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1 Introduction and preliminaries

A function f : I — R is said to be convex if the following inequality holds:

f(tx+ A-0y) <tf&)+A-0f() (vyeLtel0,1]), (1)

where I is an interval in the real line R. Here and in the following, let C, R, R*, and N be
the sets of complex numbers, real numbers, positive real numbers, and positive integers,
and let Ny := NU {0} and R] := R* U {0}.

One of the best-known inequalities for convex functions is the following Hermite-
Hadamard inequality: If f : ] € R — R (/ is an interval) is a convex function and 4,b € I
with a < b, then

b
f(“b)sﬁ/awc)dxsw. @

2

The Hermite-Hadamard inequality in (2) has attracted many mathematicians’ attention
who have presented a variety of generalizations, extensions, and variants, which are called
Hermite-Hadamard type inequalities (see, e.g., [1-4] and the references cited therein).
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Recently, several Hermite-Hadamard type inequalities associated with fractional in-
tegrals have been investigated. Here, we aim to establish several generalized Hermite-
Hadamard type integral inequalities for the generalized k-fractional integral operators
with respect to another function. The results presented here, being very general, are also
pointed out to be specialized to yield some known results. Relevant connections of the
various results presented here with those involving relatively simple fractional integral
operators are also indicated.

To do this, we recall some definitions and known results. Let [a,b] (—00 < a < b < 00)
be a finite interval on the real axis R. The Riemann-Liouville fractional integrals J%,f and
Ji f of order o € C (M(«r) > 0) with @ > 0 and b > 0 are defined, respectively, by

(];J) (%) := ﬁ /ﬂx(x -0 Y (t)dt (x > a; N(a) > 0) (3)
and
o 1 b a-1 23
(]bj)(x) = m /x (t—x)*"f(t)dt (x <b;R(x) > 0). (4)

Here I' (@) is the familiar Gamma function (see, e.g., [5], Section 1.1). For more details and
properties of the fractional integral operators (3) and (4), we refer the reader, for example,
to [6—14] and the references therein.

Let Q = [a, b] (00 < a < b < o0) be a finite or infinite interval on the real axis R. We de-
note by L,(a, b) (1 < p < 00) the set of those Lebesgue complex-valued measurable func-
tions f on  for which |/f||, < oo, where

b 1/p
Il = ( / iFef dt) 1<p<o0) (5)
and
[Iflloc = ess supbtf(x)}. (6)

In particular, Ly(a, b) := L(a, b).
Raina [15] introduced a class of functions defined formally by

o0

]:;)T,)L (x) _ IZ&O)‘J(I)M(x) _ Z

m=0

o (m)

— X" ,AeRYxeR), 7
F(pm+k)x ('O € xe ) @

where the coefficients o (m) € R* (m € Ny) form a bounded sequence. With the help of
(7), Raina [15] and Agarwal et al. [16] defined, respectively, the following left-sided and
right-sided fractional integral operators:

(J;A,M;Wgo)(x) = / (x— t)k_l]-"g,,\ [w(x — t)p]<p(t) dt (x>a>0) (8)
and

b
(j;ym_;wgo)(x) = / (t- x)’\’l]-';)’yA [w(t - x)p]go(t) dt (0<x<b), 9)
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where 1, p € R*, w € R, and ¢(¢) is a function such that the integrals on the right sides exist.
Recently, certain new and interesting inequalities involving these fractional operators have
appeared in the literature (see, e.g., [16—20]).

It is easy to verify that 77, ,,.,¢(x) and J7, , . ¢(x) are bounded integral operators on

L(a, b), if

M:=F7, q[wlb-a)’] < occ. (10)
In fact,

172 e @], < MG -a)llgll (¢ € Lia,b)) (1)
and

| T8 @ |, <MB-a) gl (¢ € L(a,b)). 12)

Here, many useful fractional integral operators can be obtained by specializing the func-
tion F7, (x). For instance, the classical Riemann-Liouville fractional integrals /7, and J;_
of order «a follow easily by setting A = &, 0(0) = 1, and w = 0 in (8) and (9).

Budak et al. [21] established a new identity involving the fractional integral operators
(8) and (9) asserted by the following lemma.

Lemmal Letf :[a,b] — R beadifferentiable mapping on (a,b) witha < band f' € L(a,b).
Then

241 70 - a+b
G ar 7oy ol @+ T S O] = (T

(b—-a) 1 o b—a\” ¢ ot
“mmith (a5 e e e
e e e

We recall the following generalized fractional integral operators (see, e.g., [12], Sec-

tion 18.2). Let g : [a,b] — R (—00 < a < b < 00) be an increasing and positive function
having a continuous derivative g’ on (4, b). The left- and right-sided generalized fractional
integrals of f with respect to the function g on [a, b] of order « are defined, respectively,

by
o f)f(f . ,
(I / @) ) —dt (R(@)>0;x> a) (14)
and
» "(t)f (7)
() / o) £ fo’) —dv (R(e)>05x<b), (15)

provided that the integrals exist. The integrals (14)) and (15) are usually called fractional
integrals of a function f by a function g of the order «. Choosing g(x) = x in (14) and
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(15) reduces to the Riemann-Liouville fractional integrals (3) and (4), respectively. Setting
g(x) = Inx in (14) and (15) reduces to yield Hadamard fractional integrals (see, e.g., [12],
pp-329-330). Jleli and Samet [22] presented ceratin Hermite-Hadamard type inequalities
for the integrals (14)) and (15).

Diaz and Pariguan [23] introduced and investigated the so-called k-gamma function
o0 tk
(%) := / Fle ® dt (Eﬂ(x) >0;k e R*). @16)
0

We recall some properties for the k-gamma function:

Iy (x) = ki-lr@); (17)

I'ik)=1 and Ty(x+ k)=l (x). (18)

Using the k-gamma function, Tung ez al. [24] introduced a class of functions defined by

o]

_7—'”k ———————x"  (k,p,A € RY x| <0), (19)

Zo kI ( ,okm +A)
where o (m) € R* (m € Ny) is a bounded sequence as given in (7). Tung et al. [24] used
the function (19) to define the left-sided and right-sided generalized k-fractional integral
operators with respect to another function as follows: Let k, p, A € R* and w € R. Also, let
g :[a,b] — R be an increasing and positive function having a continuous derivative g’ on
(a,b). Then the left- and right-sided generalized k-fractional integrals of f with respect to
the function g on [a, b] are defined, respectively, by

T8 Wf @) / ﬁf;ﬁ[w(guwgu»p]ﬂndt (x>a) (20)

and

b /
T8 Wf @) f ﬁfﬂ[ w(g(®) —gx)) Jf(t)dt (v <b). (21)

Setting k =1, g(t) = ¢, g(¢t) = Int, and g(¢) = ﬁ (s € R\ {-1}) in the integral operator
(20) gives the generalized fractional integral operator of f with respect to the function g,
the generalized k-fractional integral operator of f on [4, b], the generalized Hadamard k-
fractional integral operator of f, and the generalized (k, s)-fractional integral operator of

f on [a, b], respectively, as follows:

ToE ) = ﬁf;k[ (¢@) -g®) [f®)dt (x> a); (22)
pka+w¢f /x —t)“l]-"’k[ w(x — t”lf(t Ydt (x> a); (23)

x %—1 ]
’Hgfmwf(x):/ <ln§> f;f[w(anEC) ]j(t)? (x> a); (24)
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pka+wf = S+1

x/ax( s+1 f*l)‘ tfgyf[w(%)p}/(t)dt (x>a). (25)

The special cases of (20) and (21) when k =1 and g(t) = ¢ reduce to yield the generalized
fractional integral operators (8) and (9), respectively (see [15, 16]). Further, setting k =
1,gt) =t, A=a,0(0) =1, and w = 0 in (20) and (21) gives, respectively, the Riemann-
Liouville fractional integrals (3) and (4).

The Hermite-Hadamard type inequalities in [22] have been generalized by Tung et al.
[24] who used the generalized k-fractional integral operators (20) and (21), which is re-
called in the following theorem.

Theorem 1 Let k,p,A € R*, w € R, and o(m) € R* (m € Ny) be a bounded sequence.
Also, let g : [a,b] — R be an increasing and positive function on [a, b) having a continuous
derivative g'(x) on (a,b). If f is a convex function on [a,b], then the following Hermite-
Hadamard type inequalities for the generalized k-fractional integrals of f with respect to
the function g on [a, b] in (20) and (21) hold:

f(a + b> - 1
2 )7 ax(g(b) - g(a)k Fy [wl(g(b) - g(a))”]
x [T5558 JFa) + Tt F(b)] EM, (26)

where F(x) is defined as in (28).
2 Hermite-Hadamard type inequalities for fractional integral operators
We begin by recalling some notations given in [22]. Let I be an interval, such that [a, b] C I
(0 <a < b <00).Suppose that f € L*[a, b] in such a way that I;‘ﬂgf(x) and I;fﬁgf(x) are well
defined. We define the following functions:

f(x):=fla+b-x) (27)
and

F(x):=f() +fla+b-x)=f(x) +] (). (28)

Also, the following notations will be used throughout this paper:

%erm
ATYE (5) 1= [g(b) g(—a + —b)] ; (29)

i) 1= [ (2b+ %a) g(a)] o (30)

£ _ P
P7E(s) o= [g(b) g( a+27b>:| f;’i‘+k[w(g(b)—g<%a+%b)) ]; 31)
(7 2 - k o, 2 — P
kg(g) |: <%b+ Tsa> —g(a)] }"pf+k[w(g<%b+ Tsa) —g(a)) ] (32)

Page 5 of 17
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Taking s = 1 in (31) and (32), respectively, gives

o b\1* b\’

o =eo-(57) | F w(ew-o(57)) | 33)
b k b ¢

@0 - [o( “37) -] 7 w(e(%57) -e@) | 64)

The Hermite-Hadamard type inequalities for the generalized k-fractional integrals of a

function with respect to another function in Theorem 1 can be modified as in the following
theorem.

Theorem 2 Let k,p,1 € R*, w € R{, and o(m) € R* (m € Ny) be a bounded sequence.
Also, let g : [a,b] — R be an increasing and positive function on [a, b] having a continuous
derivative g'(x) on (a,b). If f is a convex function on [a,b], then the following Hermite-
Hadamard type inequalities for the generalized k-fractional integrals of f with respect to
the function g on [a, b] in (20) and (21) hold:

a+b 1
f( 2 ) = o,k.g o.kg
2k[] (1) + @774 ()]

2

fla)+f(b)

S (35)

< [T75  F@+ T, FB)] <

p,/\,“—gb = pyk,# +
where F(x) is defined as in (28).
Proof Since f is convex on [a, b], we have

f(x;y) ) ;f(y)

(x5 € [a, b]). (36)

It is easy to see that

2- 2-
iz,z + —Sb and —Stl + ib (S € [0:1])
2 2 2 2

belong to [a, b]. It follows from (36) that

y(57) =r(Gar 5 (e 30) ety @

Multiplying both sides of (37) by

e e g
F D —ol Sas225p
2 [gb)-g(3a+ 5b)F o | W\80) =8| Ja+—

and integrating the resulting inequality on [0, 1] with respect to s, with the aid of (18), (19),
(20), (27), (28), and (33), we obtain

2kf (ﬂ + b)wiji"g(l) < T SO+ T )

2 o L 4 %t

=J7F F(b). (38)

p,k,“zﬂﬁw
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Similarly, multiplying both sides of (37) by

b-a gGEb+Ea) {,k[ ((s 2-5 ) )p}
=7 Shetta) -
2 [gh+ Ba) - gk mel 3l )¢

and integrating the resulting inequality on [0, 1] with respect to s, with the aid of (18), (19),
(20), (27), (28), and (34), we get

a+b ~
2kf( )cbZ;kg T s J@+T 5 J@

=T, Fa. (39)
P =y

From (38) and (39), we have

Zkf(a-'-b)[(pg:)]f’g(l) akg(l)]

<J7E, Fa)+J" 5, Fb),

o, ‘”b —w p,)\,”T*b-ﬁ—;w

which proves the first inequality in (35).
To prove the second inequality in (35), using the convexity of f on [a, b], we obtain

f(fa " ?b) < %f(a) " ?f(b) (s€[0,1])

2
and

f<5b+ Ea> <S50y + 22 (s€[0,1])

2 2 —2 2 e

By adding these inequalities, we get

f(%a+ ?b) +f(?a+ %b) <f(a)+f(D) (se [0,1]). (40)

Multiplying both sides of (40) by

oo sl o5 %5)) ]
F Dol 20+ 25
2 [gb)-g(Sa+ 5b)F o | W\ 80 -g| Ja+—

and integrating the resulting inequality on [0, 1] with respect to s, similar to the proof of

the first inequality, we have
T b O+ T JO =T FO)
<k i‘ga)(f(a) +f(b)). (41)
Similarly, multiplying both sides of (40) by

b-a gGb+%a) Uk|: ( (s 2-5s > )p:|
o F Sp==2a) -
2 Lgb+ ) g(a)] o | W\8\ 554 ) -8(@)
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and integrating the resulting inequality on [0, 1] with respect to s, we obtain

T J@+ TS J@ =T, Fla)

< k@) )(f(@) +/(0). (42)
Adding (41) and (42), we have
o,k.g o,k.g
jp,)haTﬁ; —w ( )+\7 )La+b F(b)
<[l ) + 7 M)](F(a) +£(B)), (43)
which proves the second inequality in (35). Hence this completes the proof. d

Setting k =1 in Theorem 2, we get a little simpler inequalities asserted by the following
corollary.

Corollary1 Let p,A € R*, w e R, and o(m) € R* (m € Ny) be a bounded sequence. Also,
letg : [a,b] — R be an increasing and positive function on [a, b] having a continuous deriva-
tive g'(x) on (a, b). Iff is a convex function on [a, b), then the following Hermite-Hadamard
type inequalities for the generalized fractional integrals of f with respect to the function g
on [a, b] in (20) and (21) with k = 1 hold.:

a+b 1 g i
f( 2 > =< 2[(,00 lg( ) + q)olg(l)] [jp’}\'# o (ﬂ) +J oA, a+h ,WF(h)]
Sﬂ@%, .

where F(x) is defined as in (28).

Further, choosing A = «, o(0) =1 and w = 0 in Corollary 1, we get simpler inequalities in
the following corollary, which are a modification of the Hermite-Hadamard inequalities
given in [22].

Corollary 2 Let @ € R* and g : [a,b] — R be an increasing and positive function on [a, b]
having a continuous derivative g'(x) on (a,b). If f is a convex function on [a, b], then the
following Hermite-Hadamard type inequalities for the generalized fractional integrals of f
with respect to the function g on [a, b] in (14) and (15) hold:

a+b I +1)
(Zw Fb IM, F
f< 2 )SZ(Lz(w—g(%b)]a+[g<%>—g<a)]a>[ ®)+ oy Fla)]
Sw, s

where F(x) is defined as in (28).

It is remarked in passing that choosing g(¢) = ¢ in Corollary 1 yields the same result as in
[21], Corollary 1.
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3 Main results
We begin by presenting an integral formula involving the functions (31) and (32), which is

asserted by the following lemma.

Lemma 2 Letk,p,A € R*, w e R, and o (m) € R* (m € Ny) be a bounded sequence. Also,
letg : [a,b] — R be an increasing and positive function on |a, b] having a continuous deriva-
tive g'(x) on (a,b). Further, let f : [a,b] — R be a differentiable mapping on (a,b) (a < b)
and f' € L{a,b]. Then

o o . b
i[jp,f%b EF(b)+J f;ib F@]- (65 + @ k<‘f(1))f<“+ )
b- ! o O' 2
= 4“|:/0 ((pp:)lf,g( )+ kg( ))f (—a+ Tb) ds
1
/O (@75%(s) + <I>Z,’f’g(5))f’<%b ‘ ?a) ds], (46)

where (p;')}f’g (s) and QDZ”f’g (s) are given as in (31) and (32).
Proof Using (20) and changing the variable

2_
t=2a+2%p (0<s<1),
277

we find

TE, Fb) = b_afl gGa+5h)
g W 2 Jo [gb)-g(Sa+Eb)

re
J:Gk[ (g(b) g(—a+—b)>p] <%a+?b>d5. (47)

Integrating (47) by parts, we have

JTEE,  E®)

Loty = HW

:k[g(b)— (“;b)] f"iik[ (ﬂb)lg(a;b))p]%ﬂ;b)
[ fso-s(e )] o olom-s(3e-352) ]

9 _
X F’<£a+ —Sb) ds. (48)
2 2

+

Similarly, using (21) and changing the variable

92
t=£b+—sa (0<s<1),
2 2
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and integrating the resulting identity by parts, we have

o,k.g
ozt F )

-e(57) g(a)}Q Ftuw(e(57) e )]F( >)
) ) i [o{s(30+250) -s)

F’(% _Sa) ds. (49)

Using (28) to add (48) and (49), we obtain

1 ok, ok,
T WO + Ty Fa)]

k P
o) o) )
+[g<“2;b> —g(@] f;ﬁk[w(g(#) _ g(ﬂ)) }/(a;b)

b—a (! 5 \TE NNV
+ 4“/0 [g(b)—g(%a+ st)i| ]:;',\k+k|:w<g(b)—g<%ﬂ+78b)> ]

b—a (Y (s, 2-s k ok s 2-s ?
G55 sta) (oo 7))
s 2
X F’(zb + Tﬂ) ds. (50)

Considering F'(x) = f'(x) —f'(a + b—x) and applying (31)-(34) to (50), we obtain the desired
identity (46). O

Setting k =1 in Lemma 2, we obtain an identity asserted by the following corollary.

Corollary 3 Let p,A € R*, w e R, and o (m) € R* (m € Ny) be a bounded sequence. Also,
let g : [a,b] — R be an increasing and positive function on [a, b] having a continuous deriva-
tive g'(x) on (a,b). Further, let f : [a,b] — R be a differentiable mapping on (a,b) (a < b)
and f' € L{a, b). Then

o o, o, o,l, a+ b
T W F O+ T Fl@) =2(p550) + cbp,ig(l))f(T)

b-a

1
- TU (¢ + LW (‘“ ' 27”) “
1
/0 (05%(s) + @73%(s ))f( b+ 2Ta> ds], (51)

where (p;”i’g (s) and <I>Z,’i'g (s) are given as in (31) and (32).
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Choosing k =1, A =«, 6(0) =1, and w = 0 in Lemma 2 yields an interesting identity

asserted by the following corollary.

Corollary 4 Let @ € C with R(x) > 1. Also, let g : [a,b] — R be an increasing and positive
function on |a,b] having a continuous derivative g'(x) on (a,b). Further, let f : [a,b] — R
be a differentiable mapping on (a,b) (a < b) and ' € L{a, b]. Then

I« +1)

[Tiy, FO) + Toy_ F@)]
(o557 4 o(57) ] J(57)

S e )G 7e) )]
xf' <—a + sz) ds

[ (so-sCGe 252 +[(eGr55%0) )] )

x f' < + ZTa) ds}, (52)

where Igﬁgf (%) and Ig‘f;gf (x) are given in (14) and (15).

Remark 1 Setting k =1 and g(¢) = ¢ in Lemma 2 gives the same result as in Lemma 1.
Taking k=1, A =, g(¢) = ¢, 0(0) =1 and w = 0 in Lemma 2 yields the same result as in
[11], Lemma 3.

Theorem 3 Let k,p,1 € R*, w e R{, and o(m) € R* (m € Ny) be a bounded sequence.
Also, let g : [a,b] — R be an increasing and positive function on [a, b) having a continuous
derivative g'(x) on (a,b). Further, let f : [a,b] — R be a differentiable mapping on (a,b)
(a < b) such that f' € L|a,b] and |f'| is a convex function on [a,b]. Then

Zk[ 2
b—
=

1. & ’ . b
=7 I OF ;‘;i,, F@] - (gt ) + @ kg(1))f<“+ )’
2,85 ;

(FE ) (@] + | ®)

) (53)
where the notations are given as above and
= o(m)f (AT () + Q08 () ds  (m € Ny). (54)

Proof Here and in the following, let £ be the left side of the equality in (46). Since g is

increasing on [a, b] and |f’| is a convex function on [a, b], in view of (19), (31) and (32), we
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find from Lemma 2 that

|£|<b—a§: o (m)w™
B B kI (omk + A + k)

(T T
Lo 5] o)
kwm(%[f’(b)\ @) as
1x(Wn(%{f/(a)| ¥ ?Lf/(bﬂ) ds}. (55)

Since
/ 2- ’ 4 2- ! / 4
%V(b)hTSlf(a)h%[f(a)h Zslf(b)!=lf(a)!+lf(b)

using (29) and (30), we have

)
|£|<—(lf (@) + V(b)DZkr (pr:;l(‘:-})\+k)

1 2 7(+pm 92— %+pm
X /0 |:<g(b) —g(%a + st)> + (g(%b + Tsa> —g(a)) :|ds

b-a , , d w” ! o,k,g o,kg
- T([f (a)’ + [f (b)’) Z T omk s k)a(m)/o (Ap,x,m(s) + Qp,k,m(s)) ds
m=0

b

= @]+ @),
This completes the proof. O

Choosingk =1, A =«, 0(0) =1, and w = 0 in Theorem 3, we obtain an interesting in-
equality involving the generalized fractional integrals (14) and (15), which is asserted by
the following corollary.

Corollary 5 Let o € R* and g : [a,b] — R be an increasing and positive function on [a, b]
having a continuous derivative g'(x) on (a,b). Also, let f : [a,b] — R be a differentiable
mapping on (a,b) (a < b) such that f' € L|a,b] and |f’| is a convex function on [a,b]. Then

b
‘F(a;l)[ ‘. F(b)+Ia+h ;F(a)] nabgf(a+ )‘

<Py, (F@)+ I

)))s (56)

where

b\ 1" b ¢
o (o 52)] e52) )
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and

1 o a
Yobg = /[(g(b)—g(%a+?b)> +<g<%b+?a> —g(a)) ]ds. (58)

Remark 2 Setting k =1 and g(¢) = ¢ in Theorem 3 gives the same result as in [21], Corol-
lary 3.

The special case of Theorem 3 when k =1, 1 =, 0(0) =1, and w = 0 is seen to corre-
spond with the result obtained by setting g = 1 in [11], Theorem 5.

Theorem 4 Let k,p,2 € R, w € R, and o(m) € R* (m € Ny) be a bounded sequence.
Also, let g : [a,b] — R be an increasing and positive function on [a, b] having a continuous
derivative g'(x) on (a,b). Further, let f : [a,b] — R be a differentiable mapping on (a,b)
(a < b) such that |f'|1 is convex for q > 1 with }7 + é =1. Then

1 o,k,g o, k.g o kg o kg a+b
ﬁ[jp,k,#ﬂwlj(b) + jpy}\'%b_;wF(a)] (‘Pp,\ 1)+ QD (D)f B
1 1
1,, 3, q 3., 1,, 1
s (Gr@rs o)+ (Grar - ror)] e
where the notations are given as above and

1 1% 1 . 1%
az(m>:=a<m><[/o( 78 () d } +UO( 78 () d } )

Proof Using convexity of |f'|7 and Holder’s inequality in Lemma 2, we have

b-a

—a o (m)w™ :
I' )
L] = 4 ;kf‘k(pmk+k+k) (}21: )

where

1

1= (/ol[g(b) —g(%a N ?b)}p(%mm) ds)i
([ Grer 35 b>|~> )

L= ( /0 1[g(b) —g<§b+ ?aﬂ”%*”’” ds>,%
X(/( ror2lre >|q)ds> ,
(/01< ( b+ —“> —g(a>)p(%+pm) ds)}?
([ Grar-22re)r) )
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(fo (g ( ’ +—a) g(a))p(ﬁ”’m) ais)é
x <./0 ( ;s[f’(a)yf) ds>‘{

We thus have

o]

=ty et ([stsora V([ )]
[(%[f(a)rl [fb)|> (Zlf/(a)l"ﬁlf/(b)l”)q

b-a

T oy / % 30 L., %
-tms| (Gl ror) s (Grer gror)’|

This completes the proof. d

Settingk =1, A =&, 0(0) =1, and w = 0 in Theorem 4, we obtain an interesting result, in-
volving the generalized fractional integrals (14) and (15), which is asserted by the following

corollary.

Corollary 6 Let o € R* and g: [a,b] — R be an increasing and positive function on [a, b]
having a continuous derivative g'(x) on (a,b). Also, let f : [a,b] — R be a differentiable
mapping on (a,b) (a < b) such that |f'|1 is convex for q > 1 with }7 + % =1. Then

‘F(a+1)

1, FO)+ T F@) - nﬂbgf<“+b)‘
() + (a5

g 31 a\T (3. Lig)?
X[(Zlf(a)|q+1[f(b)|q> +<1Lf(a)|q+1[f(b)|q> ] (60)

S
S

where nfl‘yb;g is given in (57),

and

o 1 2—s pe
Ap;g::/0 |: <2b+ Ta) g(a)] ds.

Remark 3 Setting k =1 and g(¢) = ¢ in Theorem 4 gives the same result as in [21], Corol-
lary 5.

Choosing k=1, g(t) =t, A =«, 0(0) =1, and w = 0 in Theorem 4 yields the same result
as in [11], Theorem 6.
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Theorem 5 Let k,p, A € R*, w e R}, and o(m) € R* (m € Ny) be a bounded sequence.
Also, let g : [a,b] — R be an increasing and positive function on |a, b] having a continuous
derivative g'(x) on (a,b). Further, let f : [a,b] — R be a differentiable mapping on (a,b)
(a < b) such that |f'|1 is convex for ¢ > 1. Then

1. . . ) N b
‘2—]{[3,,,’;"5# Fb)+J, xkib @] = (00 @ + @0 W)f <a; )‘

b—
=

AFos Iw] + Fos, ], (61)

where the notations are given above:

1 -7
05(m) i= o (m) ( fo ;i‘f,xs))

x{[v/(a),q/ ATEE (5)2 ds+V(b)|/ AT )%ds]q

Jror [ spsesas el [ ase? el

Q=

} (62)

and

1 .
o4(m) :=a(m)( /0 ;i‘ﬁxs))
1 ]
x{|:[f’(a)|q/0 QU ()2 ds+[f(b)|/ QU (s —Sds]
1 _
*[lf/(b)V/O sz;;‘;fn(s) ds+ |f'(a)|* / Qe )Tsds]

Bl

-

Proof Using convexity of |[f'|? and the power-mean inequality in Lemma 2, we have

|£|<b—ai o (m)w™
B B kI (omk + A + k)

1

1 _ %+pm l—q
x (/0 [g(b)—g(%a+ %b)} ds) (R1+Rs)
b

[e¢]
—a o(mw
+
4 Z kI (pmk + A + k)

1

2_g %erm l—q
b+ Ta) —g(a)} ds) (R3 + Ra),

X
N
O\L

o
N
N«

where

1 Lipm
o i oo 5] 54
1 %‘F "o %
+[f’(b)|q/0 [g(b)—g(%a+ ?b)] ’ %ds} ,
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e fror [ eo-e(e- )]

prm ¢
—ds
+pm %I
+|f (@] / |:g(b) g(—a+—b :| —ds} ,

el [ 5 ]

We, therefore, have

= omiwl” b oke )
£l = Z Cx(pmk + A + k) (/ an(S))
x [ (@) / AR (5) ds+ [f/(b)V/ ;iﬁq(s) }q

+ [ /(b)| f Zi{,’fn(S)%ds + Ur/(ﬂ)|q/ ;j\(fn(s)—ds} }
b a e o-(m)|w|m 1 g 1
4 ; kI (omk + A + k) (/ Qp,x,m(5)>

A[ror [[apsosa-ror [ ase?]

.

Q=

Q=

+[ /(b Z];,gn —ds+ [f }q/ fon(s)

= [‘FZ?’A}:}([W] + fff‘i]fk[wl]

|
[

Finally, we get

|£| =< —[Fa)ﬁk[w] +‘/.'-Zj§:]:k[W]].
This completes the proof. d

Remark 4 Settingk =1, 2 =«, 0(0) =1, and w = 0 in Theorem 5 gives a new result, as in
Corollaries (5) and (6).
Choosing k =1 and g(¢) = t in Theorem 5 yields the same result as in [21], Corollary 7.
Setting k =1, A =, 6(0) =1 and w = 0 in Theorem 5 gives the same result as in [11],
Theorem 5.
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