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Abstract

In this paper, we consider random multi-normed spaces introduced by Dales and
Polyakov (Multi-Normed Spaces, 2012). Next, by the fixed point method, we
approximate the multiplicatives on these spaces.
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1 Introduction

The concept of random normed spaces and their properties are discussed in [2]. Also, the
concept of multi-normed spaces was introduced by Dales and Polyakov. In this paper we
combine the mentioned concepts and introduce random multi-normed spaces. Next, we
get an approximation for homomorphisms in these spaces. For more results and applica-
tions, one can see [3-23].

Definition 1.1 Let (E, u, *) be a random normed space. * is a continuous t-norm. A multi-
random norm on {EX, k € N} is sequence {N}} such that Ny is a random norm on EX (k € N),
pL(t) = pu(2) for each x € E and ¢ € R and the following axioms are satisfied for each k € N
with k > 2:

(NF1) () = uk(t), for each o € oy, x € EX, t € R,

(NF2) P‘]X/[a(x)(t) > “ﬁmiewk |Omx(t), for each o = (ay,...,ax) e RK, x e EK t e R,

(NF3) ,ul((;ll xk,O)(t) = ,ul((xl xk)(t), for each x1,...,4¢ € Eand t € R,

..........

(NF4) )

K1 seesXfe X
In this case {(EX, uX, %),k € N} is called a random multi-normed space. Moreover, if ax-

)(t) = foh_”xk)(t), for each xy,...,xr € Eand t € R.

iom (NF4) is replaced by the following axiom:
(DF4) M€(+1

K1 seesXfe Xk

)(t) = ,ul(‘xl ____ 2xk)(t), for each xy,...,4¢ € Eand t € R,
then {u*} is called a dual random multi-normed and {(EX, u*, %),k € N} is called a dual

random multi-normed space.

2 Approximation of the multiplicatives

We apply fixed point theory [24] to get an approximation for multiplicatives. A metric d
on non-empty set Y with range [0, oo] is called a generalized metric.
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Lemma 2.1 ([25, 26]) Let k € N, and let E and F be linear spaces such that (F¥, u*, %) is
a complete random multi-normed space. Let there exist 0 <M <1, . > 0, and a function
W : EK — [0, 00) such that

YAy, .. Axg) < AMY (%, ...,x)  (%1,...,x% € E). (2.1)
We set Y :={n:E —> F:1(0) =0}, and defined: Y x Y on [0,00] by

d(n,¢)

t
=inf{c>0: _ _ ct)y> ———— x1,...,x. € E}.
{ ()= (a1 i) 2 () (€E) = PR —— k }

Then (Y, d) is a complete generalized metric space, and the mapping ] : ¥ — Y defined
by (Jg)(x) := 5@ (x € Y) is a strictly contractive mapping.

Theorem 2.2 Let E be a linear space and let ((F", 1", %) : n € N) be a complete random
multi-normed space. Let k € N and let there exist 0 < My < 1 and a function ¢ : E** —
[0, o0) satisfying

@(2%1, 291, -+, 200, 29k) < 2Mo@ (1, 1, - - -5 Xk Vi) (2:2)

forall x1,y1,...,%k Yk € E. Suppose that f : E —> F is a mapping with f(0) = 0 and

I ) IR ()
(F k1 +390) A 1) A 1)of Ot M) G2 ()
t

> , (23)
t+ QLY XK Vi)
t
k
i) G onf i) 000 (D) 2 s (2.4)
forallreT:={LeC:|r| =1} and x1,)1,...,%,yx €E, t > 0.
Then
) x
H(x) := lim 2”f(—> (2.5)
n—00 on

exists for any xi, ...,xx € E and defines a random homomorphism H : E — F such that

(1 -Mpy)t
Hapton)-HGan)eof )-H) (8) 2 T o) (2.6)
yee e Nk
X1 X1 Xk Xk
IERRS = P I R I I F 2~7
V(1,5 xk) w(z 5 5 2) (2.7)
forallx,...,xx € Eandt > 0.
Proof Letx; = %,..., =%, 31 =%,...,5c = % in (2.2). We get
X1 N Xk Yk
(p(xlyylwu)xk,yk) S2M0(p<5; Evuy E; E); (2'8)
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since f is odd, f(0) = 0. So ll«f(o)(%) =1. Letting » =1 and y = x, we get

t
>
L+ QX1 X1 Xy Xk)

k
I ) -2f 1), 221 ) () (2.9)

for all x1, 91, ...,%k ¥k € E. Consider the following set:
s=:{g:E— F}

and introduce the generalized metric on s:
(g, h)

. Lk
= 1nf{v € Ryt gy nan),glon) i) (VE) = X1 .., xk €Et > 0},

t+@(xg,...,xx)

where, as usual, inf¢ = +00. It is easy to show (s,d) is complete. Now, we consider the
linear mapping / : s — s such that

J(gx)) := 2g(§)

for all x € E. Let g, i € s be given such that d(g, i) = ¢. Then we have

t
k
Higton)-hton)glon) o) (B0 Z 7o

forall x;,...,x¢ € E and all £ > 0 and hence we have

k _ .k
’u“(]g(xl)—/h(x1)».Jg(xk)—/h(xk))(Mogt) - 'U“zg(%l)_zh(%l),,,,,2g("2_k)_2h("2_k))(M08t)

My
_ ,U-k —ct
) -h(F)g(F)-nCEN\ 2

Mo
1oy
— My X1 X1 Xk Xk
25 50503)
Mo
2t
— M, M
To + Tow(xbxl;-urxk;xk)
t

I+ (p(xl’xly' .. 1xerk)

for all xy,...,4x € E and ¢ > 0. Then d(g, ) = ¢ implies that d(Jg, /i) < Mye. This means
that

d(lg,Jh) < Moye

for all g, /1 € s. It follows that

Mo\ _ t
g2 (s w020\ 2 ) Z 13 om0 m0)

forall xy,...,x¢x € Eand ¢ > 0. So d(f, Jf) < %
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Now, there exists a mapping H : E — F satisfying the following:
(1) H isafixed point of J, i.e.,

H(E) = %H(x) (2.10)

forallx € E. Since f : E — E is odd, H : E — F is an odd mapping. The mapping H
is a unique fixed point of J in the set

M={ges:d(f,g) <oo}.

This implies that H is a unique mapping satisfying (2.10) such that there exists a
v € (0, 00) satisfying

t
k
Hapton)-HGsf ) (V) 2 e

forall xy,...,x¢ € E,
(2) d(J"f,H) — 0 as n — oo. This implies that

lin;o 2”f(21) =H(x)

forallx e E
3) d(f,H) < d(f Jf), which implies

M,
d(f H) < ———.
2 - 2M,

Put A =1in (2.3). Then

(t)

o2+ 2 B~ 2 (1 o) ()£ (2

t

on

>
=
ot z_n(P(xI;yl;unxk;yk)

for all x1,...,%%,91,...,9x € E, t >0 and n > 1. Since

t

lim I =1
n—oo t
3+ 5 XLV Xk Vi)

for all xy,...,%%,91,..., 9k € E, t > 0. It follows that

forall xy,...,%6,91,...,9 € E, t >0. So mapping H : E — F is Cauchy additive.
Let y; =x1,...,¥k = %k in (2.3). Then we have

t

X1 X1 Xk Xk
t+(p(2n:2n; !2_;!2_}1

k n
. 27t) >
P g By Bt B B 021 =
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forall A, €T, A= g,xl,...,xkeE,t>0andn21.Sowehave

t

k bl
123 n Bx: ﬂxk (t) Z 7
2SS G- B I CNP T T

forall B €T, xy,...,xr € E, t >0 and n > 1. We have

t
. o
lim — 2 =1
n—-oo t
on + _(p(xl)xlﬁ 7xk1xk)

forall x1,...,x¢ € E, t >0, and

k _
e (Bry) - H (1), (i) ~pH (i) () = 1

forall B €T, xy,...,x¢ € E, t > 0. Thus, the additive mapping H : E —> F is R-linear. From

(2.4), we have
k n
Fanpsy 202032y anp Gl )20 (2 (2K ) (4"1)
t
Xk 1 I

t+§0(2nf YRR IY]

forallxy,...,xx €E,t>0and n > 1.
Then we have

n
(f (G =27 G2 (5 ) A7 (G 35027 (G2 (55) (1)

T w
it P, X Y1 Vk)

forall xy,...,xx € E,t>0and n > 1.

Since

t

. n
lim ~ 4 =1
n—oo t

it X Y1 YE)

for all xy,...,x; € E, t > 0, we have

k _
P (e 30)~H ey H )l e~ H ) H ) (E) = 1

forallxy,..., %6 91,...,Yk € E, t > 0. Thus, the mapping H : E — F is multiplicative. There-
fore, there exists a unique random homomorphism H : E — F satisfying (2.6), and this
completes the proof. d

3 Approximation in dual random multi-normed space
The following lemma is an immediate result of the definition of random multi-normed
space.
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Lemma 3.1 Let {(E5, uX, %),k € N} be a dual random multi-normed space, k,n € N,
K1, X2y e oo Xker Xics1s - - - » Xken € E and Ay, ..., A be real numbers of absolute value 1. Then we
have:
Nk _k
(i) M()»lxlv kak)(t);M(xlka)(t)’
1
(11) ]xl xk)(t) = N(Jl,, K 1)(t);
(iii) /’L((x:l...,xk,xkﬂ ,,,,, ka)(t) TM(M (a
a+p=1,
(iv) minen, px, (£) > fol 2o () = minieny iy (eit),

where ay,...,or > 0 and ZL a; = 1. In particular, we have

(at) ,u (e (Bt)), where o, B > 0 and

..... X+n)

.....

,,,,,

,,,,,

Py, () = min Me; (£).

Theorem 3.2 Let E be a linear space, and {(EF, u*, %), k € N} be a random multi space. Let
a €(0,1) and f : E —> F is a mapping satisfying f(0) = 0 and

e ) fOD) ek ) fop) ! >1—g, (3.1)
(f(xlﬂ’l) "1 f(gl penf ( k ,‘Vk) k k ) s/] — t

where X1, ..., %91, -, Yk € E and t,s € N with the greatest common divisor (t,s) = 1.
Then there exists a unique additive mapping T : E — F such that

2t (07
k
PEf )T ), f ()~ T 1) (j) z1-= (3.2)

forallx,...,xx € Eandt,s € Nwith (t,s) = 1.

Proof Replacing x,...,%; and y1,..., ¥ by 2x1,...,2x¢ and 0,...,0 in (3.1), respectively,
yields

2t o
k
Fof 1) 0,2 ) 250 <;> z1-—. (3.3)

Replacing xy,...,%x, ¢, s by 2x1,...,2xx, 2t, 2s, respectively, in (3.3) and repeating this
process for n-time (n € N), it follows that

k
'““(f(zn L) _fer) 10 le) fer), (2n—1s) zl->5; (3.4)

on=1 _~ oM on—1 27

for n,m € N with n > m. Using (3.4) and (RN2) we get

k
Hitams _rem  jers) ey (ZZ )>1_ omg’

2m P 2m

Then

t o
Woyomey gone) omsy_em | =) Z1= 50 (35)
(f X1 _f X1 k) _. an y\s 2Wlt

P oM om




Agarwal et al. Journal of Inequalities and Applications (2017) 2017:204 Page 7 of 10

for x € E. Then, replacing x1,...,%; by x,2x,...,2x in (3.5), we have

& t
/’L(f 21 x) f f(2m+k—1x) f(2”+k—1x)) ;

""" om+k=1 —  gn+k-1
o
>1- —
- 2mg
o

Let ¢ > 0 be given. Then there exists 79 € N such that 57 < &. Now we substitute m, n

with n, n + p (p € N), respectively, in (3.6), for each n > ny, and we get

pd ontp on+k-1 on+p+k—1

k t - o
M(f(znx) Py) f(2"+k’1x)7f(2”+17+k*1x)) N v

>1-e¢.

By Lemma 3.1, we have

t
Wrany ganen | =] >1—¢ (3.7)
T T i \$

for all n > ny and p € N. The density of rational numbers in R is useful in checking cor-

rectness of (3.6) with positive real number r instead of f Then we have

Wpany panry (r)>1—¢
oM T T oiAp

foreachx € E,r € R*, n > nyand p € N. Then {f J}isa Cauchy sequence, so it is conver-

gent in the random multi-Banach space {(EX, ¥, %),k € N}. Setting T'(x) := llmy,ﬂoof(;,,x)
and applying again Lemma 3.1, for each r > 0, we have
k (r) > min 4
M(f@;"l’fr(xl) ..... L20 _1y) iong M2 _rp\ & )
and
2"x
TACK T (x0).
n—oo QN
We put m = 0 in (3.5), and we get
t o
y p . >1-— 3.8
P ) L2010 (s) t (8)

Then

‘ 2t
Pf ) =T, i) =T \ g

t
>T k ., 2),
= M(“(f(x) fle S ﬂzznxk))<5)
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P t
e rangy) F@nxy) -
D 1), L8 1) \ s

o
>1-=
- t
by (3.8) and when n — oo, which implies that (3.2).
Now, we show that T is additive. Let x,y € E and replace x;,...,x by 2"x, y,

2"y, and t by 2"t in (3.1). We get

X 2"t -1 o
Ripansgy 120 1@ ponxpny 1@ fem)\ 7 ) =57 5y

Using (NF4), we conclude that

t o
-1>1- —
Hpan(52) | romg 1 pany) <S> =1 ont’

21 2 27 2 on

4¢ t
MT(’%)—%T(@—%T(}/)(?) = TM(:‘LT(W)_f(z"(%l» (;)’

2 2n

t
Hren?n yjom 1 rem) (;))
" 22y 2 27
o
>1- —
> o
for each %,y € E, t,s € N with (¢,s) = 1. Utilizing again the density of Q in R, we
(3.11) remains true if % is substituted with a positive real number r.
Consequently,

o

Kregy-drw-ire () 2 1= o
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(3.9)

.., Yk by

(3.10)

(3.11)

find that

for each x,y € E and r € R. Letting n — oo reveals that T complies with Jensen, and using

the fact that 7(0) = 0, we conclude that T is additive [27, Theorem 6].

It remains to show the uniqueness of T. Suppose that 7" is another additive mapping

satisfying (3.2). Then, for each t,s € N, sufficiently large n in Nand x € E,

t t
T (x)-T (x) (;) =MHn T’(22n‘"x)7 T(22:’l‘x) (;)
2n-1¢ 2n-1¢
> Ty (MT/(znx)f(znx) (T)yﬂT(Z”x)—f(Z"x)( . ))

o
S T=7

>1- 2n—2'
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This inequality holds for each r € R* instead of £, too. Therefore, for each r € R*, n € N,
K1(0)-T) (1) = 1 = 5355, letting n — o0, it follows that T' = T. O

4 Conclusion
In this paper, we consider multi-Banach spaces, approximate by multiplicatives, and pro-
vide some controlled mappings, which are stable by control functions.
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