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Abstract

In this paper, we present new upper and lower bounds for the spectral norms of the
by ED £Q) £Q) £(n)

r- cwculant matnceSO @ (2 ) do ,(S)TCM,(E)T%n--,(g)%%w) and

L= C,((a) / (L ) /1,( )S(2 /2,...,(§)w/n,1) whose entries are the biperiodic

Fibonacci and b|per|od|c Lucas numbers, respectively. Finally, we obtain lower and
upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L
matrices.

Keywords: biperiodic Fibonacci number; biperiodic Lucas number; r-circulant
matrix; norm

1 Introduction

For n € Ny, the Fibonacci and Lucas numbers are defined by Fj, = F;1 + F, and Ly,5 =
L,1 + L, with the initial conditions Fy = 0, F; =1 and Ly = 2, L; = 1, respectively. In recent
years, there are several applications and generalizations of Fibonacci and Lucas numbers
[1-12]. For example, Falcon and Plaza introduced the k-Fibonacci sequence by studying
the recursive application of two geometrical transformations used in the well-known 4-
triangle longest-edge (4TLE) partition [6]. Edson and Yayenie [3] presented a new gener-
alization of the Fibonacci sequence: for n € Ny,

aqua +¢q, ifniseven,
qO = O; ql = 17 Qn+2 = " ! (]-)
bqua +q, ifnisodd.

They also obtained an extended Binet formula for this sequence:

IE ﬁn
q,q:(uwj) i el (2)

Afterward, Bilgici [4] defined generalized the Lucas sequence by the following recurrence
relation: for n € Ny,

bl,.1+1, ifniseven,
l() = 2, 11 =a, ln+2 = (3)
al,. +1, ifnisodd
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and The Binet formula for this sequence is

aén
L, = (—) (a” + f}"), n € Np. (4)

abl*]

In Egs. (2) and (4), o = ‘”’*—”’22]72*4“” and 8 = "1"—”1221’2*4“” are the roots of the characteristic
equation of x> —abx —ab=0,and &(n) =n - 2|5 .

In recent years, there have been several studies on the norms, determinants, and
inverses of circulant and r-circulant matrices whose entries are special integer se-
quences [13-27]. For example, Shen and Cen [18] found upper and lower bounds for
the spectral norms of r-circulant matrices in the forms A = C.(Fy, Fy,F»,...,F,1) and
B=C,(Lo,L1,Ls,...,L,1). They also obtained some bounds for the spectral norms of Kro-
necker and Hadamard products of A and B. Afterward, Shen and Cen [19] gave the upper
and lower bounds for the spectral norms of the matrices A = C,(Fx, Fx1,Fr2,---»Fin-1)
and B = Cy(Lko,Lk1,Li2s--.»Liu-1). They also presented some bounds for the spec-

tral norms of Hadamard and Kronecker products of these matrices. Bahsi [16] stud-

ied the norms of r-circulant matrices H, = Circr(H(()k),Hl(k),Hék),...,H,(qk_)l) and H, =
Circr(H (0),H,((1),H,(<2),...,H,(("71) ), where HY denotes the nth hyperharmonic number of
order r.

Inspired by these studies, in this paper, we compute spectral norms of r-circulant matri-
ces whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers. This study
consists of three sections. The first one is the introduction. In the second section, we give
some new theorems, corollaries, and some important results. We give a concise conclu-

sion in the last section.

Definition 1.1 For any given co,c1,¢a,...,¢4-1 € C, the r-circulant matrix C, = (¢j)uxn is

defined by
Co 41 € ... Cp2 Cua
rCp1 Co €l ... Cp3  Cp2
Cp—3 TCyp1 Co ... Cpa Cp3
rey res rcsg ... Co C1
L ra recy recy ... rcyq Co |

It is clear that, for r = 1, C, turns into a classical circulant matrix. Let us take any A = [a;] €
M, ,(C). The Frobenius norm of the matrix A is defined by

lAllE = [iz |ai,|2} %.

i=1 j=1

Also, the spectral norm of the matrix A is given by

Al = [ max A;(AHA),
1<i<n
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where A;(A"A) are the eigenvalues of A7 A such that A" is the conjugate transpose of A.
Then, the well-known inequality [28] is given by

1
7 I14llF = llAll2 = l|Alle. (6)

7

Lemma 1.2 ([28]) For any matrices A, B € M, ,(C), we have
|A 0Bl < IAll2IBll2,

where A o B is the Hadamard product of A and B.

Lemma 1.3 ([28]) For any matrices A € M,,,(C) and B € M, 4,(C), we have
IA® Bll2 = [l All211Bll2, 7)
where A ® B is the Kronecker product of A and B.
Lemma 1.4 ([29]) For any matrices A = [a;] € M,,,(C) and B = [by] € M,,,(C), we have
A 0 Bllz < ri(A)ci(B),

where A o B is the Hadamard product, r(A) = maxj<;<, /Z;':1 la;j|?, and ¢ (B) =
MaXi<j<n 4/ Z?:l |bl’1'|2‘

Theorem 1.5 ([5]) For any positive integer n, we have

" /b &(k+1) 1
Z(_) 6112< = <_>qnqn+l~ (8)
a a

k=1

2 Main results

In this section, we first give the sum of squares of biperiodic Lucas numbers.

Theorem 2.1 For any positive integer m, we have

m s p\ER
Z<;) l,f=(£>lm+llm—2. 9)

k=1

Proof Using the Binet formula of the biperiodic Lucas numbers, we have

B= (5 + (BF+2(-1f ifkiseven,

2= (9 + (B +2(-14  ifkis odd.

Therefore, for any k > 1,

b é(k)2 a2 k ,82 k .
(2) 8= (55) +(55) v2n
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Using the properties ab(a + 1) = o and ab(B + 1) = B2, we get

m b 5(/()2 m 052 k m ﬁZ k m ;
2 -20) 2(E) e
ﬁ m+l _ ﬁ m+1 5
o) G >2 G5 s
(%) -1 (&) -1
_ 1
_(ab)rml

[a2m+1 + ﬂ2m+1 _ (_l)m] -2

Observe that

(é)lmlmﬂ — 1 [a2m+1 + 132m+1 _ (_l)m]

(ab)mﬂ
Therefore,
mp\EO
Z(;) Iy = (;)lmﬂlm -2. -
k=1
by 5D by Q) b 5B by E®
Theorem 2.2 Let Q = C.((7) 2 qo,(5) 2 ql,( )2 q2,.--,(3) 2 qu1) be an r-circulant

matrix. Then, for r € C, we have:
if|r| =1, then

qnq qnq
y ”ﬂ“<||Q||z<| r| L

if|r| <1, then

il [ 2L < i, < f(n -T2,
a a

Proof The matrix Q is of the form

e
&=

[ &7 g O7Ta BT g (&) gua
) ) o) &)
A7 g 7T BT a &) qus
£(n-1) £(n) &) £(n=2)
Q=717 qua r®) 7T g1 (B2 g0 &) g |. (10)
L )T q )T g )T g )7 q |

Then we have

n-1 b E(k+1) n-1 b &(k+1)
o= 0-0(3) @+ Xke(3)

k=0
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Hence, for |r| > 1, using Eq. (8), we obtain

n-1

b E(k+1) n—-1 b E(k+1)
||Q||%zZ(n—k><—> q2+Zk<—> ax
k=0 a k=1 a

n-1 b &(k+1) )
="Z(;> i
k=0

_ <%in>
=nl —— ),
a
that is,

1 qnqn-1
_— > .
VRN

From (6) we have

1Qll, > [Tt
a

Page 5 of 12

Now, for |r| > 1, we give an bound for the spectral norm of the matrix Q. Let the matrices

Band C be
[ (D)% g 1 1 1]
&n) §0)
r(3) T gua 1D 7T g0 1 1
£(n-1) &(n) 1)
B=|r®) T qua ()T g1 (D)7 g0 1
£2) 16)] §@) §0)
L DT qa DT DT (%) go
and
by 0 £Q) £3) () q
O7q0 O7Ta BT (52 gua
Q) £(2) &(n-1)
1 O7q0 O7Ta (57 gua
£(1) £(n-2)
C= 1 1 (&)= g0 (577 qus |,
&)
L 1 1 1 ()% q0 |
so that Q = Bo C. Then we obtain
n n-1 &(k+1)
b qngn-1
- 12 = 2 e 2 _ nin
n(B) = max lel,l i kz;(ﬂ) ai =Irl, [ ===,
j= =

1<j<n

n
¢1(C) = max Z leyl? =
i=1 \

By Lemma 1.4 we have

q;'lqn—l
—d .

IQll2 < n(B)ai(C) = |r|

12)
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Thus,

qnqn- qnqn-
S < QY < 1 T
a a

On the other hand, for |r| < 1, we have

k+1)

n-1 p\EED n-1 b\ &
o= Y-l (2) e ae(3) e
k=0 k=1
nol N\ Sk
= n|r|? Z(;) i

k=0

Thus, we obtain

qnqn-1
—

Q2 = ||

Page 6 of 12

Now, for |r| <1, we give an upper bound for the spectral norm of the matrix Q. Let the

matrices D and E be

[(2) 7 g0 1 1 1
£Q1)
r (%) Z qo 1 1
by ED
D= r r (2)2 qo 1
by 5D
L r r (3) % 4o
and
SN ) £2) £@) £0n)
B9 GrTa BO7Te )7 gua
£0n) £0) £2) £0r-1)
O Bra O)Ta )" g
&(n-1) £(n) £Q1) £(n-2)
E= (s) 2 qn-2 (2) 2 gn-1 (s) 2 qo (Z) 2 qn-3

(13)

(14)
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so that Q = D o E. Then we obtain

By Lemma 1.4 we have

IQll2 < n(D)ai(E) =,/ (n—-1) qﬂZn—l.

Thus,

el [ 2L < 1Ql < Jin -y T O
a a

1 -1
% by E0=1)

) 2) s
h, (%)T byy...,(2) % L) be an r-circulant ma-

Theorem 2.3 LetL = C,((%)@lo, (5)
trix. Then, for r € C, we have:
if|r| =1, then

L, I,
,/—1+2s||L||zs|r|( 1+2);
a a

if|r| <1, then

lnln—l (lnln—l )
71/ +2=<|Llx = [n| —— +2).
a a

Proof The matrix L is of the form

()% CEd O (051,
£(n-1) £(0) £Q) £(n-2)
0L, T, Oy (&)1, ,
£(n-2) £(m-1) £(0) £(n-3)
L= ", (&, (D), (0“5, 5 | (15)
Q) £(2) £(3) £(0)
O Ok SO S TN O b o

Then we have

2.

, n-1 b E(k)2 n-1 ) b &(k)
L)%= -k(=) kir?( =
ILIE =) (n )(ﬂ) k+§ |7l (ﬂ)

k=0
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Hence, for |r| > 1, using Eq. (9), we obtain
, n-1 b E(k) ) n-1 b &(k) )
EENCE k)(;) [+ Zk<;> A
k=0 k=1
n-1 &(k)
b 2
2 (a)
k=0
Lol
= n(—1 + 2),
a
that is,

—=ILlr =

+2.
JVn

1 by
a

From (6) we have

lnln—l

ILll2 = +2.
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Now, for |r| > 1, we give an upper bound for the spectral norm of the matrix L. Let the

matrices F and H be

V(S)Tlo 1 1 1
§(n-1) £(0)
r(9) b (97 1 1
£(n-2) §(n-1) £(0)
F=|r®)" 0y v®)7 L (B2 1
£ £2) 76 £0)
L f(;l;)Tll V(%)le ’”(%)Tls f(%) 2
and
by E0) §W) £Q2) £(n-1) 1
(s) 2l (s) 2 h (s) > h . (2) 7
£0) ) £(-2)
! @b (5)5(20)11 ' (g)s(z-aln_z
H= 1 1 (€ heay "SR € ey AP I8
|1 1 1 )%l

so that L = F o H. Then we obtain

n

n b E(k)z Ll
> U= |r|22(;) B=by "2 v,
1=

-1
k=0

r1(F) = max

1<i<n

n n-1 b &(k) 1.1,
c1(H) = max Z % = (;) 2= +2.
i-1 k=0

1<j<m a

(16)

17)
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By Lemma 1.4 we have

Ll
ILll2 < rl(F)Cl(H) = |r|(71 + 2)'

Thus,

lnl,,_l lnln—l
+2=<|Llla = Ir[| — +2).
a a

On the other hand, for |r| < 1, we have
n-1 b £(k) n-1
uu@z}jm-mm%}) B+ kir?
k=0 4 k=1
n-1 b &(k)
= n|r|? Z (;) l,z(
k=0

Ll
= n|r|2<—1 + 2),
a

that is,
1 lnln—l
— LIl = |7| +2.
Jn
Thus, we obtain
Ll
1Ll = [rly/ == +2.

k
(é)é( )12
a k
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Now, for |r| < 1, we give an upper bound for the spectral norm of the matrix L. Let the

matrices G and K be

11 1
r 11
G=|r r 1
ror r 1
and
[ O OYn B,
£(n-1) £00) 40
O b BT O
£(n=2) £(n-1) £(0)
k=0, O, O)F

prED) o
(2) 7 g
§(n-2)

(2) 2 ln—Z

§(n=3)
(S) 2 ln—3

(18)

(19)
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so that L = G o K. Then we obtain

1<i<n

r1(G) = max Z lgi|* = /n
\ i

n n-1 b £(k) , lnln_l
a1 (K) = max \ Z |kij|? = (;) I; = +2.

1<j<n a

By Lemma 1.4 we have

ILll2 < r(G)er(K) =

Thus,

I I\/ +2<||L||z<,/n< +2 .

5(2) 5(3) E(
() )T g (DT q) and L =

l,,-1) be r-circulant matrices, where r € C.

Corollary 2. 1 Let =
5(0

Ci(
C(2) Pl () F 1, (2 )“2 by...,(
(i) If|r| =1, then

1 (L,
1QoLll, < | TdnL 1(—” - +2>.
a a

(ii) If |r| < 1, then

n“n— lnln—
IIQoLIIzS\/ (n—1) T2 1(—1+2).
a a

Proof Since ||[Qo L||z < [|Qll2|IL|l2, the proof is trivial by Theorems 2.2 and 2.3. O

Corollary 22 Let Q - c«b)@qoxg)%l,(g)%z, (D) F ) and L =
(¢ ( (n—
C(E) P Lo, (1) 2 1, (1) T, (1)

l,.-1) be r-circulant matrices, where r € C.
(i) If|r| =1, then

10 L, > \/ Gntlnt (—’"l“ . 2)
a a

and

nYn— lnln—
1Q®L|l; < [r? 1221 (—1 +2>z.
a a

(i) If|r| <1, then

nYn- lnln—
1Q® LI, > |r|2\/—" 1 1(—1 +2>
a a
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and
nqn- lnln—
IQ®LI; < n(n—l)ﬂ(—1 + 2).
a a
Proof Since ||[Q® Ll = |Q|l2]|L]|2, the proof is trivial by Theorems 2.2 and 2.3. |

3 Conclusion

In this paper, we obtain new upper and lower bounds for the spectral norms of the r-
circulant matrices Q and L whose entries are the biperiodic Fibonacci and biperiodic Lucas
numbers. This study can be reduced to various studies for the specific values of 2 and b in
the literature. For example, ifa=b=r=1,a=b=1,and a = b = k in Q and L, our results
reduce to the studies [13, 18], and [19], respectively. Since this study is a generalization
of these studies, it contributes to the literature by providing essential information on the
spectral norms of r-circulant matrices.
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