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Abstract
In this paper, we study the irregular growth of an entire function defined by the
Laplace-Stieltjes transform of finite order convergent in the whole complex plane and
obtain some results about λ-lower type. In addition, we also investigate the problem
on the error in approximating entire functions defined by the Laplace-Stieltjes
transforms. Some results about the irregular growth, the error, and the coefficients of
Laplace-Stieltjes transforms are obtained; they are generalization and improvement of
the previous conclusions given by Luo and Kong, Singhal and Srivastava.
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1 Introduction
Dirichlet series

f (s) =
∞∑

n=

aneλns, s = σ + it, ()

where

 ≤ λ < λ < · · · < λn < · · · , λn → ∞ as n → ∞; ()

s = σ + it (σ , t are real variables), an are nonzero complex numbers. When an, λn, n satisfy
some conditions, the series () is convergent in the whole plane or the half-plane, that
is, f (s) is an analytic function or entire function in the whole plane or the half-plane. In
the past few decades, many mathematicians studied the growth and value distribution of
the analytic (entire) function defined by Dirichlet series and obtained lots of interesting
results (see [–]).

As we know, Dirichlet series is regarded as a special example of the Laplace-Stieltjes
transform. The Laplace-Stieltjes transform, named for Pierre-Simon Laplace and Thomas
Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued
functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for
functions with values in a Banach space. It can be used in many fields of mathematics,
such as functional analysis, and certain areas of theoretical and applied probability.
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For the Laplace-Stieltjes transforms,

G(s) =
∫ +∞


e–sx dα(x), s = σ + it, ()

where α(x) is a bounded variation on any finite interval [, Y ] ( < Y < +∞), and σ and t
are real variables. Let

B∗
n = sup

λn<x≤λn+,–∞<t<+∞

∣∣∣∣
∫ x

λn

e–ity dα(y)
∣∣∣∣,

where the sequence {λn}∞n= satisfies () and

lim sup
n→+∞

(λn+ – λn) = h < +∞. ()

In , Yu [] proved the Valiron-Knopp-Bohr formula of the associated abscissas
of bounded convergence, absolute convergence, and uniform convergence of Laplace-
Stieltjes.

Theorem A Suppose that Laplace-Stieltjes transforms () satisfy (), () and
lim supn→+∞

log n
λn

< +∞, then

lim sup
n→+∞

log B∗
n

λn
≤ σ G

u ≤ lim sup
n→+∞

log B∗
n

λn
+ lim sup

n→+∞
log n
λn

,

where σ F
u is called the abscissa of uniform convergence of F(s).

Moreover, Yu [] first introduced the maximal molecule Mu(σ , G), the maximal term
μ(σ , G) and the Borel line, and the order of analytic functions represented by Laplace-
Stieltjes transforms convergent in the complex plane. After his works, considerable atten-
tion has been paid to the growth and value distribution of the functions represented by
the Laplace-Stieltjes transform convergent in the half-plane or the whole complex plane
in the field of complex analysis (see [–]).

In , Luo and Kong [] studied the following form of Laplace-Stieltjes transform:

F(s) =
∫ +∞


esx dα(x), s = σ + it, ()

where α(x) is stated as in (), and {λn} satisfies (),(). Set

A∗
n = sup

λn<x≤λn+,–∞<t<+∞

∣∣∣∣
∫ x

λn

eity dα(y)
∣∣∣∣.

By using the same argument as in [], we can get a similar result about the abscissa of
uniform convergence of F(s) easily. If

lim sup
n→+∞

log n
λn

= D < ∞, lim sup
n→+∞

log A∗
n

λn
= –∞, ()

by (), () and Theorem , one can get that σ F
u = +∞, i.e., F(s) is an entire function.
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Set

M(σ , F) = sup
–∞<t<+∞

∣∣F(σ + it)
∣∣, Mu(σ , F) = sup

<x<+∞,–∞<t<+∞

∣∣∣∣
∫ x


e(σ+it)y dα(y)

∣∣∣∣

and

μ(σ , F) = max
n∈N

{
A∗

neλnσ
}

(σ < +∞), N(σ , F) = max
{
λn : A∗

neλnσ = μ(σ , F)
}

.

Since M(σ , F) and Mu(σ , F) tend to +∞ as σ → +∞, in order to estimate the growth of
F(s) more precisely, we will adapt some concepts of order, lower order, type, lower type as
follows.

Definition . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()) and

lim sup
σ→+∞

log+ log+ Mu(σ , F)
σ

= ρ,

we call F(s) of order ρ in the whole plane, where log+ x = max{log x, }. If ρ ∈ (, +∞), we
say that F(s) is an entire function of finite order in the whole plane. Moreover, the lower
order of F(s) is defined by

lim inf
σ→+∞

log+ log+ Mu(σ , F)
σ

= λ.

Remark . We say that F(s) is of the regular growth, when ρ = λ, and F(s) is of the irreg-
ular growth, when ρ �= λ.

Definition . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()) and is of order ρ ( < ρ < ∞), then we define the type and lower type
of L-S transform F(s) as follows:

lim sup
σ→+∞

log+ Mu(σ , F)
eσρ

= T , lim inf
σ→+∞

log+ Mu(σ , F)
eσρ

= τ .

Remark . The purpose of the definition of type is to compare the growth of class func-
tions which all have the same order. For example, let f (s) = ees , g(s) = ees , by a simple com-
putation, we have ρ(f ) =  = ρ(g), but T(f ) =  and T(g) = ∞. Thus, we can see that the
growth of g(s) is faster than f (s) as |s| → +∞.

2 Results and discussion
Recently, many people studied some problems on analytic functions defined by the
Laplace-Stieltjes transforms and obtained a number of interesting results. Kong, Sun, Huo
and Xu investigated the growth of analytic functions with kinds of order defined by the
Laplace-Stieltjes transforms (see [–]), and Shang, Gao, and Sun investigated the value
distribution of such functions (see [–]). From these references, we get the following
results.
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Theorem . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()), and is of order ρ ( < ρ < ∞) and of type T , then

ρ = lim sup
n→+∞

λn logλn

– log A∗
n

, T = lim sup
n→+∞

λn

ρe
(
A∗

n
) ρ

λn .

Furthermore, if F(s) is of the lower order λ and the lower type τ , and λn ∼ λn+ and the
function

ψ(n) =
log A∗

n – log A∗
n+

λn+ – λn

forms a non-decreasing function of n for n > n, then we have

λ = lim inf
n→+∞

λn logλn

– log A∗
n

, τ = lim inf
n→+∞

λn

ρe
(
A∗

n
) ρ

λn .

From Definition ., a natural question to ask is: What happened if eσρ is replaced by eλσ

in the definition of lower type when ρ �= λ? We are going to consider this question.

Definition . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()), and is of order ρ ( < ρ < ∞) and of the lower order λ ( < λ < ∞),
if λ �= ρ , and

lim inf
σ→+∞

log+ Mu(σ , F)
eσλ

= τλ,

we say that τλ is the λ-type of F(s).

Remark . Obviously, τλ ≥ τ and τλ = τ as ρ = λ. But we cannot confirm whether τλ ≥ T
or τλ ≤ T .

The following results are the main theorems of this paper.

Theorem . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()), and is of order ρ and of the lower order λ,  ≤ λ �= ρ < ∞, then we
have

lim inf
σ→∞

log M(σ , F)
eρσ

= lim inf
σ→∞

logμ(σ , F)
eρσ

= , ()

and

lim inf
σ→∞

N(σ , F)
eρσ

= . ()

Theorem . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()), and is of order ρ and of the lower order λ,  < λ �= ρ < ∞, type T ,
λ-type τλ,

lim sup
σ→+∞

N(σ , F)
eρσ

= H , lim inf
σ→+∞

N(σ , F)
eρσ

= h,
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and let

Tρ(σ , F) =
logμ(σ , F)

exp(ρσ )
, Tλ(σ , F) =

logμ(σ , F)
exp(λσ )

,

then we have

H – ρT ≤ lim sup
σ→+∞

T ′
ρ(σ , F) ≤ H , ()

–∞ ≤ lim inf
σ→+∞ T ′

λ(σ , F) ≤ h – λτλ ()

for almost all values of σ > σ, where T ′
ρ(σ ) and T ′

λ(σ ) are the derivatives of Tρ(σ ) and
Tλ(σ ) with respect to σ .

Theorem . If Laplace-Stieltjes transform () satisfies σ F
u = +∞ (the sequence {λn} sat-

isfies (), (), and ()), and is of the lower order λ ( ≤ λ �= ρ < ∞), if λn ∼ λn+, then

τλ ≥ lim inf
n→∞

(
λn

eλ

)(
A∗

n
) λ

λn ( ≤ τλ ≤ ∞). ()

Furthermore, there exists a positive integer n such that

ψ(n) =
log A∗

n – log A∗
n+

λn+ – λn

forms a non-decreasing function of n for n > n, then we have

τλ = lim inf
n→∞

(
λn

eλ

)(
A∗

n
) λ

λn ( ≤ τλ ≤ ∞). ()

We denote by Lβ the class of all the functions F(s) of the form () which are analytic in
the half-plane �s < β (–∞ < β < ∞) and the sequence {λn} satisfies () and (); and we
denote by L∞ the class of all the functions F(s) of the form () which are analytic in the
half-plane �s < +∞ and the sequence {λn} satisfies (), (), and (). Thus, if –∞ < β < +∞
and F(s) ∈ Lβ , then F(s) ∈ L∞. If Laplace-Stieltjes transform () A∗

n =  for n ≥ k +  and
A∗

n �= , then F(s) will be called an exponential polynomial of degree k usually denoted by
pk , i.e., pk(s) =

∫ λk
 exp(sy) dα(y). When we choose a suitable function α(y), the function

pk(s) may be reduced to a polynomial in terms of exp(sλi), that is,
∑k

i= bi exp(sλi).
For F(s) ∈ Lβ , –∞ < β < +∞, we denote by En(F ,β) the error in approximating the func-

tion F(s) by exponential polynomials of degree n in uniform norm as

En(F ,β) = inf
p∈	n

‖F – p‖β , n = , , . . . ,

where

‖F – p‖β = max
–∞<t<+∞

∣∣F(β + it) – p(β + it)
∣∣.

In this paper, we will further investigate the relation between En(F ,β) and the growth of
an entire function defined by the L-S transform with irregular growth. It seems that this
problem has never been treated before. Our main result is as follows.
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Theorem . If the Laplace-Stieltjes transform F(s) ∈ L∞ and is of lower order λ ( ≤ λ �=
ρ < ∞), if λn ∼ λn+, then for any real number –∞ < β < +∞, we have

τλ ≥ lim inf
n→∞

(
λn

eλ

)(
En–(F ,β) exp(–βλn)

) λ
λn ( ≤ τλ ≤ ∞). ()

Furthermore, there exists a positive integer n such that

ψ(n) =
log A∗

n – log A∗
n+

λn+ – λn

forms a non-decreasing function of n for n > n, then we have

τλ = lim inf
n→∞

(
λn

eλ

)(
En–(F ,β) exp(–βλn)

) λ
λn ( ≤ τλ ≤ ∞),

i.e.,

exp(βλ)eλτλ = lim inf
n→∞ λn

(
En–(F ,β)

) λ
λn . ()

3 Conclusions
From Theorems .-., we can see that the growth of Laplace-Stieltjes transforms is in-
vestigated under the assumption ρ �= λ, and that some theorems about the λ-lower type
τλ, λn, A∗

n, and λ are obtained. In addition, we also study the problem on the error in ap-
proximating entire functions defined by the Laplace-Stieltjes transforms. This project is a
new issue of Laplace-Stieltjes transforms in the field of complex analysis. Our results are
generalization and improvement of the previous conclusions given by Luo and Kong [,
], Singhal and Srivastava [].

4 Methods
4.1 Proofs of Theorems 2.2 and 2.3
To prove the above theorems, we require the following lemmas.

Lemma . (see [], Lemma .) If the L-S transform F(s) ∈ L∞, for any σ (–∞ < σ < +∞)
and ε(> ), we have



μ(σ , F) ≤ Mu(σ , F) ≤ Cμ

(
( + ε)σ , F

)
,

where C is a constant.

Lemma . (see [], Lemma .) If the L-S transform F(s) ∈ L∞, then we have

logμ(σ , F) = logμ(σ, F) +
∫ σ

σ

N(t, F) dt

for σ > .
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.. The proof of Theorem .
Since ρ > λ >  and F(s) is of the lower order λ, that is,

λ = lim inf
σ→+∞

log log Mu(σ , F)
σ

, ()

for any small ε( < ε < ρ – λ), it follows from () that there exists a constant σ such that,
for σ > σ,

log Mu(σ , F) > exp
{

(λ – ε)σ
}

, ()

and there exists a sequence {σk} tending to +∞ such that

log Mu(σk , F) < exp
{

(λ + ε)σk
}

. ()

Since  < ε < ρ – λ, it follows from () and () that

lim inf
σ→+∞

log Mu(σ , F)
exp(ρσ )

= . ()

From Lemmas . and ., we have

ρ = lim sup
σ→+∞

log log Mu(σ , F)
σ

= lim sup
σ→+∞

log logμ(σ , F)
σ

= lim sup
σ→+∞

log N(σ , F)
σ

and

λ = lim inf
σ→+∞

log log Mu(σ , F)
σ

= lim inf
σ→+∞

log logμ(σ , F)
σ

= lim inf
σ→+∞

log N(σ , F)
σ

.

Thus, similar to the process of (), we can easily prove

lim inf
σ→+∞

logμ(σ , F)
exp(ρσ )

= lim inf
σ→+∞

N(σ , F)
exp(ρσ )

= .

Hence, this completes the proof of Theorem ..

.. The proof of Theorem .
From Lemma ., it follows that

lim sup
σ→+∞

∫ σ

σ
N(t, F) dt

eρσ
= lim sup

σ→+∞
logμ(σ , F)

eρσ
= lim sup

σ→+∞
Tρ(σ , F) = T ()

and

lim inf
σ→+∞

∫ σ

σ
N(t, F) dt

eλσ
= lim inf

σ→+∞
logμ(σ , F)

eλσ
= lim inf

σ→+∞ Tλ(σ , F) = τλ. ()

Dividing two sides of the equality in Lemma . by eρσ and differentiating it with respect
to σ , for almost all values σ > σ, we have

T ′
ρ(σ , F) = –ρ

logμ(σ, F)
eρσ

–
ρ

eρσ

∫ σ

σ

N(t, F) dt +
N(σ , F)

eρσ
. ()
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On the basis of the assumptions of Theorem ., taking lim sup in () when σ → +∞,
from Theorem . and (), we get () easily.

Similarly, dividing two sides of the equality in Lemma . by eλσ and differentiating it
with respect to σ , for almost all values σ > σ,

T ′
λ(σ , F) = –λ

logμ(σ, F)
eλσ

–
λ

eλσ

∫ σ

σ

N(t, F) dt +
N(σ , F)

eλσ
. ()

On the basis of the assumptions of Theorem ., taking lim inf in () when σ → +∞,
from Theorem . and (), we get () easily.

Thus, this completes the proof of Theorem ..

4.2 The proof of Theorem 2.4
Let

ϑ = lim inf
n→+∞

λn

eλ
(
A∗

n
) λ

λn ( < ϑ < +∞).

Thus, for any ε > , there exists an integer n(ε) such that, for n > n(ε),

λn
(
A∗

n
) λ

λn > (ϑ – ε)eλ. ()

By Lemma ., it follows from () that for n > n(ε)

log Mu(σ , F)
eλσ

≥ log A∗
n + λnσ – log 

eλσ

> e–λσ

(
λnσ +

λn

λ
log

[
(ϑ – ε)eλ

]
–

λn

λ
logλn – log 

)
. ()

Let

(
λn

λϑ

) 
λ ≤ eσ <

(
λn+

λϑ

) 
λ

,

and take

σ =

λ

log

(
λn

λϑ

)
+ o

(

λn

)
.

Then from () it follows

log Mu(σ , F)
eλσ

≥ λϑ

λn+

(
λn

λ
log


λϑ

+
λn

λ
log

(
(ϑ – ε)eλ

)
– log  + o()

)
. ()

Since λn ∼ λn+ and λn → +∞ as n → +∞, thus by a simple computation, from () we
have τλ ≥ ϑ . When ϑ = , τλ ≥ ϑ is obvious; if ϑ = ∞, we also prove that τλ ≥ ϑ by using
the same argument as above. Hence we prove that () holds.

Let μ(σ , F) denote the maximum term for �s = σ , –∞ < t < +∞. Since

ψ(n) =
log A∗

n – log A∗
n+

λn+ – λn
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forms a non-decreasing function of n for n > n, then for ψ(n – ) ≤ σ < ψ(n)

logμ(σ , F) = log A∗
n + λnσ .

Since τλ < ∞, for any small ε > , it follows from () that

logμ(σ , F) = log A∗
n + λnσ ≥ (τλ – ε) exp(λσ ) ()

for σ > σ and all n such that ψ(n – ) ≤ σ < ψ(n).
Let �s = σ > σ and A∗

n exp(σλn ) and A∗
n exp(σλn ) (n > n,ψ(n – ) > σ) be two con-

secutive maximum terms such that n –  ≥ n, it follows from () that

log A∗
n + λnσ ≥ (τλ – ε) exp(λσ )

for all σ > σ satisfying ψ(n – ) ≤ σ < ψ(n). Let n ≤ n ≤ n – , then

ψ(n) = ψ(n + ) = · · · = ψ(n) = · · · = ψ(n – )

and A∗
n exp(λnσ ) = A∗

n exp(λnσ ) for σ = ψ(n). Then there exists a positive integer n such
that, for n > n and σ > σ,

log A∗
n > (τλ – ε)eλσ – λnσ .

Since ex ≥ ex for any x, so it follows

λn
(
A∗

n
) λ

λn >
λn

eλσ
exp

{
λ(τλ – ε)

λn
eλσ

}
>

λn

eλσ

e(τλ – ε)λ
λn

eλσ = e(τλ – ε)λ. ()

Thus, for ε →  and n → +∞, from () it follows

ϑ = lim inf
n→+∞

λn

eλ
(
A∗

n
) λ

λn ≥ τλ. ()

Hence, this proves that () holds.

4.3 The proof of Theorem 2.5
To prove this theorem, we require the following lemma.

Lemma . If the abscissa σ F
u = +∞ of uniform convergence of the Laplace-Stieltjes trans-

formation F(s) and sequence () satisfies (), (), then for any real number β , we have

∣∣∣∣
∫ ∞

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣ ≤ 

+∞∑

n=k

A∗
n exp{βλn+},

where

A∗
n = sup

λn<x≤λn+,–∞<t<+∞

∣∣∣∣
∫ x

λn

eity dα(y)
∣∣∣∣.
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Proof Set

I(x; it) =
∫ x


exp{ity}dα(y).

For any real number β , since

∣∣∣∣
∫ ∞

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣ = lim

b→+∞

∣∣∣∣
∫ b

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣.

Set Ij+k(b; it) =
∫ b
λj+k

exp{ity}dα(y), (λj+k < b ≤ λj+k+), then we have |Ij+k(b; it)| ≤ A∗
j+k . Thus,

it follows

∣∣∣∣
∫ b

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣

=

∣∣∣∣∣

n+k–∑

j=k

∫ λj+

λj

exp{βy}dyIj(y; it) +
∫ b

λn+k

exp{βy}dyIn+k(y; it)

∣∣∣∣∣

=

∣∣∣∣∣

[n+k–∑

j=k

eλj+β Ij(λj+; it) – β

∫ λj+

λj

eβyIj(y; it) dy

]

+ eβbIn+k(b; it) – β

∫ b

λn+k

eβyIj(y; it) dy

∣∣∣∣∣

≤
n+k–∑

j=k

[
A∗

j eλj+β + A∗
j
(
eλj+β – eλjβ

)]
+ eβλn+k+ A∗

n+k – eβλn+k A∗
n+k

≤ 
n+k∑

j=k

A∗
neλn+β .

When n → +∞, we have b → +∞, thus we have

∣∣∣∣
∫ ∞

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣ ≤ 

+∞∑

n=k

A∗
n exp{βλn+}. �

Now, we are going to prove Theorem ..

4.4 The proof of Theorem 2.5
Let

ϑ = lim inf
n→∞

(
λn

eλ

)(
En–(F ,β) exp(–βλn)

) λ
λn ( < ϑ < +∞).

Then, for any small ε > , there exists an integer n(ε) such that, for any n > n(ε),

log
(
En–(F ,β) exp(–βλn)

)
>

λn

λ
log

(ϑ – ε)eλ
λn

. ()
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Since F(s) ∈ L∞, thus for any constant β (–∞ < β < +∞), we have F(s) ∈ Lβ . For β < σ <
+∞. It follows from the definitions of En(F ,β) and pn that

En(F ,β) ≤ ‖F – pn‖β ≤ ∣∣F(β + it) – pn(β + it)
∣∣

≤
∣∣∣∣
∫ +∞


exp

{
(β + it)y

}
dα(y) –

∫ λn


exp

{
(β + it)y

}
dα(y)

∣∣∣∣

=
∣∣∣∣
∫ ∞

λn

exp
{

(β + it)y
}

dα(y)
∣∣∣∣. ()

Thus, from the definition of A∗
n and Mu(σ , F), and by Lemma ., we have A∗

n ≤
Mu(σ , F)e–σλn for any σ (β < σ < +∞). It follows from () and Lemma . that

En(F ,β) ≤ 
∞∑

k=n+

A∗
k– exp{βλk} ≤ Mu(σ , F)

∞∑

k=n+

exp
{

(β – σ )λk
}

. ()

From (), take h′ ( < h′ < h) such that (λn+ –λn) ≥ h′ for n ≥ . Then, for σ ≥ β

 , it follows
from () that

En(F ,β) ≤ Mu(σ , F) exp
{
λn+(β – σ )

} ∞∑

k=n+

exp
{

(λk – λn+)(β – σ )
}

≤ Mu(σ , F) exp
{
λn+(β – σ )

}
exp

{
–

β


h′(n + )

} ∞∑

k=n+

(
exp

{
β


h′k

})

= Mu(σ , F) exp
{
λn+(β – σ )

}(
 – exp

{
β


h′

})–

,

that is,

En–(F ,β) ≤ KMu(σ , F) exp
{
λn(β – σ )

}
, ()

where K is a constant. Let

γn = En–(F ,β) exp(–βλn) (n = , , . . .).

Thus, from () and (), it follows that for n > n(ε)

log Mu(σ , F)
eλσ

≥ logγn + λnσ – log K
eλσ

> e–λσ

(
λnσ +

λn

λ
log

[
(ϑ – ε)eλ

]
–

λn

λ
logλn – log K

)
. ()

By using the same argument as in Theorem ., we can easily prove that τλ ≥ ϑ.
From the proof of Theorem ., we have that there exists a positive integer n such that

log A∗
n > (τλ – ε)eλσ – λnσ



Xu and Liu Journal of Inequalities and Applications  (2017) 2017:164 Page 12 of 14

for n > n and σ > σ. Since for any β < +∞, from the definition of Ek(F ,β), there exists
p ∈ 	n– such that

‖F – p‖ ≤ En–(F ,β). ()

And since

A∗
n exp{βλn} = sup

λn<x≤λn+,–∞<t<+∞

∣∣∣∣
∫ x

λn

exp{ity}dα(y)
∣∣∣∣ exp{βλn}

≤ sup
λn<x≤λn+,–∞<t<+∞

∣∣∣∣
∫ x

λn

exp
{

(β + it)y
}

dα(y)
∣∣∣∣

≤ sup
–∞<t<+∞

∣∣∣∣
∫ ∞

λn

exp
{

(β + it)y
}

dα(y)
∣∣∣∣,

thus for any p ∈ 	n–, it follows

A∗
n exp{βλn} ≤ ∣∣F(β + it) – p(β + it)

∣∣ ≤ ‖F – p‖β . ()

Hence from () and (), for any β < +∞ and F(s) ∈ L∞, we have

A∗
n exp{βλn} ≤ En–(F ,β).

Since ex ≥ ex for any x, so it follows

λn(γn)
λ
λn >

λn

eλσ
exp

{
λ(τλ – ε)

λn
eλσ –

λ log 
λn

}

>
λn

eλσ

(
e(τλ – ε)λ

λn
eλσ exp

{
o()

})
= e(τλ – ε)λ. ()

Thus, for ε →  and n → +∞, from () it follows

ϑ = lim inf
n→∞

λn

eλ
(γn)

λ
λn ≥ τλ.

Since [En–(F ,β) exp(–βλn)]
λ
λn = [En–(F ,β)]

λ
λn exp(–βλ), then () follows.

Therefore, we complete the proof of Theorem ..

4.5 Remarks
From the proof of Theorem ., and combining those results of the Laplace-Stieltjes trans-
forms in Ref. [, , ], we can obtain the following results on the approximation of
Laplace-Stieltjes transforms, which can be found partly in [].

Theorem . If the L-S transform F(s) ∈ L∞ and is of order ρ ( < ρ < ∞) and of type T ,
then for any real number –∞ < β < +∞, we have

ρ = lim sup
n→+∞

λn logλn

– log En–(F ,β) exp(–βλn)
= lim sup

n→+∞
λn logλn

– log En–(F ,β)
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and

T = lim sup
n→+∞

λn

ρe
(
En–(F ,β) exp(–βλn)

) ρ
λn

= lim sup
n→+∞

λn

ρ exp(ρβ + )
(
En–(F ,β)

) ρ
λn .

Furthermore, if F(s) is of the lower order λ and the lower type τ , and λn ∼ λn+ and the
function

ψ(n) =
log A∗

n – log A∗
n+

λn+ – λn

forms a non-decreasing function of n for n > n, then we have

λ = lim inf
n→+∞

λn logλn

– log En–(F ,β)
, τ = lim inf

n→+∞
λn

ρ exp(ρβ + )
(
En–(F ,β)

) ρ
λn .

Theorem . If the L-S transform F(s) ∈ L∞, then for any real number –∞ < β < +∞. For
p = , we have

lim sup
σ→+∞

h(log Mu(σ , F))
h(σ )

–  = lim sup
n→+∞

h(λn)
h(– 

λn
log[En–(F ,β) exp(–βλn)])

,

and for p = , , . . . , we have

lim sup
n→+∞

h(λn)
h(– 

λn
log[En–(F ,β) exp(–βλn)])

≤ lim sup
σ→+∞

h(log Mu(σ , F))
h(σ )

≤ lim sup
n→+∞

h(λn)
h(– 

λn
log[En–(F ,β) exp(–βλn)])

+ ,

where h(x) satisfies the following conditions:
(i) h(x) is defined on [a, +∞) and is positive, strictly increasing, differentiable and tends

to +∞ as x → +∞;
(ii) limx→+∞ d(h(x))

d(log[p] x)
= k ∈ (, +∞), p ≥ , p ∈N

+, where log[] x = x, log[] x = log x and
log[p] x = log(log[p–] x).
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