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Abstract
In this paper, we established a generalized theorem on a minimal set of sufficient
conditions for absolute summability factors by applying a sequence of a wider class
(quasi-power increasing sequence) and the absolute Cesàro ϕ – |C,α,β ;δ|k
summability for an infinite series. We further obtained well-known applications of the
above theorem as corollaries, under suitable conditions.
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1 Introduction
Let

∑∞
n= an be an infinite series with sequence of partial sums {sn} and the nth sequence

to sequence transformation (mean) of {sn} be given by un s.t.

un =
∞∑

k=

unksk . ()

Before discussing ϕ – |C,α,β ; δ|k summability, let us introduce some well-known basic
summabilities which are helpful in understanding the ϕ – |C,α,β ; δ|k summability.

Definition  The series
∑∞

n= an is said to be absolute summable, if

lim
n→∞ un = s ()

and
∑∞

n= |un – un–| < ∞.

Definition  ([]) Let tn represent the nth (C, ) means of the sequence (nan), then the
series

∑∞
n= an is said to be |C, |k summable for k ≥ , if

∞∑

n=


n

|tn|k < ∞. ()
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Definition  ([]) The nth Cesáro means of order (α,β), with α + β > –, of the sequence
(nan) is denoted by tα,β

n , i.e.

tα,β
n =


Aα+β

n

n∑

v=

Aα–
n–vAβ

v vav, ()

where

Aα+β
n =

⎧
⎪⎪⎨

⎪⎪⎩

, n < ,

, n = ,

O(nα+β ), n > .

If the sequence {tα,β
n } satisfies

∞∑

n=

ϕk–
n
nk

∣
∣tα,β

n
∣
∣k < ∞, ()

then the series
∑∞

n= an is said to be ϕ – |C,α,β|k summable.

Definition  For the following condition:

∞∑

n=

ϕk–
n

nk–δk

∣
∣tα,β

n
∣
∣k < ∞, ()

the series
∑∞

n= an is said to be ϕ – |C,α,β ; δ|k summable, where k ≥ , δ ≥  and (ϕn) is a
sequence of positive real numbers.

Bor gave a number of theorems on absolute summability. In , Bor found the
sufficient conditions for an infinite series to be |C,α|k summable [] and |C,α; δ|k
summable []. In , he generalized his previous results for |C,α,β|k summability []
and |C,α,β ; δ|k summability [], respectively. In , Bor [] generalized the |C,α|k
summability factor to the |C,α,β ; δ|k summability of an infinite series and in [], he dis-
cussed a general class of power increasing sequences and absolute Riesz summability fac-
tors of an infinite series. In [], Bor applied |C,α,γ ;β|k summability to obtain the sufficient
conditions for an infinite series to be absolute summable.

Bor [] gave a new application of quasi-power increasing sequence by applying absolute
Cesáro ϕ – |C,α|k summability for an infinity series. Özarslan [] generalized the result on
ϕ – |C, |k by a more general absolute ϕ – |C,α|k summability. In , Sonker and Munjal
[] determined a theorem on generalized absolute Cesáro summability with the sufficient
conditions for an infinite series and in [], they used the concept of triangle matrices for
obtaining the minimal set of sufficient conditions of an infinite series to be bounded.

2 Known results
By using |C,α|k summability, Bor [] gave a minimal set of sufficient conditions for an
infinite series to be absolute summable.
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Theorem . Let Xn be a quasi-f -power increasing sequence for some η ( < η < ). Sup-
pose also that there exists a sequence of numbers (An) such that it is ξ -quasi-monotone
satisfying the following:

∑
nξnXn = O(), ()

	An ≤ ξn, ()

|	λn| ≤ |An|, ()
∑

AnXn is convergent for all n. ()

If the conditions

|λn|Xn = O() as n → ∞, ()
m∑

n=

(wα
n)k

n
= O(Xm) as m → ∞, ()

are satisfied, then the series
∑

anλn is |C,α|k summable,  < α ≤  and k ≥ .

3 Main results
A positive sequence X = (Xn) is said to be a quasi-f -power increasing sequence if there
exists a constant K = K(X, f ) ≥  such that KfnXn ≥ fmXm for all n ≥ m ≥ , where f =
[fn(η, ζ )] = {nη(log n)ζ , ζ ≥ ,  < η < } []. If we set ζ = , then we get a quasi-η-power
increasing sequence [].

With the help of generalized Cesáro ϕ – |C,α,β ; δ|k summability, we modernized the
results of Bor [] and established the following theorem.

Theorem . Let Xn be a quasi-f -power increasing sequence for some η ( < η < ). Sup-
pose also that there exists a ξ -quasi-monotone sequence of numbers (An) such that

∑
nξnXn = O(), ()

	An ≤ ξn, ()

|	λn| ≤ |An|, and ()
∑

AnXn is convergent for all n. ()

Then the series
∑

anλn is ϕ – |C,α,β ; δ|k summable for k ≥ ,  < α ≤ , β > –, α + β > 
and δ ≥ , if the following conditions are satisfied:

|λn|Xn = O() as n → ∞, ()
m∑

n=v

ϕk–
n

n(α+β–δ+)k = O
(

ϕk–
v

v(α+β–δ+)k–

)

, ()

m∑

n=

ϕk–
n (wα,β

n )k

nk–δk = O(Xm) as m → ∞, ()
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where wα,β
n is given by []

wα,β
n =

⎧
⎨

⎩

max≤v≤n |tα,β
v |, β > –,  < α < ,

|tα,β
n |, β > –,α = .

()

4 Lemmas
We need the following lemmas for the proof of our theorem.

Lemma . ([]) If  < α ≤ , β > – and  ≤ v ≤ n, then

∣
∣
∣
∣
∣

v∑

p=

Aα–
n–pAβ

p ap

∣
∣
∣
∣
∣
≤ max

≤m≤v

∣
∣
∣
∣
∣

m∑

p=

Aα–
m–pAβ

p ap

∣
∣
∣
∣
∣
. ()

Lemma . ([]) Let (Xn) be a quasi-f -power increasing sequence for some η ( < η < ).
If (An) is a ξ -quasi-monotone sequence with 	An ≤ ξn and

∑
nξnXn < ∞, then

∞∑

n=

nXn|An| < ∞, ()

nAnXn = O() as n → ∞. ()

5 Proof of the theorem
Let tα,β

n be the nth (C,α,β) mean of the sequence (nanλn). Then the series will be ϕ –
|C,α,β ; δ|k summable (by Definition ), if

∞∑

n=

ϕk–
n

nk–δk

∣
∣Tα,β

n
∣
∣k < ∞. ()

Applying Abel’s transformation and Lemma ., we have

Tα,β
n =


Aα+β

n

n∑

v=

Aα–
n–vAβ

v vavλv

=


Aα+β
n

n–∑

v=

	λv

v∑

p=

Aα–
n–pAβ

p pap +
λn

Aα+β
n

n∑

v=

Aα–
n–vAβ

v vav, ()

∣
∣Tα,β

n
∣
∣ ≤ 

Aα+β
n

n–∑

v=

|	λv|
∣
∣
∣
∣
∣

v∑

p=

Aα–
n–pAβ

p pap

∣
∣
∣
∣
∣

+
|λn|
Aα+β

n

∣
∣
∣
∣
∣

n∑

v=

Aα–
n–vAβ

v vav

∣
∣
∣
∣
∣

≤ 
Aα+β

n

n–∑

v=

Aα+β
v wα,β

v |	λv| + |λn|wα,β
n

= Tα,β
n, + Tα,β

n, . ()

We use Minkowski’s inequality,

∣
∣Tα,β

n
∣
∣k =

∣
∣Tα,β

n, + Tα,β
n,

∣
∣k ≤ k(∣∣Tα,β

n,
∣
∣k +

∣
∣Tα,β

n,
∣
∣k). ()
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In order to complete the proof of the theorem, it is sufficient to show that

∞∑

n=

ϕk–
n

nk–δk

∣
∣Tα,β

n,r
∣
∣k < ∞, for r = , . ()

By using Hölder’s inequality, Abel’s transformation and the conditions of Lemma . [],
we have

m+∑

n=

ϕk–
n

nk–δk

∣
∣Tα,β

n,
∣
∣k ≤

m+∑

n=

ϕk–
n

nk–δk


(Aα+β
n )k

( n–∑

v=

Aα+β
v wα,β

v |	λv|
)k

≤
m+∑

n=

ϕk–
n

n(+α+β–δ)k

n–∑

v=

v(α+β)k(wα,β
v

)k|Av|
( n–∑

v=

|Av|
)k–

= O()
m∑

v=

v(α+β)k(wα,β
v

)k|Av|
m+∑

n=v+

ϕk–
n

n(+α+β–δ)k

= O()
m∑

v=

v(α+β)k(wα,β
v

)k|Av| ϕk–
v

v(+α+β–δ)k–

= O()
m∑

v=

v|Av|
(
wα,β

v
)k ϕk–

v
vk–δk

= O()
m–∑

v=

	
(
v|Av|

) v∑

r=

(
wα,β

r
)k ϕk–

r
rk–δk

+ O()m|Am|
m∑

v=

(
wα,β

v
)k ϕk–

v
vk–δk

= O()
m–∑

v=

∣
∣(v + )	|Av| – |Av|

∣
∣Xv + O()m|Am|Xm

= O()
m–∑

v=

v|	Av|Xv + O()
m–∑

v=

|Av|Xv + O()m|Am|Xm

= O()
m–∑

v=

vξvXv + O()
m–∑

v=

|Av|Xv + O()m|Am|Xm

= O() as m → ∞, ()
m∑

n=

ϕk–
n

nk–δk

∣
∣Tα,β

n,
∣
∣k = O()

m∑

n=

|λn|
(
wα,β

n
)k ϕk–

n
nk–δk

= O()
m–∑

n=

	|λn|
n∑

v=

(
wα,β

v
)k ϕk–

v
vk–δk + O()|λm|

m∑

n=

(
wα,β

n
)k ϕk–

n
nk–δk

= O()
m–∑

n=

|	λn|Xn + O()|λm|Xm

= O()
m–∑

n=

|An|Xn + O()|λm|Xm

= O() as m → ∞. ()
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Collecting ()-(), we have

∞∑

n=

ϕk–
n

nk–δk

∣
∣Tα,β

n
∣
∣k < ∞. ()

Hence the proof of the theorem is completed.

6 Corollaries
Corollary . Let Xn be a quasi-f -power increasing sequence for some η ( < η < ) and
there exists a sequence of numbers (An) such that it is ξ -quasi-monotone satisfying ()-()
and the following condition:

m∑

n=

(wα,β
n )k

n–δk = O(Xm) as m → ∞, ()

then the series
∑

anλn is |C,α,β ; δ|k summable, α + β > δ,  < α ≤ , β > –, δ ≥ , k ≥ ,
where wα,β

n is given by ().

Proof On putting ϕn = n in Theorem ., we will get () and the following condition:

m∑

n=v


n+k(α+β–δ) = O

(


v(α+β–δ)k

)

. ()

Here, condition () always holds. We omit the details as the proof is similar to that of
Theorem . using the conditions () and () instead of () and (). �

Corollary . Let Xn be a quasi-f -power increasing sequence for some η ( < η < ) and
there exists a sequence of numbers (An) such that it is ξ -quasi-monotone satisfying ()-()
and the following conditions:

m∑

n=v

ϕk–
n

nk(+α+β) =
ϕk–

v
vk(+α+β)– , ()

m∑

n=

(wα,β
n )kϕk–

n
nk = O(Xm) as m → ∞, ()

then the series
∑

anλn is ϕ – |C,α,β|k summable, α + β > ,  < α ≤ , β > –, k ≥ , where
wα,β

n is given by ().

Proof On putting δ =  in Theorem ., we will get () and (). We omit the details as
the proof is similar to that of Theorem . using the conditions () and () instead of
() and (). �

Corollary . ([]) Let Xn be a quasi-f -power increasing sequence for some η ( < η < )
and there exists a sequence of numbers (An) such that it is ξ -quasi-monotone satisfying
()-() and the following conditions:

m∑

n=

(wα
n)k

n
= O(Xm) as m → ∞, ()
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then the series
∑

anλn is |C,α|k summable,  < α ≤ , k ≥ , where wα
n is given by

wα
n =

⎧
⎨

⎩

|tα
n |, α = ,

max≤v≤n |tα
v |,  < α < .

()

Proof On putting ϕn = n, δ =  and β =  in Theorem ., we will get () and the following
condition:

m∑

n=v


n+kα

= O
(


vkα

)

. ()

Here, condition () always holds. We omit the details as the proof is similar to that of
Theorem . using the conditions () and () instead of () and (). �

7 Conclusion
The aim of our paper is to obtain the minimal set of sufficient conditions for an infinite
series to be absolute Cesáro ϕ – |C,α,β ; δ|k summable. Through the investigation, we may
conclude that our theorem is a generalized version which can be reduced for several well-
known summabilities as shown in the corollaries. Further, our theorem has been validated
through Corollary ., which is a result of Bor [].
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