RESEARCH Open Access

A generalization of a theorem of Bor

Hikmet Seyhan Özarslan* and Bağdagül Kartal

*Correspondence: seyhan@erciyes.edu.tr Department of Mathematics, Erciyes University, Kayseri, 38039, Turkey

Abstract

In this paper, a general theorem concerning absolute matrix summability is established by applying the concepts of almost increasing and δ -quasi-monotone sequences.

MSC: 26D15; 40D15; 40F05; 40G99

Keywords: matrix transformations; almost increasing sequences; quasi-monotone sequences; Hölder inequality; Minkowski inequality

1 Introduction

A positive sequence (y_n) is said to be almost increasing if there is a positive increasing sequence (u_n) and two positive constants K and M such that $Ku_n \leq y_n \leq Mu_n$ (see [1]). A sequence (c_n) is said to be δ -quasi-monotone, if $c_n \to 0$, $c_n > 0$ ultimately and $\Delta c_n \geq -\delta_n$, where $\Delta c_n = c_n - c_{n+1}$ and $\delta = (\delta_n)$ is a sequence of positive numbers (see [2]). Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let $T = (t_{nv})$ be a normal matrix, *i.e.*, a lower triangular matrix of nonzero diagonal entries. At that time T describes the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $Ts = (T_n(s))$, where

$$T_n(s) = \sum_{\nu=0}^n t_{n\nu} s_{\nu}, \quad n = 0, 1, \dots$$
 (1)

Let (φ_n) be any sequence of positive real numbers. The series $\sum a_n$ is said to be summable $\varphi - |T, p_n|_k$, $k \ge 1$, if (see [3])

$$\sum_{n=1}^{\infty} \varphi_n^{k-1} \left| \bar{\Delta} T_n(s) \right|^k < \infty, \tag{2}$$

where

$$\bar{\Delta}T_n(s) = T_n(s) - T_{n-1}(s).$$

If we take $\varphi_n = \frac{P_n}{p_n}$, then $\varphi - |T, p_n|_k$ summability reduces to $|T, p_n|_k$ summability (see [4]). If we set $\varphi_n = n$ for all n, $\varphi - |T, p_n|_k$ summability is the same as $|T|_k$ summability (see [5]). Also, if we take $\varphi_n = \frac{P_n}{p_n}$ and $t_{n\nu} = \frac{P_\nu}{P_n}$, then we get $|\bar{N}, p_n|_k$ summability (see [6]).

2 Known result

In [7, 8], Bor has established the following theorem dealing with $|\bar{N}, p_n|_k$ summability factors of infinite series.

Theorem 2.1 Let (Y_n) be an almost increasing sequence such that $|\Delta Y_n| = O(Y_n/n)$ and $\lambda_n \to 0$ as $n \to \infty$. Assume that there is a sequence of numbers (B_n) such that it is δ -quasimonotone with $\sum n Y_n \delta_n < \infty$, $\sum B_n Y_n$ is convergent and $|\Delta \lambda_n| \le |B_n|$ for all n. If

$$\sum_{n=1}^{m} \frac{1}{n} |\lambda_n| = O(1) \quad \text{as } m \to \infty, \tag{3}$$

$$\sum_{m=1}^{m} \frac{1}{n} |z_n|^k = O(Y_m) \quad \text{as } m \to \infty, \tag{4}$$

and

$$\sum_{n=1}^{m} \frac{p_n}{p_n} |z_n|^k = O(Y_m) \quad as \ m \to \infty, \tag{5}$$

where (z_n) is the nth (C,1) mean of the sequence (na_n) , then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \ge 1$.

3 Main result

The purpose of this paper is to generalize Theorem 2.1 to the $\varphi - |T, p_n|_k$ summability. Before giving main theorem, let us introduce some well-known notations. Let $T = (t_{nv})$ be a normal matrix. Lower semimatrices $\bar{T} = (\bar{t}_{nv})$ and $\hat{T} = (\hat{t}_{nv})$ are defined as follows:

$$\bar{t}_{n\nu} = \sum_{i=\nu}^{n} t_{ni}, \quad n, \nu = 0, 1, \dots$$
 (6)

and

$$\hat{t}_{00} = \bar{t}_{00} = t_{00}, \qquad \hat{t}_{n\nu} = \bar{t}_{n\nu} - \bar{t}_{n-1,\nu}, \qquad n = 1, 2, \dots$$
 (7)

Here, \bar{T} and \hat{T} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then we write

$$T_n(s) = \sum_{\nu=0}^n t_{n\nu} s_{\nu} = \sum_{\nu=0}^n \bar{t}_{n\nu} a_{\nu}$$
 (8)

and

$$\bar{\Delta}T_n(s) = \sum_{\nu=0}^n \hat{t}_{n\nu} a_{\nu}.\tag{9}$$

By taking the definition of general absolute matrix summability, we established the following theorem.

Theorem 3.1 Let $T = (t_{nv})$ be a positive normal matrix such that

$$\bar{t}_{n0} = 1, \quad n = 0, 1, \dots,$$
 (10)

$$t_{n-1,\nu} \ge t_{n\nu}, \quad \text{for } n \ge \nu + 1, \tag{11}$$

$$t_{nn} = O\left(\frac{p_n}{P_n}\right),\tag{12}$$

and $(\frac{\varphi_n p_n}{P_n})$ be a non-increasing sequence. If all conditions of Theorem 2.1 with conditions (4) and (5) are replaced by

$$\sum_{n=1}^{m} \varphi_n^{k-1} \left(\frac{p_n}{P_n}\right)^{k-1} \frac{1}{n} |z_n|^k = O(Y_m) \quad \text{as } m \to \infty$$
 (13)

and

$$\sum_{n=1}^{m} \varphi_n^{k-1} \left(\frac{p_n}{P_n} \right)^k |z_n|^k = O(Y_m) \quad \text{as } m \to \infty,$$
 (14)

then the series $\sum a_n \lambda_n$ is $\varphi - |T, p_n|_k$ summable, $k \ge 1$.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.2 ([7]) Let (Y_n) be an almost increasing sequence and $\lambda_n \to 0$ as $n \to \infty$. If (B_n) is δ -quasi-monotone with $\sum B_n Y_n$ is convergent and $|\Delta \lambda_n| \le |B_n|$ for all n, then we have

$$|\lambda_n|Y_n = O(1) \quad as \ n \to \infty. \tag{15}$$

Lemma 3.3 ([8]) Let (Y_n) be an almost increasing sequence such that $n|\Delta Y_n| = O(Y_n)$. If (B_n) is δ -quasi monotone with $\sum nY_n\delta_n < \infty$, and $\sum B_nY_n$ is convergent, then

$$nB_nY_n = O(1)$$
 as $n \to \infty$, (16)

$$\sum_{n=1}^{\infty} n Y_n |\Delta B_n| < \infty. \tag{17}$$

4 Proof of Theorem 3.1

Let (I_n) indicate the T-transform of the series $\sum a_n \lambda_n$. Then we obtain

$$\bar{\Delta}I_n = \sum_{\nu=0}^n \hat{t}_{n\nu} a_{\nu} \lambda_{\nu} = \sum_{\nu=1}^n \frac{\hat{t}_{n\nu} \lambda_{\nu}}{\nu} \nu a_{\nu} \tag{18}$$

by means of (8) and (9).

Using Abel's formula for (18), we obtain

$$\begin{split} \bar{\Delta}I_{n} &= \sum_{\nu=1}^{n-1} \Delta_{\nu} \left(\frac{\hat{t}_{n\nu}\lambda_{\nu}}{\nu} \right) \sum_{r=1}^{\nu} ra_{r} + \frac{\hat{t}_{nn}\lambda_{n}}{n} \sum_{r=1}^{n} ra_{r} \\ &= \sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \Delta_{\nu} (\hat{t}_{n\nu}) \lambda_{\nu} z_{\nu} + \sum_{\nu=1}^{n-1} \frac{\nu+1}{\nu} \hat{t}_{n,\nu+1} \Delta \lambda_{\nu} z_{\nu} \\ &+ \sum_{\nu=1}^{n-1} \hat{t}_{n,\nu+1} \lambda_{\nu+1} \frac{z_{\nu}}{\nu} + \frac{n+1}{n} t_{nn} \lambda_{n} z_{n} \\ &= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}. \end{split}$$

For the proof of Theorem 3.1, it suffices to prove that

$$\sum_{n=1}^{\infty} \varphi_n^{k-1} |I_{n,r}|^k < \infty$$

for r = 1, 2, 3, 4.

By Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,1}|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| |\lambda_{\nu}| |z_{\nu}| \right)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| |\lambda_{\nu}|^k |z_{\nu}|^k \right) \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| \right)^{k-1}. \end{split}$$

By (6) and (7), we have

$$\Delta_{\nu}(\hat{t}_{n\nu}) = \hat{t}_{n\nu} - \hat{t}_{n,\nu+1}$$

$$= \bar{t}_{n\nu} - \bar{t}_{n-1,\nu} - \bar{t}_{n,\nu+1} + \bar{t}_{n-1,\nu+1}$$

$$= t_{n\nu} - t_{n-1,\nu}.$$
(19)

Thus using (6), (10) and (11)

$$\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| = \sum_{\nu=1}^{n-1} (t_{n-1,\nu} - t_{n\nu}) \le t_{nn}.$$

Hence, we get

$$\sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,1}|^k = O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} t_{nn}^{k-1} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| |\lambda_{\nu}|^k |z_{\nu}|^k \right)$$

by using (12)

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,1}|^k &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{\nu=1}^{n-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| |\lambda_{\nu}|^k |z_{\nu}|^k \right) \\ &= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu}|^k |z_{\nu}|^k \sum_{n=\nu+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| \\ &= O(1) \sum_{\nu=1}^{m} \left(\frac{\varphi_{\nu} p_{\nu}}{P_{\nu}} \right)^{k-1} |\lambda_{\nu}|^k |z_{\nu}|^k \sum_{n=\nu+1}^{m+1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right|. \end{split}$$

Now, using (11) and (19), we obtain

$$\sum_{n=\nu+1}^{m+1} \left| \Delta_{\nu}(\hat{t}_{n\nu}) \right| = \sum_{n=\nu+1}^{m+1} (t_{n-1,\nu} - t_{n\nu}) \le t_{\nu\nu}.$$

Thus, by using Abel's formula, we obtain

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,1}|^k &= O(1) \sum_{\nu=1}^m \left(\frac{\varphi_{\nu} p_{\nu}}{P_{\nu}} \right)^{k-1} |\lambda_{\nu}|^{k-1} |\lambda_{\nu}| |z_{\nu}|^k t_{\nu\nu} \\ &= O(1) \sum_{\nu=1}^m \varphi_{\nu}^{k-1} \left(\frac{p_{\nu}}{P_{\nu}} \right)^k |\lambda_{\nu}| |z_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta |\lambda_{\nu}| \sum_{r=1}^{\nu} \varphi_r^{k-1} \left(\frac{p_r}{P_r} \right)^k |z_r|^k + O(1) |\lambda_m| \sum_{\nu=1}^m \varphi_{\nu}^{k-1} \left(\frac{p_{\nu}}{P_{\nu}} \right)^k |z_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m-1} |\Delta \lambda_{\nu}| Y_{\nu} + O(1) |\lambda_m| Y_m \\ &= O(1) \sum_{\nu=1}^{m-1} |B_{\nu}| Y_{\nu} + O(1) |\lambda_m| Y_m \\ &= O(1) \quad \text{as } m \to \infty, \end{split}$$

in view of (14) and (15).

Again, using Hölder's inequality, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,2}|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \Biggl(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\Delta \lambda_{\nu}| |z_{\nu}| \Biggr)^k \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \Biggl(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |B_{\nu}| |z_{\nu}|^k \Biggr) \\ &\times \Biggl(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |B_{\nu}| \Biggr)^{k-1}. \end{split}$$

By means of (6), (7) and (11), we have

$$\begin{split} \hat{t}_{n,\nu+1} &= \bar{t}_{n,\nu+1} - \bar{t}_{n-1,\nu+1} \\ &= \sum_{i=\nu+1}^{n} t_{ni} - \sum_{i=\nu+1}^{n-1} t_{n-1,i} \\ &= t_{nn} + \sum_{i=\nu+1}^{n-1} (t_{ni} - t_{n-1,i}) \\ &\leq t_{nn}. \end{split}$$

In this way, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,2}|^k &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} t_{nn}^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |B_{\nu}| |z_{\nu}|^k \right) \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |B_{\nu}| |z_{\nu}|^k \right) \\ &= O(1) \sum_{\nu=1}^{m} |B_{\nu}| |z_{\nu}|^k \sum_{n=\nu+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} |\hat{t}_{n,\nu+1}| \\ &= O(1) \sum_{\nu=1}^{m} \left(\frac{\varphi_{\nu} p_{\nu}}{P_{\nu}} \right)^{k-1} |B_{\nu}| |z_{\nu}|^k \sum_{n=\nu+1}^{m+1} |\hat{t}_{n,\nu+1}|. \end{split}$$

By (6), (7), (10) and (11), we obtain

$$|\hat{t}_{n,\nu+1}| = \sum_{i=0}^{\nu} (t_{n-1,i} - t_{ni}).$$

Thus, using (6) and (10), we have

$$\sum_{n=v+1}^{m+1}|\hat{t}_{n,v+1}|=\sum_{n=v+1}^{m+1}\sum_{i=0}^{v}(t_{n-1,i}-t_{ni})\leq 1,$$

then we get

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,2}|^k &= O(1) \sum_{\nu=1}^m \varphi_\nu^{k-1} \left(\frac{p_\nu}{P_\nu}\right)^{k-1} \nu |B_\nu| \frac{1}{\nu} |z_\nu|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta \left(\nu |B_\nu|\right) \sum_{r=1}^{\nu} \varphi_r^{k-1} \left(\frac{p_r}{P_r}\right)^{k-1} \frac{1}{r} |z_r|^k \\ &+ O(1) m |B_m| \sum_{\nu=1}^m \varphi_\nu^{k-1} \left(\frac{p_\nu}{P_\nu}\right)^{k-1} \frac{1}{\nu} |z_\nu|^k \\ &= O(1) \sum_{\nu=1}^{m-1} \nu |\Delta B_\nu| Y_\nu + O(1) \sum_{\nu=1}^{m-1} |B_\nu| Y_\nu + O(1) m |B_m| Y_m \\ &= O(1) \quad \text{as } m \to \infty, \end{split}$$

in view of (13), (16) and (17).

Also, we have

$$\begin{split} \sum_{n=2}^{m+1} \varphi_n^{k-1} |I_{n,3}|^k &\leq \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\lambda_{\nu+1}| \frac{|z_{\nu}|}{\nu} \right)^k \\ &\leq \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \right) \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| \frac{|\lambda_{\nu+1}|}{\nu} \right)^{k-1} \\ &\leq \sum_{n=2}^{m+1} \varphi_n^{k-1} t_{nm}^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \right) \left(\sum_{\nu=1}^{n-1} \frac{|\lambda_{\nu+1}|}{\nu} \right)^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \varphi_n^{k-1} \left(\frac{p_n}{P_n} \right)^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \right) \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} \left(\sum_{\nu=1}^{n-1} |\hat{t}_{n,\nu+1}| |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \right) \\ &= O(1) \sum_{\nu=1}^{m} |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \sum_{n=\nu+1}^{m+1} \left(\frac{\varphi_n p_n}{P_n} \right)^{k-1} |\hat{t}_{n,\nu+1}| \\ &= O(1) \sum_{\nu=1}^{m} \left(\frac{\varphi_{\nu} p_{\nu}}{P_{\nu}} \right)^{k-1} |\lambda_{\nu+1}| \frac{|z_{\nu}|^k}{\nu} \sum_{n=\nu+1}^{m+1} |\hat{t}_{n,\nu+1}| \\ &= O(1) \sum_{\nu=1}^{m} |\Delta \lambda_{\nu+1}| \sum_{\nu=1}^{\nu} \varphi_r^{k-1} \left(\frac{p_r}{P_r} \right)^{k-1} \frac{1}{r} |z_r|^k \\ &+ O(1) |\lambda_{m+1}| \sum_{\nu=1}^{m} \varphi_r^{k-1} \left(\frac{p_{\nu}}{P_{\nu}} \right)^{k-1} \frac{1}{\nu} |z_{\nu}|^k \\ &= O(1) \sum_{\nu=1}^{m-1} |B_{\nu+1}| Y_{\nu+1} + O(1) |\lambda_{m+1}| Y_{m+1} \\ &= O(1) \text{ as } m \to \infty, \end{split}$$

in view of (3), (12), (13) and (15).

Finally, as in $I_{n,1}$, we have

$$\begin{split} \sum_{n=1}^{m} \varphi_{n}^{k-1} |I_{n,4}|^{k} &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} t_{nn}^{k} |\lambda_{n}|^{k} |z_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left(\frac{p_{n}}{P_{n}}\right)^{k} |\lambda_{n}|^{k-1} |\lambda_{n}| |z_{n}|^{k} \\ &= O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left(\frac{p_{n}}{P_{n}}\right)^{k} |\lambda_{n}| |z_{n}|^{k} = O(1) \quad \text{as } m \to \infty, \end{split}$$

in view of (12), (14) and (15). Finally, the proof of Theorem 3.1 is completed.

5 Corollary

If we take $\varphi_n = \frac{P_n}{p_n}$ and $t_{n\nu} = \frac{P_{\nu}}{P_n}$ in Theorem 3.1, then we get Theorem 2.1. In this case, conditions (13) and (14) reduce to conditions (4) and (5), respectively. Also, the condition $(\frac{\varphi_n p_n}{P_{\nu}})$ is a non-increasing sequence' and the conditions (10)-(12) are clearly satisfied.

6 Conclusions

In this study, we have generalized a well-known theorem dealing with an absolute summability method to a $\varphi - |T, p_n|_k$ summability method of an infinite series by using almost increasing sequences and δ -quasi-monotone sequences.

Acknowledgements

This work was supported by Research Fund of the Erciyes University, Project Number: FBA-2014-3846.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 May 2017 Accepted: 18 July 2017 Published online: 02 August 2017

References

- Bari, NK, Stečkin, SB: Best approximations and differential properties of two conjugate functions. Tr. Mosk. Mat. Obŝ. 5, 483-522 (1956)
- 2. Boas, RP: Quasi-positive sequences and trigonometric series. Proc. Lond. Math. Soc. 14A, 38-46 (1965)
- Özarslan, HS, Keten, A: A new application of almost increasing sequences. An. Ştiinţ. Univ. 'Al.l. Cuza' laşi, Mat. 61, 153-160 (2015)
- Sulaiman, WT: Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34, 1547-1557 (2003)
- 5. Tanovič-Miller, N: On strong summability. Glas. Mat. Ser. III 14, 87-97 (1979)
- 6. Bor, H: On two summability methods. Math. Proc. Camb. Philos. Soc. 97, 147-149 (1985)
- Bor, H: An application of almost increasing and δ-quasi-monotone sequences. JIPAM. J. Inequal. Pure Appl. Math. 1(2), Article ID 18 (2000)
- 8. Bor, H: Corrigendum on the paper 'An application of almost increasing and δ -quasi-monotone sequences' published in JIPAM, Vol.1, No.2. (2000), Article 18. JIPAM. J. Inequal. Pure Appl. Math. **3**(1), Article ID 16 (2002)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com