is absolutely continuous for
almost every θ ∈ (,π ). It is enough to prove that for every M > , the function [ 

M , M] �
r �→ lnρ(r, θ ) is absolutely continuous for almost every θ ∈ (,π ). Let � = {z = x + iθ ∈C :
(x, θ ) ∈ (–∞,∞) × (,π )}. Then the mapping log◦f ◦ exp : � → � is K-quasiconformal.
Thus the function (–∞,∞) � x �→ lnρ(ex, θ ) is absolutely continuous for almost every
θ ∈ (,π ). Let ε > . There exists δ >  such that for every finite collection of disjoint
intervals (aj, bj) ⊂R, j = , , . . . , n, with

∑n
j=(bj – aj) < δ, then

n∑

j=

(
lnρ

(
ebj , θ

)
– lnρ

(
eaj , θ

))
< ε.

Since ln r is absolutely continuous on [ 
M , M], there exists δ′ >  such that for every finite

collection of disjoint intervals (cl, dl) ⊂ [ 
M , M], l = , , . . . , m, with

∑m
l=(dl – cl) < δ′, then

m∑

l=

(ln dl – ln cl) < δ,

and by the previous inequality

m∑

l=

(
lnρ(dl, θ ) – lnρ(cl, θ )

)
< ε.
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If f (z) = ρ(r, θ )eiθ , from () and () we get

|fz| =



(
ρ

r + 
ρrρ

r
+

ρ

r +
ρ

θ

r

)
a.e. ()

and

|fz| =



(
ρ

r –
ρrρ

r
+

ρ

r +
ρ

θ

r

)
a.e. ()

By (), () and () we have




[(
ρr –

ρ

r

)

+
ρ

θ

r

]
≤ k 



[(
ρr +

ρ

r

)

+
ρ

θ

r

]
a.e.

or equivalently

(rρ
r + ρ + ρ

θ )
rρrρ

≤ k + 
 – k = α a.e.

Then




[
rρr

ρ
+

ρ

rρr

]
≤ α a.e.

and thus
(

rρr

ρ

)

– α

(
rρr

ρ

)
+  ≤  a.e.

Solving this inequality, we obtain


Kr

≤ ρr

ρ
≤ K

r
a.e. ()

or equivalently


Kr

≤ ∂

∂r
lnρ ≤ K

r
a.e.

We choose any fixed θ ∈ (,π ) such that lnρ(r, θ ) is absolutely continuous on r, and we
integrate the previous inequality on the interval [, R] to get

∫ R




Kr

dr ≤
∫ R



∂

∂r
lnρ dr ≤

∫ R



K
r

dr.

Thus


K

ln r
∣
∣R
 ≤ lnρ(r, θ )

∣
∣R
 ≤ K ln r|R for almost every θ ∈ (,π ) and R ∈ [,∞).

By an argument of continuity of f and density, we finally obtain

R

K ≤ ρ(R, θ )

ρ(, θ )
≤ RK for all (R, θ ) ∈ [,∞) × (,π ).
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In a similar way, if we suppose that  < R < , then

RK ≤ ρ(R, θ )
ρ(, θ )

≤ R

K for all (R, θ ) ∈ (, ) × (,π ). �

Theorem  Let f be a K-quasiconformal mapping from H onto itself that leaves invariant
each ray in H that meets a real base point. If E ⊂H is a measurable set, then


K

AH(E) ≤ AH
(
f (E)

) ≤ KAH(E).

These inequalities are asymptotically sharp when K → +.

Proof We can suppose that the base point is  since hyperbolic area is invariant under
horizontal translations. Let E ⊂ H be a measurable set and Ê denote the set E in polar
coordinates. If f : H →H is given by f (z) = ρ(r, θ )eiθ , then

AH
(
f (E)

)
=

∫∫

f (E)

du dv
(Im w) =

∫∫

E

Jf dx dy
(Im f (z)) =

∫∫

Ê

ρr dr dθ

ρ sin θ
.

By () we have


Kr

≤ ρr

ρ
≤ K

r
a.e.

then


K

∫∫

Ê

r dr dθ

r sin θ
≤

∫∫

Ê

ρr dr dθ

ρ sin θ
≤ K

∫∫

Ê

r dr dθ

r sin θ

or equivalently, in rectangular coordinates,


K

∫∫

E

dx dy
y ≤ AH

(
f (E)

) ≤ K
∫∫

E

dx dy
y ,

that is,


K

AH(E) ≤ AH
(
f (E)

) ≤ KAH(E). �

Example  Let f : H →H be the
√

+√
– -quasiconformal mapping which is radial at  given

by

f
(
reiθ ) = r

(
θ


+ θ + 

)
eiθ .

Then, for all measurable set E ⊂H, the mapping f satisfies

√
 – √
 + 

AH(E) ≤ AH
(
f (E)

) ≤
√

 + √
 – 

AH(E).
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In the following case we consider the hyperbolic model in the unit disk D.
A mapping f : D → D is said to be angular at  ∈ D if f leaves invariant each circle in D

with center at .
An angular mapping f at  can be written as f (z) = f (reiθ ) = reiϕ(r,θ ), where ϕ : [, ) ×

[, π ] →R.

Lemma  Let f be an ACL mapping from D onto itself. Suppose that f is angular at .
Then its Jacobian is Jf = ϕθ . If f preserves orientation, then ϕθ >  a.e.

Proof Since f (z) = f (reiθ ) = reiϕ(r,θ ), then u(r, θ ) = r cosϕ(r, θ ) and v(r, θ ) = r sinϕ(r, θ ), and
the proof is immediate from (). �

Proposition  Let f be a K-quasiconformal mapping from D onto itself which is angular
at . Then


K

≤ ϕθ ≤ K a.e. in [, ) × [, π ]. ()

Proof If f (z) = f (reiθ ) = reiϕ(r,θ ), from () and () we get

|fz| = ( + ϕθ ) + rϕ
r a.e.

|fz| = ( – ϕθ ) + rϕ
r a.e.

()

Since

( – ϕθ )

( + ϕθ ) ≤ |fz|
|fz| ≤ k a.e.,

we get the result. �

Corollary  Let f be a K-quasiconformal mapping from D onto itself. Suppose that f is
angular at . Then, for each  < θ < θ < π and r ∈ (, ), the following holds:

θ – θ

K
≤ ϕ(r, θ) – ϕ(r, θ) ≤ K(θ – θ).

Proof It is immediate integrating () and applying the continuity of ϕ(r, θ ) and density.
Thus, it is enough to prove that θ �→ ϕ(r, θ ), θ ∈ (, π ), is absolutely continuous for almost
every r ∈ (, ).

Let � = {z = x + iθ ∈ C : –∞ < x <  and  < θ < π} and � = {z = x + iθ ∈ C : –∞ <
x <  and ϕ(r, ) < θ < π + ϕ(r, )}. Then the mapping log◦f ◦ exp : � → � is K-
quasiconformal. Thus the function (, π ) � θ �→ ϕ(ex, θ ) is absolutely continuous for al-
most every x ∈ (–∞, ), or equivalently θ �→ ϕ(r, θ ), θ ∈ (, π ), is absolutely continuous
for almost every r ∈ (, ). �

Theorem  Let f be a K-quasiconformal mapping from D onto itself which is angular
at . If E ⊂H is a measurable set, then


K

AH(E) ≤ AH
(
f (E)

) ≤ KAH(E).

These inequalities are asymptotically sharp when K → +.
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Proof Let E ⊂ D be a measurable set and Ê denote the set E in polar coordinates. If f :
D →D is given as before by f (z) = reiϕ(r,θ ), then

AH
(
f (E)

)
=

∫∫

f (E)

 du dv
( – |w|) =

∫∫

E

Jf dx dy
( – |f (z)|) =

∫∫

Ê

ϕθ r dr dθ

( – r) .

By () we have


K

∫∫

Ê

r dr dθ

( – r) ≤
∫∫

Ê

ϕθ r dr dθ

( – r) ≤ K
∫∫

Ê

r dr dθ

( – r)

or equivalently, in rectangular coordinates,


K

∫∫

E

 dx dy
( – |z|) ≤ AH

(
f (E)

) ≤ K
∫∫

E

 dx dy
( – |z|) ,

and this concludes the proof. �

Example  Let f : D →D be a mapping given by f (reiθ ) = reiϕ(r,θ ), where ϕ(r, θ ) = θe(θ–π )r .
Then by ()

|fz| + |fz|
|fz| – |fz| ≤ |fz|

|fz| – |fz|

=
er(θ–π )rθ(θ – π ) + ( + er(θ–π )( + rθ ))

( + rθ )er(θ–π )

≤ er(θ–π )rθ(θ – π ) +


er(θ–π ) +  + ( + rθ )er(θ–π )

≤ π + eπr +  + ( + π )

≤ π + π +  + eπ .

Then f is a π + π +  + eπ -quasiconformal mapping. Thus, for each measurable set E
of the unit disk D, the following inequalities hold:


π + π +  + eπ

AH(E) ≤ AH
(
f (E)

) ≤ (
π + π +  + eπ

)
AH(E).

Numerical evidence says that the maximal dilatation of f can be eπ .

The following example shows that the result of Theorem  can not be generalized to
radial mappings at .

Example  Let K ≥ . Let f , g : D → D be the K-quasiconformal mappings given by
f (reiθ ) = r


K eiθ and g(reiθ ) = rK eiθ . For each r ∈ (, ), define Er = {z ∈D : |z| < r}. Then

AH(Er) =
πr

 – r , AH
(
f (Er)

)
=

πr

K

 – r

K

, AH
(
g(Er)

)
=

πrK

 – rK .

Then if K > , there is not C >  such that

AH
(
f (Er)

) ≤ CAH(Er) or
AH(Er)

C
≤ AH

(
g(Er)

)
for all r ∈ (, ).
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2.4 The Beurling-Ahlfors extension
Using the Beurling-Ahlfors (BA) extension, we give explicit examples of quasiconformal
mappings of the form f (x, y) = u(x, y) + iv(x, y) and their associated bi-bounds for the hy-
perbolic area distortion.

More precisely, let h : R →R be an increasing homeomorphism and define its Beurling-
Ahlfors extension f : R→ R by f (x + iy) = u(x, y) + iv(x, y), where

u(x, y) =


y

∫ y

–y
h(x + t) dt, v(x, y) =


y

∫ y



(
h(x + t) – h(x – t)

)
dt.

Let M ≥ . An increasing homeomorphism h : R →R is M-quasisymmetric if


M

≤ h(x + t) – h(x)
h(x) – h(x – t)

≤ M

for all x ∈ R and t > . It is well known that its BA-extension is a K = K(M) ≥  quasicon-
formal mapping, even more; Ahlfors proved in [] that this extension is a quasi-isometry,
that is, there exists  < C = C(K) < ∞ such that


Cy ≤ J(z)

v ≤ C
y a.e.

Example  Let h(x) = x. Then h is a -quasisymmetric function and its BA-extension is
the -quasiconformal and harmonic mapping defined by f (x + iy) = x + iy

 . Moreover, for
each measurable set E ⊂H,

Ae
(
f (E)

)
=




Ae(E) and AH
(
f (E)

)
= AH(E).

Example  Let g(x) = x. Then g is a  + 
√

-quasisymmetric function, and its BA-
extension is the . . . . quasiconformal mapping f (x + iy) = x + xy + i

 (xy + y).
In particular f (x, y) does not have bounded derivatives. Moreover,

yJ(x + iy)
v(x, y) =

(x – xy + y)
(x + y) .

Setting y = cx in the right-hand side, we get for x �= 

r(c) =
( – c + c)

( + c)

and it is easy to see that




≤ r(c) <  for each c ∈ R.

Thus, for each measurable set E ⊂H, we have




AH(E) ≤ AH
(
f (E)

) ≤ AH(E).
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Let

E =
{

(x, y) ∈H : x ∈ [,∞),  < y ≤ 
x

}
.

We have that Ae(E) =  and, since Jf (x + iy) = 
 (x – xy + y), it holds Ae(f (E)) = ∞.

Thus f explodes Euclidean area.

Example  Let g(x + iy) = x + sin(x + y) + iy. Then g is a +
√


 -quasiconformal mapping

from H onto itself. Thus the function h(x) = x + sin x is . . . . -quasisymmetric and its
BA-extension is . . . . -quasiconformal, given by

f (x + iy) = x +
sin x sin y

y
+

i
y

(
y + cos x –

cos(x + y)


–
cos(x – y)



)
.

In a forthcoming paper we study more deeply quasi-isometric properties of the BA ex-
tension.

2.5 A set that contains the region of values of the partial derivatives of
K-quasiconformal mappings

In this part we study some particular forms of the mapping f in (). First, suppose that f
is a K-quasiconformal mapping given by f (x + iy) = u(x) + iv(y). Then, by (), its partial
derivatives satisfy the inequality

u
x + v

y – αuxvy ≤  a.e. ()

Since α ≥ , the discriminant of u
x + v

y – αuxvy is non-negative and () defines the
interior of an angular region with the identification ux ∼ x – axis and vy ∼ y – axis. Thus
we have proved.

Theorem  Let  ≤ K < ∞. If f : � → C is a K-quasiconformal mapping given by f (x +
iy) = u(x) + iv(y), then its partial derivatives belong to one of the angular regions defined by
().

Proof The proof follows from the fact that the Jacobian of f is always positive. �

If f is a K-quasiconformal mapping given by f (x + iy) = u(x, y) + iv(y), then () reduces
to

u
x + u

y + v
y – αuxvy ≤  a.e. ()

Inequality () suggests studying the quadratic form Q(x, y, w) = x +y +w –αxw, whose
associated symmetric matrix is

N =

⎛

⎜
⎝

  –α

  
–α  

⎞

⎟
⎠ .
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Proposition  There exists an invertible matrix P such that P–NP = D, where

D =

⎛

⎜
⎝

 – α  
  
   + α

⎞

⎟
⎠ .

Proof The eigenvalues of N are λ =  – α, λ =  and λ =  + α with eigenvectors
(, , ), (, , ) and (, , –), respectively. After normalization we obtain the basis B :=
{( √

 , , √
 ), (, , ), ( √

 , , – √
 )}. Set

P =

⎛

⎜
⎝

√
  √


  
√
  – √



⎞

⎟
⎠ = P–.

A simple calculus ends the proof. �

Corollary  The quadratic form Q̂(̂x, ŷ, ŵ) = ( – α)̂x + ŷ + ( + α)ŵ represents the
quadratic form Q(x, y, w) with basis B, where

⎛

⎜
⎝

x
y
w

⎞

⎟
⎠ =

⎛

⎜
⎝

√
  √


  
√
  – √



⎞

⎟
⎠

⎛

⎜
⎝

x̂
ŷ
ŵ

⎞

⎟
⎠ .

In particular Q(x, y, w) ≤  if and only if Q̂(̂x, ŷ, ŵ) ≤ .

The solution of Q̂(̂x, ŷ, ŵ) =  is a double cone if α > . In fact, Q̂(̂x, ŷ, ŵ) =  if and only if

(α – )̂x = ŷ + ( + α)ŵ

or equivalently

x̂ =
ŷ

(α – )
+

( + α)
(α – )

ŵ

and this is the equation of a double elliptic cone in R
 in the basis B.

Proposition  Let  < K < ∞. If f : � →C is a K-quasiconformal mapping given by f (x +
iy) = u(x, y) + iv(y), then its partial derivatives ux, uy and vy belong to one branch of the
elliptic cone ().

Proof As we saw f is K-quasiconformal if and only if ux, uy and vy satisfy Q(ux, uy, vy) ≤ 
that describes the solid cone (). As f preserves orientation, then Jf = uxvy >  a.e. Since
vy >  a.e., then necessarily ux >  a.e., and the result follows. �

We do not study the case f (x + iy) = u(x, y) + iv(x) because this kind of mapping is not a
homeomorphism from H onto itself and in consequence is not quasiconformal.
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We consider now the general case, that is, a quasiconformal mapping f : � ⊂ C → C

given by f (x + iy) = u(x, y) + iv(x, y), then by () we have that

u
x + u

y + v
x + v

y – αuxvy + αvxuy ≤  a.e.

In this case we study the quadratic form Q(x, y, z, w) = x + y + z + w – αxw + αyz with
the associated symmetric matrix

N =

⎛

⎜⎜⎜
⎝

   –α

  α 
 α  

–α   

⎞

⎟⎟⎟
⎠

.

Proposition  There exists an invertible matrix P such that P–NP = D, where

D =

⎛

⎜⎜
⎜
⎝

 – α   
  – α  
   + α 
    + α

⎞

⎟⎟
⎟
⎠

.

Proof The characteristic polynomial of the matrix N is ( –λ) –α( –λ) –α( –λ) +α

with eigenvalues λ =  + α, λ =  – α, and both with multiplicity two. The eigenvectors of
λ are (, , , –) and (, , , ) and for λ are (, , , ) and (, , –, ). After normalization
we obtain the matrix

P =

⎛

⎜
⎜⎜
⎜
⎝

√
  √

 
 √

  √


 – √
  √


√
  – √

 

⎞

⎟
⎟⎟
⎟
⎠

with inverse

P– =

⎛

⎜⎜
⎜⎜
⎝

√
   √


 √

 – √
 

√
   – √


 √


√
 

⎞

⎟⎟
⎟⎟
⎠

.

Thus

P–NP = D. �

Corollary  The quadratic form

Q̂(̂x, ŷ, ẑ, ŵ) = ( – α)̂x + ( – α)̂y + ( + α)̂z + ( + α)ŵ

represents the quadratic form

Q(x, y, z, w) = x + y + z + w – αxw + αyz
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in the basis

C =
{(

√


, , , –
√


)
,
(

,
√


,
√


, 
)

,
(

√


, , ,
√


)
,
(

,
√


, –
√


, 
)}

,

where

⎛

⎜
⎜⎜
⎝

x
y
z
w

⎞

⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎝

√
  √

 
 √

  √


 – √
  √


√
  – √

 

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

x̂
ŷ
ẑ
ŵ

⎞

⎟
⎟⎟
⎠

.

In particular Q(x, y, z, w) ≤  if and only if Q̂(̂x, ŷ, ẑ, ŵ) ≤ .

Proof We have the relations

⎛

⎜⎜
⎜
⎝

x
y
z
w

⎞

⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜⎜
⎝

√
 (̂x + ẑ)

√
 (̂y + ŵ)

√
 (ŵ – ŷ)
√
 (̂x – ẑ)

⎞

⎟
⎟⎟⎟
⎠

.

Thus

Q(x, y, z, w) = x + y + z + w – αxw + αyz

=



(̂x + ẑ) +



(̂y + ŵ) +



(ŵ – ŷ) +



(̂x – ẑ)

– α

[
√


(̂x + ẑ)
][

√


(̂x – ẑ)
]

+ α

[
√


(ŵ + ŷ)
][

√


(ŵ – ŷ)
]

=


[
x̂ + ̂x̂z + ẑ] +



[
ŷ + ̂yŵ + ŵ]

+


[
x̂ – ̂x̂z + ẑ] +



[
ŵ – ŵ̂y + ŷ]

– α
[
x̂ – ẑ] + α

[
ŵ – ŷ]

= ( – α)̂x + ( – α)̂y + ( + α)̂z + ( + α)ŵ

= Q̂(̂x, ŷ, ẑ, ŵ);

and this means that Q(x, y, z, w) ≤  if and only if Q̂(̂x, ŷ, ẑ, ŵ) ≤ . �

Proposition  Let  ≤ K < ∞. Let f : � → C be a K-quasiconformal mapping given by
f (x + iy) = u(x, y) + iv(x, y). Then its partial derivatives ux, uy and vx, vy belong to the solid
bounded by Q(x, y, z, w) = Q̂(̂x, ŷ, ẑ, ŵ) = .

3 Conclusions
The classes of mappings introduced in this paper have precise geometrical meaning, in
particular, the class of quasiconformal mappings f (z) = u(x, y) + iv(y); see, for example,
Proposition .
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As it is showed in Theorems , , , ,  and Corollaries  and , we have obtained
left and right asymptotic bounds for the hyperbolic or Euclidean area distortion. In some
previous results only right bounds were known. Moreover, the examples showed that the
different classes of mappings defined in the paper are not empty.

We do not know whether the branch of the elliptic cone (), mentioned in Proposi-
tion , coincides or not with the region of variation of the partial derivatives of quasicon-
formal mappings f (z) = u(x, y) + iv(y).
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