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Abstract
In this paper, we prove that the double inequalities

αNQA(a,b) + (1 – α)G(a,b) < TD
[
A(a,b),G(a,b)

]
< βNQA(a,b) + (1 – β)G(a,b),

λNAQ(a,b) + (1 – λ)G(a,b) < TD
[
A(a,b),G(a,b)

]
<μNAQ(a,b) + (1 –μ)G(a,b)

hold for all a,b > 0 with a �= b if and only if α ≤ 3/8,
β ≥ 4/[π (log(1 +

√
2) +

√
2)] = 0.5546 · · · , λ ≤ 3/10 and

μ ≥ 8/[π (π + 2)] = 0.4952 · · · , where TD(a,b), G(a,b), A(a,b) and NQA(a,b), NAQ(a,b) are
the Toader, geometric, arithmetic and two Neuman means of a and b, respectively.

MSC: 26E60; 33E05
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1 Introduction
For x, y, z ≥  with xy + xz + yz �=  and r ∈ (, ), the symmetric integrals RF (x, y, z) and
RG(x, y, z) [] of the first and second kinds, and the complete elliptic integrals K(r) and
E(r) of the first and second kinds are defined by

RF (x, y, z) =



∫ ∞



[
(t + x)(t + y)(t + z)

]–/ dt,

RG(x, y, z) =



∫ ∞



[
(t + x)(t + y)(t + z)

]–/
(

x
t + x

+
y

t + y
+

z
t + z

)
t dt,

K(r) =
∫ π/



[
 – r sin(t)

]–/ dt, E(r) =
∫ π/



[
 – r sin(t)

]/ dt,

respectively.
The well-known identities

K(r) = RF
(
,  – r, 

)
, E(r) = RG

(
,  – r, 

)

were established by Carlson in [].
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Let a, b >  with a �= b. Then the Toader mean TD(a, b) [] and the Schwab-Borchardt
mean SB(a, b) [–] are respectively defined by

TD(a, b) =

π

∫ π/



√
a cos(t) + b sin(t) dt

=

⎧
⎨

⎩
aE(

√
 – (b/a))/π , a > b,

bE(
√

 – (a/b))/π , a < b,
(.)

and

SB(a, b) =

⎧
⎨

⎩

√
b–a

cos–(a/b) , a < b,
√

a–b

cosh–(a/b) , a > b,

where cos–(x) and cosh–(x) = log(x +
√

x – ) are the inverse cosine and inverse hyper-
bolic cosine functions, respectively.

Very recently, Neuman [] introduced the Neuman mean N(a, b) of the second kind as
follows:

N(a, b) =



[
a +

b

SB(a, b)

]
.

It is well known that the Toader mean TD(a, b), the Schwab-Borchardt mean SB(a, b)
and the Neuman mean of the second kind N(a, b) satisfy the identities (see [, ])

TD(a, b) =

π

RG
(
a, b, 

)

=

π

∫ ∞



[(
t + a)(t + b)]–/

(
a

t + a +
b

t + b

)
t dt,

SB(a, b) = /RF
(
a, b, b)

= /
∫ ∞



[(
t + a)(t + b)(t + b)]–/ dt,

N(a, b) = RG
(
a, b, b)

=



∫ ∞



[(
t + a)(t + b)(t + b)]–/

(
a

t + a +
b

t + b +
b

t + b

)
t dt.

Let p ∈ R and a, b > . Then the pth power mean Mp(a, b) is defined by

Mp(a, b) =
[(

ap + bp)/
]/p(p �= ), M(a, b) =

√
ab. (.)

We clearly see that Mp(a, b) is symmetric and homogeneous of degree one with respect
to a and b, strictly increasing with respect to p ∈ R for fixed a, b >  with a �= b, and the
inequalities

G(a, b) = M(a, b) < A(a, b) = M(a, b) < Q(a, b) = M(a, b)
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hold for a, b >  with a �= b, where G(a, b) =
√

ab, A(a, b) = (a + b)/ and Q(a, b) =√
(a + b)/ are the geometric, arithmetic and quadratic means of a and b, respectively.
In [], Neuman presented the explicit formula for NQA(a, b) ≡ N[Q(a, b), A(a, b)] and

NAQ(a, b) ≡ N[A(a, b), Q(a, b)] as follows:

NQA(a, b) =



A(a, b)
[√

 + v +
sinh–(v)

v

]
, (.)

NAQ(a, b) =



A(a, b)
[

 +
(
 + v) tan–(v)

v

]
(.)

and proved that the inequalities

A(a, b) < NQA(a, b) < NAQ(a, b) < Q(a, b) (.)

hold for a, b >  with a �= b, where v = (a – b)/(a + b).
Recently, the Toader mean has been the subject of intensive research. In particular, many

remarkable inequalities for Toader mean and other related means can be found in the
literature [–].

In [], Vuorinen conjectured that

TD(a, b) > M/(a, b)

for all a, b >  with a �= b. This conjecture was proved by Qiu and Shen [], and Barnard
et al. [], respectively, and Alzer and Qiu [] presented the best possible upper power
mean bound for the Toader mean as follows:

TD(a, b) < Mlog / log(π/)(a, b)

for all a, b >  with a �= b.
Li, Qian and Chu [] proved that the inequality

αNAQ(a, b) + ( – α)A(a, b) < TD(a, b) < βNAQ(a, b) + ( – β)A(a, b)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ ( – π )/[π (π – )] =
. · · · .

Note that

G(a, b) < TD
[
A(a, b), G(a, b)

]
< A(a, b) (.)

for all a, b >  with a �= b.
From inequalities (.) and (.) we clearly see that

G(a, b) < TD
[
A(a, b), G(a, b)

]
< NQA(a, b) < NAQ(a, b)

for all a, b >  with a �= b.
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The main purpose of this paper is to find the greatest values α, λ and the least values β ,
μ such that the double inequalities

αNQA(a, b) + ( – α)G(a, b) < TD
[
A(a, b), G(a, b)

]
< βNQA(a, b) + ( – β)G(a, b),

λNAQ(a, b) + ( – λ)G(a, b) < TD
[
A(a, b), G(a, b)

]
< μNAQ(a, b) + ( – μ)G(a, b)

hold for all a, b >  with a �= b. As applications, we get two new bounds for the complete
elliptic integral of the second kind in terms of elementary functions.

2 Lemmas
In order to prove our main results, we need several lemmas, which we present in this
section.

For r ∈ (, ), we clearly see that

K
(
+)

= E
(
+)

= π/, K
(
–)

= +∞, E
(
–)

= ,

and K(r) and E(r) satisfy the formulas (see[], Appendix E, pp.-)

dK(r)
dr

=
E(r) – ( – r)K(r)

r( – r)
,

dE(r)
dr

=
E(r) – K(r)

r
,

d[E(r) – K(r)]
dr

= –
rE(r)
 – r .

Lemma . (see [], Theorem .) For –∞ < a < b < +∞, let f , g : [a, b] → R be contin-
uous on [a, b] and differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . (see [], Theorem .(), Exercise .() and Exercise .())
() The function r �→ [E(r) – ( – r)K(r)]/r is strictly increasing from (, ) onto

(π/, );
() The function r �→ [K(r) – E(r)]/r is strictly increasing from (, ) onto (π/, +∞);
() The function r �→ [( – r)K(r) – E(r)]/r is strictly increasing from (, ) onto

(π/, +∞).

Lemma . The function r �→ ϕ(r) = { 
π

√
 – r[E(r) – K(r)] + r – }/r is strictly in-

creasing from (, ) onto (/, ).

Proof Simple computations lead to

ϕ
(
+)

=



, ϕ
(
–)

= , (.)

ϕ′
(r) =


πr γ(r), (.)
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where

γ(r) =
K(r) – E(r)√

 – r
+ π , (.)

γ
(
+)

= , (.)

γ ′
 (r) =

r

( – r)/
( – r)K(r) – E(r)

r . (.)

From (.) and Lemma .() we get

γ ′
 (r) >

πr

( – r)/ > . (.)

Therefore, Lemma . follows easily from (.), (.), (.) and (.). �

Lemma . The function r �→ ϕ(r) = (r +
√

 – r – )/r is strictly decreasing from (, )
onto (, ).

Proof It is easy to verify that

ϕ
(
+)

= , ϕ
(
–)

= , (.)

ϕ′
(r) =

(
√

 – r – )
r

√
 – r

<  (.)

for r ∈ (, ).
Therefore, Lemma . follows easily from (.) and (.). �

Lemma . The function r �→ ϕ(r) = [rK(r) – E(r)]/
√

 – r is strictly increasing from
(, ) onto (–π/, +∞).

Proof It is not difficult to verify that

ϕ
(
+)

= –


π , ϕ

(
–)

= +∞, (.)

ϕ′
(r) =

r
( – r)/

[(
 – r)K(r) – E(r)

r – E(r)
]

. (.)

From (.) and Lemma .() together with the monotonicity of E(r) on (, ) we clearly
see that

ϕ′
(r) >

r
( – r)/

[(
 – r) × π


–

π



]
=

π


r√

 – r
>  (.)

for r ∈ (, ).
Therefore, Lemma . follows from (.) and (.). �

Lemma . The function r �→ ϕ(r) = { 
π

√
 – r[E(r)–(+r)K(r)]+r –}/r is strictly

increasing from (, ) onto (/, ).
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Proof Let φ(r) = 
π

√
 – r[E(r) – ( + r)K(r)] + r – , φ(r) = r. Then simple compu-

tations give

φ
(
+)

= φ() = , ϕ(r) = φ(r)/φ(r), (.)

ϕ
(
–)

= , (.)

φ′
(r)

φ′
(r)

=  +


π
√

 – r

[E(r) – ( – r)K(r)
r

]
+


π

ϕ(r). (.)

It follows from Lemma .(), Lemma . and the function r �→ √
 – r strictly decreas-

ing that φ′
(r)/φ′

(r) is strictly increasing on (, ) and

ϕ
(
+)

= lim
r→+

φ′
(r)

φ′
(r)

=



. (.)

Therefore, Lemma . follows from Lemma ., (.), (.) and (.) together with
the monotonicity of φ′

(r)/φ′
(r). �

Lemma . The function ϕ(r) = [r +
√

 – r – ]/r is strictly decreasing from (, ) onto
(, /).

Proof We clearly see that

ϕ
(
+)

=



, ϕ
(
–)

= , (.)

ϕ′
(r) = –

( –
√

 – r)

r
√

 – r
<  (.)

for r ∈ (, ).
Therefore, Lemma . follows easily from (.) and (.). �

3 Main results
Theorem . The double inequality

αNQA(a, b) + ( – α)G(a, b) < TD
[
A(a, b), G(a, b)

]
< βNQA(a, b) + ( – β)G(a, b) (.)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ /[π (log( +
√

) +
√

)] =
. · · · .

Proof Since G(a, b), TD(a, b) and NQA(a, b) are symmetric and homogenous of degree ,
without loss of generality, we assume that a > b >  and let r = (a – b)/(a + b) ∈ (, ). Then
(.)-(.) lead to

TD
[
A(a, b), G(a, b)

]
=


π

A(a, b)E(r), (.)

G(a, b) = A(a, b)
√

 – r, NQA(a, b) =



A(a, b)
[√

 + r +
sinh–(r)

r

]
. (.)
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It follows from (.)-(.) that

T[A(a, b), G(a, b)] – G(a, b)
NQA(a, b) – G(a, b)

=

π
ε(r) –

√
 – r


 [

√
 + r + sinh–(r)

r ] –
√

 – r

=

π

rε(r) – r
√

 – r

sinh–(r) + (r
√

 + r – r
√

 – r)
. (.)

Let f(r) = 
π

rε(r) – r
√

 – r, f(r) = sinh–(r) + (r
√

 + r – r
√

 – r) and

f (r) =

π

rε(r) – r
√

 – r

sinh–(r) + (r
√

 + r – r
√

 – r)
. (.)

Then simple computations lead to

f
(
+)

= f() = , (.)

f ′
 (r)

f ′
(r)

=

π

√
 – r[ε(r) – κ(r)] + r – 

r +
√

 – r – 
=

ϕ(r)
ϕ(r)

, (.)

where ϕ(r) and ϕ(r) are defined as in Lemmas . and ..
It follows from Lemmas .-. and (.) that f ′

 (r)/f ′
(r) is strictly increasing on (, ).

Then (.), (.) and Lemma . lead to the conclusion that f (r) is strictly increasing.
Moreover,

lim
r→+


π

rε(r) – r
√

 – r

sinh–(r) + (r
√

 + r – r
√

 – r)
=




, (.)

lim
r→–


π

rε(r) – r
√

 – r

sinh–(r) + (r
√

 + r – r
√

 – r)
=


π [π (log( +

√
) +

√
)]

. (.)

Therefore, Theorem . follows easily from (.), (.) and (.) together with the mono-
tonicity of f (r). �

Theorem . The double inequality

λNAQ(a, b) + ( – λ)G(a, b) < TD
[
A(a, b), G(a, b)

]

< μNAQ(a, b) + ( – μ)G(a, b) (.)

holds for all a, b >  with a �= b if and only if λ ≤ / and μ ≥ /[π (π + )] = . · · · .

Proof Without loss of generality, we assume that a > b >  and let r = (a–b)/(a+b) ∈ (, ).
Then from (.) we get

NAQ(a, b) =



A(a, b)
[

 +
(
 + r) tan–(r)

r

]
. (.)
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It follows from (.), (.) and G(a, b) = A(a, b)
√

 – r that

TD[A(a, b), G(a, b)] – G(a, b)
NAQ(a, b) – G(a, b)


π
E(r) –

√
 – r


 [ + ( + r) tan–(r)

r ] –
√

 – r

=
[ 
π

rE(r) – r
√

 – r]/( + r)
tan–(r) + (r – r

√
 – r)/( + r)

. (.)

Let g(r) = [ 
π

rE(r) – r
√

 – r]/( + r), g(r) = tan–(r) + (r – r
√

 – r)/( + r) and

g(r) =
[ 
π

rE(r) – r
√

 – r]/( + r)
tan–(r) + (r – r

√
 – r)/( + r)

. (.)

Then simple computations lead to

g
(
+)

= g() = , (.)

g ′
(r)

g ′
(r)

=

π

√
 – r[ε(r) – ( + r)κ(r)] + r – 

r +
√

 – r – 
=

ϕ(r)
ϕ(r)

, (.)

where ϕ(r) and ϕ(r) are defined as in Lemmas . and ..
It follows from Lemmas .-. and (.) that g ′

(r)/g ′
(r) is strictly increasing on (, ).

Then (.), (.) and Lemma . lead to the conclusion that g(r) is strictly increasing.
Moreover,

lim
r→+

[ 
π

rε(r) – r
√

 – r]/( + r)
tan–(r) + (r – r

√
 – r)/( + r)

=



, (.)

lim
r→–

[ 
π

rε(r) – r
√

 – r]/( + r)
tan–(r) + (r – r

√
 – r)/( + r)

=


π (π + )
. (.)

Therefore, Theorem . follows from (.), (.) and (.) together with the mono-
tonicity of g(r). �

From Theorems .-. we get the following Corollary . immediately.

Corollary . Let α = /, β = /[π (log( +
√

) +
√

)] = . · · · , λ = / and μ =
/[π (π + )] = . · · · . Then the double inequalities




πα

[√
 + r +

sinh–(r)
r

]
+



π ( – α)

√
 – r

< E(r) <



πβ

[√
 + r +

sinh–(r)
r

]
+



π ( – β)

√
 – r,




πλ

[
 +

(
 + r) tan–(r)

r

]
+



π ( – λ)

√
 – r

< E(r) <



πμ

[
 +

(
 + r) tan–(r)

r

]
+



π ( – μ)

√
 – r

hold for all r ∈ (, ).
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4 Results and discussion
In this paper, we provide the sharp bounds for the Toader-type mean in terms of the convex
combination of geometric and Neuman means. As applications, we find new bounds for
the complete elliptic integral of the second kind.

5 Conclusion
In the article, we present the optimal convex combination bounds of the geometric and
Neuman means for the Toader-type mean, and give several new upper and lower bounds
for the complete elliptic integral of the second kind. The given results are the improve-
ments of some previously known results.
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