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1 Introduction and preliminaries
In 1912, Bernstein [1] introduced the following sequence of operators B, : C[0,1] — C[0,1]
defined for any # € N and for any function f € C[0,1]:

Bu(fix) =) (Z) £ (1 —x)”‘kf<§), x€[0,1]. 1.1)

k=0

Later various generalizations of these operators were discovered. It has been proved as
a powerful tool for numerical analysis, computer aided geometric design and solutions
of differential equations. In last two decades, the applications of g-calculus has played
an important role in the area of approximation theory, number theory and theoretical
physics. In 1987, Lupas [2] and in 1997, Phillips [3] introduced a sequence of Bernstein
polynomials based on g-integers and investigated its approximation properties. Several
researchers obtained various other generalizations of operators based on g-calculus. For
any function f € C[0, 1] the g-form of Bernstein operator is described by Lupas [2] as

[, g,
Lygq(f3%) = kzzo [T (- %+ gix) f<@>’ veo "

In 1932, Chlodowsky [4] presented a generalization of Bernstein polynomials on an un-
bounded set, known as Bernstein-Chlodowsky polynomials,

" k n x\X x\" K
By(f, ) = f(—bn)( )(—) (1——) , 0<x<b, (13)
kz(‘: n k b, b,
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where b, is an increasing sequence of positive terms with the properties b, — oo and
b;” — 0 asn— oo.

In 2008, Karsli and Gupta [5] expressed the g-analogue of Bernstein-Chlodowsky poly-
nomials by

n k n—k-1 k
Colfs q%) = kZ {Z} (bﬁ) I1 (1—qsb%)j(%bn>, 0<x<b, (1.4)
=0 q

s=0

where b, is an increasing sequence of positive values, with the properties b, — oo and
by
[nlq

Recently, Mursaleen et al. [6—9] proposed and analyzed approximation properties for

— 0 asn — oo.

(p,q) analogue of Bernstein operators, Bernstein-Stancu operators and Bernstein-Schurer
operators. Besides this, we also refer to some recent related work on this topic: e.g. [10-20].

In 2015, Mursleen et al. [7], investigated the (p, ) form of the Bernstein-Stancu operator,
which is given by

(@p) 1 |n L) kn_k_1 s Pn_k[k]pqufa
S frprg) = — P ] (0 - ) (L eat @) )
P 7 k ["l]p,q"'/3
k= pa

s=0

where «, 8 are non-negative integers and f € C[0,1], x € [0,1] and 0 <« < B.
For the first few moments, we get the following lemma.

—~

Lemma 1 (See [7]) For the operators Sff"ﬁ ), we have

1' S}’la ﬁ)(l;x;p; q) =
2. 8§ (tixp,q) = [ﬁjﬁﬁfjﬁ‘ ’
3. S5 (50.0,0) = Gt @nlpgln = Vg + [l 2o+ "V + o).

2 Construction of the operators
Considering the revised form of (p,q) analogue of Bernstein operators [7], we construct

the Chlodowsky variant of (p, g) Bernstein-Stancu-Schurer operators as

1 T+ m ki [ x \K
(f My 2) Q) i) Z |: X ] p 2 (b_>
)20

p 2 k=0

Wﬁk_l S qsx)j<pn+m—k[k]p‘q+txb> (2.1)

S

wheren e N, m,a, 8 eNo,with 2 x1, O<x<b,,,0<q<p<1andb is an increasing se-
quence of positive terms with the properties b, — oo and = 0 as n — oo. Evidently,
Cim @8 isalinear and positive operator. Consider the case if p,g — 1 and m = 0 in (2.1), then
it w1ll reduce to the Stancu-Chlodowsky polynomials [21].

Let us assume the number # + m = n,,, we will use this notation throughout in this paper.

Next, we have obtained the following lemma using simple calculations.

Lemma2 Let C,Sa,f )(f i %, p,q) be given by (2.1). The first few moments of the operators are
(i) Crn (L% g) =1,
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[nm]p,gx+aby

" (,B) (4. _
(ii) Cum (Hxp,q) = Uilpg P

(i) C%P (% x,p,q) = W(q[nm]p,q[nm 1 + [l pqgRa + p" Nbyx + a?b2),

(iv) CEO((t - x)2,p,q) = (222 _ 1)y 1 b

)

[”]p,q‘HS ["]p,q"‘ﬂ ’
)
[nm] \ Q[”m] : [nm _1] y
C@P((t - x)%x,p, :<1_2 g g pq) 2
i ((E=250.4) et B) T gt P2 )
(2a +pnm_1)[nm]p,q _ ) b,
+( e+ B ), p)
azbfl
g+ B
Proof (i)

1 M " ki [ x k nyp—k—1 x
C;(frf)(l, x’p’ q) = (nm)(nm~1) Z |: /:n:| p ’ <b_> l—[ (ps B qsb_) - 1'
p 2 k=0 "

)2z $= "

(i)

1 | n win [ % \*
CeP(t;x,p.q) = ool Z |: l:n:| p? (b_>
p pa "

k=0
(t—k=1) ek
2\ (PN K]pg + >
X f—g— || —————b,
!:0[ ([9 d bn) < (nlpq + B

[nm], =1 no—1 K [ % k+1
= iy (1 —3) = Z mk P’ b_
p 2 ([n]p,q + 13) k=0 pq "
(ny—k=2)
x b,
<A1 e3) )
[ (e y) (s

1 | kien [ x \K
+ nm (nm=1) Z|: k:| p : (b_>
p 2 k=0 »q "
(ny—k-1) x o
x Rty | )
Il (r ”’sbn)<[n]p,q+ﬂ )

s=0
 [nlpg . 1 "i_:l Py — 1 k(kzl)(ﬁ)k
T+ ) T L | P\,
X"”ﬁ'2< s_qs1> L aby
o S GRS (77 )
(g ab,
T Ul +B) (lpg + B)
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(iii)
@B (2 1 & | icn (%)
Co (E52,0,9) = iy Z k| 70 \b,
p 2 k=0 y2u] !
(k1) =k ’
. x P m [k]p,q + o
x P —> (717"
g ( b, (n]pq + B
1 1 2, S nm ki) < * )k
= " 2 by
P% ([l + B)? |:p kX:O: |: g :|p’qp "
(mm—k-1) b2 [k]2
5 X ntip,q
X l_[ ( - qS _) k
[l b,) p?
tm k=) (X g
. 2ap”m Z m pT (_
k bu
k=0 p4q
(mm—k-1) 2
x\ bilklpg
X r-q _)
1_(! ( bi) P
2 an B @ x '
+o k p bn
k=0 4
(mm—k-1) X
<1 (oo )]
s=0 !

nm—1

1 p¥m M — 1 ko [ x\ <
- Vi lpgt? ; (—)
([n],g,qw)z[p"mw habi | U,

k=0

(tm—k=2)
P x\ k+1],4
x l—[ <p _ng_n> )

s=0

lem -1 " 1 Kkr) x k+1
2 m=
+W2°‘["m]1”qbn2|: X } p? (,7)
p 2 k=0 p4q n
(—k=2)

5 x 1 272
X 1_[ (p _ng_n)p(k“) +o bn].

s=0

Now using [k + 1], = p* + glk] 4, we will obtain the result.
Using the linear property of operators, we have

CB((t - x);x,p,q) = C4P (%, p,q) - xC4P (L%, p, q)

_ ( [nm]p,q _1)x+ ab,
[n]p,q +8 [n]p,q +B '

Hence, we get (iv).
Similar calculations give

CB((t - x)%x,p,q) = CEP (55,p,q) - 22CEP (5%, p, ) + ¥ CEP (L%, p, ).

Substituting the results of (i), (ii) and (iii), we prove the result (v). O
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Lemma 3 For every fixed 0 < g < p <1, we have

[nm]p,q[nm - l]p,q _ [nm]p,q 1< <(pn + qn)[m]p,q - ﬁ)z
([”]p,q + ﬁ)2 [”l]p,q +B - [n]p,q +B '
Proof
pn+m—1 _ qn+m—1
m 1 3 =
[ lp.a4 -4 q
) pn+m—lq _ qn+m
p—q
< A (since g < p=> p"" g < p"*™)
p—-q
= [”m]p,q-
Thus, [#]pq[1m = 1]p,4q < 1]}, and we get
[nm]p,q (1 — l]p,q B [”m]p,q +1
(Inlpq + B)? (nlpq + B
< ( [”m]p,q _1>2
- [n]p,q +B
) 1 prm — gt _pn_qn_lB}Z
(g + B p-q r-q
) 1 pnpm_qnqm_pn+qn_ﬂ}2
([n]p,q"'ﬂ)z pr—q
_ 1 pnpm_pnqm_I_pmqn_qnqm_l_pnqm_pn_l_qn_pmqn_ﬂ}2
([”l]p,q +,3)2 pP—q
-1 Pwr-q")+q" W - g™ +p"(g" -1 + " (1-p") _ﬂ}z
([n]p,q"'ﬂ)z prP—q
o1 @' +a)p" -q") +q"A-p") - p" (1 - q") _5}2
([n]p,q +,3)2 pP—-q
— ; n n _ _Pn(l—qm)—qn(l—Pm) }2
e 2 | &) F ra
((p" +q")mlpg - B
< ([l +1’an)2 since0<g<p<1.

We can conclude the last inequality using the following statements:
Since 0 <g<p<1,wehave 0 <g”"<p”"<land 0<(1-p")<(1-¢g") <1, hence
" 1-p") <p"1-g") ie p"(1-qg")—q"1-p™) >0. O

Remark 1 As aresult of Lemma 2 and 3, we have

(" +q")[mlpq - B)* (] pq(2a + p™ )
CYh)((t—x)%x, p, _( P4 ) 2 (M—)bn
nm ((t x)%5%,p Q) = ([Mlpg + P X+ ([1]pq + B x
a2bi

T (lpg + PP
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3 Results and discussion

In this paper we have constructed and investigated a Chlodowsky variant of (p,q)
Bernstein-Stancu-Schurer operator. We have showed that our modified operators have
a better error estimation than the classical ones. We have also obtained some approxima-
tion results with the help of the well-known Korovkin theorem and the weighted Korovkin
theorem for these operators. Furthermore, we studied convergence properties in terms of
the modulus of continuity for functions in Lipschitz class. Next we have also obtained the

Voronovskaja-type result for these operators.

3.1 Korovkin-type approximation theorem

Assume C,, is the space of all continuous functions f such that
[f(x)| <Mp(x), a<x<b,

and p(x) is the weight function.

Then C, is a Banach space with the norm

@)
17l = sup =

Consider the subspace C) := {f € C,, : limjy . % is finite}.

The subsequent Theorem 1 is a Korovkin approximation theorem in weighted space.

Theorem 1 (See [22]) There exists a sequence of positive linear operators U, acting from
CY to C), satisfying the conditions

(1) lim,,_, o ”un(l; ) - 1”/) =0,

(2) limy o0 | Un(Ps-) = B, =0,

(3) limys oo [|U4(9% ) — 9?1, = O,
where ¢(x) is a continuous and increasing function on (—00,00) such that limy_, 4o ¢(x) =
+o0 and p(x) =1+ ¢*, and there exists a function f* € C) for which

lim || U,f - fl, = 0.
n— o0
Consider the weight function p(x) = 1 + x* and operator (see [23])

Cub(fix,pq) ifxe[0,b,],

Uzh(f;x,p,q) =
) if x ¢ [0, b,].

For f € Cy,,2, we have

c*b(f:x, p, x
“ Uff,}’f,(ﬂﬁ?ﬂ)”lmz < sup [Com(f zp )| + sup If( )2|
x€[0,6,] 1+ xe(bp,00) L +X

C¥B(1+ 2%, p,
< fle| sup 12 2ol ).
x€[0,by) 1+x2




Mishra et al. Journal of Inequalities and Applications (2017) 2017:176 Page 7 of 17

Now, using Lemma 2 we will obtain

|| UZ}ﬁ(f;',p:q)”sz §M|I.f||1+x2’ (31)

which means that U, ,’Z(f ;- 0,q) is bounded operator, henceforth a continuous operator
too. Since ‘An operator between two normed spaces is a bounded linear operator if and
only if it is a continuous linear operator’

Now, consider the sequences (p,) and (g,) for 0 < g, < p, <1 satisfying

lim p, = lim g, =1,
n— 00 n—00

(3.2)
lim p=a,  lim gi=c whereO<a,c<la7chence lim [, = occ.
n— 00 n—0oQ Hn— 00
Theorem 2 Forallf € C) ,,0<x <b,, we have
lim || Uz,ﬁ(f: s Pn> qn) _f() ||1+x2 =0 (33)

n—00

provided that p = (p)y, q = (@n with 0 < q, < p, < 1 satisfying (3.2) and

: by _
My 00 Glpan =

Proof Using the results of Theorem 1 and Lemma 2(i), (ii) and (iii), we will obtain the
following assessments, respectively:

Ui (G2, P 4) =11

sup 0, (3.4)
0<x<by 1+ x2
["m]l’nvqn aby,
|Ufll,’£l(t; xrpny qn) - x| | [”]pn,qn +B - 1|x + [n]pn,qn +B
sup 3 = sup 2
0<x<by, 1+x 0<x<by T+x
SM_‘_,,(X—]?”_)O, (3.5)
(Mpg, + B (Mpsg, + B

and

Lo (£%5%, Dy ) — |

su
Ofxspb,, 1+ x2
< sup 1 _ (qn [”m]pn,qn (1, — l]pn,qan + [”m]pn,qnz(za +PZ”’_1)bnx + azbi) 2
0<x<by 1+x ([Vl]pn,qn + ﬁ)
< { Qn[nm]pn,qn[nm - l]pﬂ,qn _ ’ [nm]pn,qn(za +sz_l) & + o? }
o ([n]pn,qn + 13)2 ([n]pn,qn + ,3)2 2 ([n]pn,qn + /3)2
— 0, (3.6)

whenever n — oo.

Since the weight function is invariant w.r.t. positive and negative values of x, and con-
ditions (3.4)-(3.6) are true for all £ € R, we can use Theorem 1 and get the desired result
(3.3), which implies that the operator sequence Cf,‘fj, converges uniformly to any continu-
ous function in weighted space C&xz for x € [0, b,]. O
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Theorem 3 Assuming c as a positive and real number independent of n and f as a continu-
ous function which vanishes on [c,0). Let p := (p,), q := (q,.) with 0 < q,, < p,, <1 satisfying

(3.2) and lim,_, o, —2

—2— =0. Then we have
()p.an

lim sup |CY0 (%, pn qn) - f(%)| =

n—>00 0y p,
Proof From the hypothesis on f, it is bounded i.e. |f(x)] < M (M > 0). For any € > 0, we
have

" Klpgn +

p Zm_k (Kl p,.q. + P ’ 2
() o] e B (P et ).

where x € [0,b,] and § = §(¢) are independent of n. Operating with the operator (2.1) on

both sides, we can conclude by using Lemma 3 and Remark 1,

sup |C (f3%, pns ) f(x)|<e+—b2{

(&" +g")mlpq - B) '

0<x<by ([n]p,q + B)?
‘ Qa + Pl ) ) prgn . o? }
((M)pqn + B)? (I pan + B}
2
Since % =0 as n — 00, we have the desired result. O

3.2 Rate of convergence

We will find the rate of convergence for functions in the Lipschitz class Lip,(y)
(0 < y <1). Assume that Cg[0,00) denotes the space of bounded continuous functions
on [0,00). A function f € Cp[0, 00) belongs to Lip,,(y) if

V(t) —f(x)| <M|t-x|", fortxel0,00).
Theorem 4 Letf € Lip,,(y), then
|Gt f5,0,0) ~F )] < M (@),

Where hpq(x) = Com((t — %)% %, 0, q).

Proof Since f € Lip,,(y), and the operator Cg,’f,(f ;%,p,q) is linear and monotone,

1 g wien [ x \K
nm (nm=1) Z|: k :| p : <b—>
p 2 k=0 pq n
(nm—k-1) 10—k
B X P Kpg + o
< 1 (p “fbn)f( pgtp )

1 i rin [ x \K

= nm (nm=1) Z|: k :| p? (b_)
V4 2 k=0 pq "
(7]

ol W)P(ank[k]pff“ )
e S|t N i
<1 (,,, s e fl

s

|Cob (Fs,0,9) — f(®)] =
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1 & an, xin [ x \F
S M nm (nm=1) Z k p ’ b_
V4 2 k=0 pa i

(n—k-1) ok y
X pr [k]p,q +o )
X S g — = PdTp ) —x
!:(! (p fbﬂ)‘( [n]p,q +8
Using Holder’s inequality with the values p = % and q = %, we get
o M il nm M X
citmna-rol = ST ] ()
p k=0 4 n
o —k— _ )4
X( 1)(ps_q31)<(pnm k[k]p,q+o( ) x>2 2
s=0 b” [n]p,q + IB g

Jas s ()
an%m*l) k=0 k g b
s=0 }

:M[Cz"ﬁl((t—x)z;x,p,q)]%

Y
2

< M(Rnpq@))*. -

In order to obtain rate of convergence in terms of modulus of continuity w(f;§), we
assume that, for any f € Cg[0,00) and x > 0, the modulus of continuity of f is given by

o(f;8) = max If () - f )] (3.7)
£,x€[0,00)

Thus it implies for any § > 0

) -] < w(f;5)< R 1). (3.8)

Theorem 5 Iff € C3[0,00), we have

|CeE (2, 0,@) — )] < 20(F3/ Mg (),

where w(f;-) is the modulus of continuity of f and X, 4(x) is the same as in Theorem 4.
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Proof Using the triangular inequality, we get

|Cob (fixp,q) —f(0)] =

(kD) ok
x Tl(ﬁ—fg)d?——@ﬂgﬁm)<ﬂm

(nlpq +

1 < 7, whn [ x \K
E nm (nm—1) Z [ k } p : (b_)
p 2 k=0 »4q "
(1m—k-1) 11—k
o X m=K[k] g + o
ST e 2 () o]

1 (Mg + B

Now using (3.8) and Hoélder’s inequality, we get

" 1 N Ay iy (% \*
ctrmp -l s 32| (1)
pq

p k=0

(m—k-1) il VYT

|5 — "
X 1_[ (ps—qsbi)( []p’qﬂg +1)a)(f;8)
0 n

s=

1 Nm Hy k(k-1) X k
§w(f;5)MZ|: k} p* (b_>
p 2 k=0 !

pa
(nm—k-1) x
X l_[ (Ps—ng—)
5=0 n
a)(f 8) 1 i . ke [ x \K
5 bl Z|:k} P (b_)
p 2 k=0 pq n

m—k—1 _
H ( )‘ k[k]pq+abn—x
[l [l + B
(f 1 i rin [ x \K
i (nm— I)Z k p’ b_
p 2 k=0 pq n

(1m—k-1) wk 2) 2
B x mK[k] g + &
() (M) |

1 (Mg + B

o(f;8) +

—

o(f35) + wva{qﬁunwﬂ%ﬂﬁfg

Now choosing 8§ = A, 4(x) as in Theorem 4, we have

(Cet 5,0, 0) @] < 20(F3 [ Hnpg ). -

Next we calculate the rate of convergence in terms of the modulus of continuity of the
derivative of a function.
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Theorem 6 Let A > 0. Iff(x) has a continuous bounded derivative f'(x) and w(f'; §) is the
modulus of continuity of f'(x) in x € [0, max{b,, A}], then

|f (x) = Cob (f3,p,9)|

SM( - I\A * L) +2(Bupa(@, ) 0 (fs (Bupa(s £))),

(nlpqg + B
where M is a positive constant such that |f' (x)| < M and

[nm]p,q
(nlpg + B

[”m] p.q Q[nm]p,q[nm_l]p,q 2
Bupa(eP) = ‘ g+ B (I, q+ﬂ)2
[Plpg Qe +p" ) ‘ a, v L
(g + B2 (In Wﬂ) T g + B

Proof Using the mean value theorem, we have

f(lwby) —f(x)

[nlpq + B

P Klpg + @ )//
(e T,
( )@

m—k M~k
_ (M by - x)”x) + (’Mm - x) (&) - ),

[n]p,q +8 [n]p,q +f

P +o
where £ is a point between x and T”gb By using the above identity, we get

o 1 | 1 e (x\*
ey F
paq "

V4 N k=0
(mm—k-1) nm—k
E x\ (P klpg + o )
A | [ SR .
. 1_! (’” d )( Wlpa+B "

)

(n'"_k ! x k]pq+oz
X P’ —ng— x ) (f'€)-f (%)

p 0 [n]pq"'ﬁ

Hence,

|C2B(F:x,p,9) —f )] < |/ ()| - |CLL((t - x);%,p,9) |

1 R e (% k
nm (nm=1) Z k p b_n
p 2 k=0 »q

(nm—k-1)

+

s X p”m—k[k]p,q +a ) /
” l_(! <p _qsﬁ)‘mbn-xlf(s)—f(xn

oo

M _ I'A + a—b”>
(mlpq + B (lpq + B
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1 & ny EYERS
+ nm (nm=1) Z k p : b_
P ?2 ko pa "

e i
5=0 by, [ﬂ]p,q +h '

<M< n+mlpq _ 1‘14 + aib")

=\l + 8 g + B

1 | iy sy (% \K
+ i (nm=1) Z k p ’ b_
p k=0 pq n

(mm—k-1) 1,,—k
2\ | P klpg + o
S _ _ bn _
) ISZOI (p "gbn) g+ B "

since

p”m’k [Klpg + o

&= = g, .+ B

bn—x'.

Using it, we have

[”m]p,q

b
cep %, 0, q) — Ml |———=-1/A L)
| e (f % pq) f(x)| = <’ 1]y + B ‘ * (nlpq + B

k=0
§ (ni_:[n (ps . f%) pm:;i]iq; abn L,
] G
T o n

Now using Cauchy-Schwarz inequality for the second term, we obtain

|Confi2,0,q) = f ()] SM( mlpq_ 1'A+ “—b”>

Mlpg+B (Mg + B
, SR sy [ x\F
”"(f;‘s)(mZ[ X } P <b—>
p 2 k=0 »q n
(nym—k-1) ok 2 1/2
2\ | P klpg + o
X g — || ——————b,—x
g <p qsbn > ’ (n]pq + B
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o(f’;8) 1 <y e [ x \K
] Z[ A } P (b—)
P T k=0 pa "
(n—k-1) _k
Hn=K T e
x l_[ < >‘p [ ]pyq+abn_x

[n]p,q +8
( )
=M A+ ——
[n]p,q +8

+o(f; 8)\/C3,‘Z ((t-x)%%,p,q)
a)(f’ 8)

[”m]p,q _
[”]p,q +B

——Crh((t-%%%,p,q).

Using Lemma 2, we see

C(Olvﬂ) _ 2; D, |:(1_2 [nm]P,q q[”m]pq[ 1] ) 5
b Co ((E=)5xpig) = sup My + B)  (lpgt B2 )

[l g2 +p™ ) ) byx
*( s B) ) (g B)

2b2
([n]pq + ﬁ)2i|
[nm]p,q + q[nm]p,q[nm - l]p,q
([nlpq + B) (Inlpq + B)?
[nm]p,q(za +an_l) _ ’Al’)
([n]pq"'ﬁ)z ([n]p,q+/3) !
2b2
([n]pq + ﬂ)
=B, 4, B).

IA

‘1—2

Thus,

m b,
|Caﬂ(fx,p,q) f(x)|_ <’[[n¢_1‘14+[]a7>

”l]p,q +B Hlpg+ B

+a)(f )|:( "an /3))1/2 ;Bnyp,q(arﬁ)]'

Choosing § := (B, 4(a, B))"/?, we get the desired result. O

3.3 Voronovskaja-type result
Now, we prove a Voronovskaja-type approximation theorem with the help of the Cﬁ,“mﬂ )

family of linear operators defined by (2.1).

Lemma 4 Let (p,) and (q,) be two sequences satisfying (3.2) and x € [0, E] where E € R*.
Then we get

n
lim []l’)’ﬂc;‘f;ﬁ(t — X%, Py Gn) = (3.9)

n—00 n



Mishra et al. Journal of Inequalities and Applications (2017) 2017:176 Page 14 of 17

and

lim [nlgﬂ CB((t - %)% %, P qn) = ax, (3.10)

n—00 n

where a € (0,1).

Proof We shall prove only (3.10) because the proof of (3.9) is similar. Let x € [0, E]. Then,
by Lemma (2), we obtain, for all n € N,

[n]anqn C;(q(?l;f)((t _x)Z;x’pmqn)

by
_ [n]pn,qn <1 _9 [nm]pn,qn + qn [nm]pn,qn (7, — lz]pn,qn )xg
b, ([n]pn,qn +B) ([n]pn,qn +B)
<(2“ +PZ71)[”m]pn,qn —20() (7] p,1.0 x4+ o‘zbn[n]pman (3.11)
(1) g + B) (Mppge +B) (Mlp,g, + B)
Now by taking the limit as # — oo in (3.11), we obtain
. [nlpgn (o,B) 2
lim b—Cnvm ((t -x) ;x,p,,,q,,) = ax,
which completes the proof. d

In a similar way to Lemma 4 one can deduce the following lemma.

Lemma 5 Let (p,) and (q.) be two sequences satisfying (3.2) and x € [0, E] where E € R*.
There is a positive constants M (x) depending only on x such that

s
lim — 22 G (¢ =), ) < Mo(). (312)

n

Theorem 7 Let (p,) and (q,) be two sequences with the property (3.2). For every f €
C 2[0,00) such that f',f" € C?. ,[0,00), then

lim Wgﬂ[c;@ﬁ(fa);x,pmqn) /)] =af @)+ Saxf ")

n—00 n
uniformly in x € [0, E].

Proof Using the Taylor formula for f € C&xz, we have

S@O=F0 +f @) + 2 G- + o)~
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where the function 1,(-) is the remainder, lim;_,, n,(¢£) = 0. Since the operator C,(q“,f ) is

linear

L [CEB(F(8); %, s qn) —f(x)] = %ﬂf/(x)cﬁ‘f;f)(t — X%, Dy )

by,
3 e ) (6= 3 vt
+["]g,"—”"’"c,i‘,’;f)(nx(t)(t—x)Z;x,pmqn) (3.13)
for each n € N. We will now show that
Jlim M,f—”'q”c,i‘,’;f)(nx(t)(t —%)%5%, P ) = 0. (3.14)

n

After application of the Cauchy-Schwarz inequality for the third term on the right hand
side of (3.13), we find that

Wéﬂcg;p(m(t)(t-x)2;x,pmqn)
[Vl] nqn o o
= Ut i 0 ) G50 -0 0] -

Let us take n2(¢) = 0,(¢£), x > 0, we obtain

lxl—oo 1+a2  Jxl—o0 (£ —x)*(1 +x2)

1001 _ lf(t)—f(x)—f’(x)(t—x)—%f”(x)(t—x)zlzb

We have f € Cf+x2 ie limpy o % = finite value, which means f is function with maxi-
mum order of x is 2. Henceforth x is of order 1 and 0, respectively, in f" and f”, i.e. f” is
constant.
We will get a finite value of the above limit because numerator is a polynomial in x having
terms of degree less than or equal to four and f,f",f" € Cf+x2. Thus 6,(¢) € Cf+x2.
Moreover, lim;_, , 6,(¢) = 0. From Theorem 2, we observe that

lim C% (2();%,pn qn) = lim C%E0(04(8);%, pur g) = 0x(x) = 0 (3.16)

uniformly in x € [0, E]. One obtains from Lemma 5 that

[n];
Jim 5 G (¢ = )", Pns ) < Mo(®)- (317)

From these last two relations, the inclusion (3.14) holds true. Now by taking the limit as
n — oo in (3.13) and using Lemma (4), we conclude that

tim V8 (GO (05,10 40) 9] = of )+ Sanf" )

n—00

uniformly in x € [0, E], which leads us to the desired assertion of Theorem 7. O
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Figure 1 Comparison of (p, q) Chlodowsky type Bernstein-Stancu-Schurer operators and (p, q)
Bernstein-Stancu operators for Sin(x).

3.4 Example
With the help of Maple, we show a comparison of the (p,q) Bernstein-stancu operator
and the operator (2.1) to the function f(x) = sin(x) under the following parameters: « =1,
B=1,p=09,9=0.8,n=1and b, = In(1 + n) within the interval [0, b,] i.e. [0,10g,11]. We
have found it to be convenient to investigate our series only for finite sums. More powerful
equipments with higher speed can easily compute the more complicated infinite series in
a similar manner.

It is clear from the Figure 1 that approximation by the operator (2.1) is better than by
(p,q) Bernstein-stancu operator for f(x) = sinx and it can be improved further by taking

appropriate values of m and sequence b,,.

4 Conclusion

A better approximation of complex functions over the required interval [0, b,] can be at-
tained using the Chlodowsky variant of the (p, g) Bernstein-Stancu-Schurer operator for
choosing suitable values of the sequence b, and n compared to classical operators over
the fixed interval [0, 1].
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