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Abstract
In this paper, we prove weighted quantitative isoperimetric inequalities for the set

Eα = {(x, y) ∈ Rh+1 : |y| < ∫ π
2

arcsin |x| sin
α+1(t)dt, |x| < 1} in half-cylinders in the Grushin

space Rh+1 with density |x|p , p≥ 0.
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1 Introduction
The study of isoperimetric problems in Carnot-Carathéodory spaces has been an active
field over the past few decades. Pansu [] first proved an isoperimetric inequality of the
type PH (E) ≥ C|E| 

 (C > ) in the Heisenberg group H
 where PH (E) and |E| denote

Heisenberg perimeter and Lebesgue volume of E, respectively. In  Pansu [] conjec-
tured that, up to a null set, a left translation and a dilation, the isoperimetric set in the
Heisenberg group H

 is a bubble set as follows:

Eisop =
{

(z, t) ∈H
 : |t| <



(
arccos |z| + |z|

√
 – |z|), |z| < 

}

. ()

The formula defining Eisop in () makes sense in H
n for n ≥  and Pansu’s conjecture can

be naturally extended to any dimension. Until today Pansu’s conjecture has not completely
been solved. It has been only supported by many partial results, where further hypotheses
involving regularity or symmetry of the admissible sets are assumed; see [–]. For Carnot
groups, one can only get an isoperimetric inequality [] though we know the fact that
isoperimetric sets exist [].

Monti and Morbidelli [] completely solved the isoperimetric problem in the Grushin
plane R. Franceschi and Monti [] studied isoperimetric problem for a class of x-
spherical symmetry sets (here if h = , the assumption of x-spherical symmetry can be
removed) in Grushin spaces Rh+k . In particular, they pointed out that when k = , up to a
null set, a vertical translation and a dilation, the x-spherical symmetric isoperimetric set
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is

Eα =
{

(x, y) ∈ Rh+ : |y| <
∫ π



arcsin |x|
sinα+(t) dt, |x| < 

}

. ()

In the case of α = , the set Eα () is just the Pansu sphere in the Heisenberg group.
On the other hand, manifolds with density, a new category in geometry, have been widely

studied. They arise naturally in geometry as quotients of Riemannian manifolds, in physics
as spaces with different media, in probability as the famous Gauss space and in a number
of other places as well (see [, ]). Morgan and Pratelli [] studied the isoperimetric
problems in Euclidean spaces Rn with density; see [–] and the references therein. The
weighted Sobolev and Poincaré inequalities for Hörmander’s vector fields were well stud-
ied in [–]. The weighted isoperimetric-type and Sobolev-type inequalities for hyper-
surfaces in the Carnot group with density were obtained in []. In [] He and Zhao
proved that the set Eα is also a weighted x-spherical symmetry isoperimetric set in the
Grushin space Rh+ with density |x|p, p > –h + .

Very recently, Franceschi et al. [] obtained quantitative isoperimetric inequalities for
the bubble set Eisop in half-cylinders in Heisenberg groups by the construction of sub-
calibrations.

Motivated by the nice work mentioned above, in this paper we consider the quantitative
isoperimetric inequalities for the set Eα in half-cylinders in the Grushin space Rh+ with
density |x|p, p ≥ . These inequalities show that the weighted volume distance of a set F
from the set Eα with the same weighted volume is controlled in terms of the difference of
the weighted α-perimeter of F and the weighted α-perimeter of Eα . We get the following
theorem.

Theorem . Let F be any measurable set in the Grushin space Rh+ with density eφ =
|x|p, p ≥ , where F satisfies Vφ(F) = Vφ(Eα). Let Cε = {(x, y) ∈ Rh+ : |x| < , y > yε} be half-
cylinders, where  ≤ ε <  and yε = f ( – ε) with f (r) =

∫ π


arcsin r sinα+(t) dt.
(i) If F�Eα ⊂⊂ C, then we have

Pα,φ(F) – Pα,φ(Eα) ≥ h + p
ω

h
Vφ(Eα�F).

(ii) If F�Eα ⊂⊂ Cε with  < ε < , then we have

Pα,φ(F) – Pα,φ(Eα) ≥
√

ε(h + p)
[( – ε)α+h + ( – ε)h√ε]ωh

Vφ(Eα�F).

Here Pα,φ(E) = sup{∫E divα(|x|pϕ) dx dy : ϕ ∈ C
c (Rh+; Rh+), max |ϕ| ≤ } and

Vφ(E) =
∫

E |x|p dx dy are called the weighted α-perimeter and the weighted volume of
E, respectively. Finally ωh denotes the Euclidean volume of the unit ball.

When p =  in Theorem ., we can obtain the quantitative isoperimetric inequalities
for the set Eα in half-cylinders in Grushin spaces.
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2 Preliminaries
The Grushin space Rh+ = {(x, y) : x ∈ Rh, y ∈ R} is a Carnot-Carathéodory space with a
system of vector fields

Xi =
∂

∂xi
, i = , . . . , h and Y = |x|α ∂

∂y
,

where α >  is a given real number and |x| is the standard Euclidean norm of x.
The α-perimeter of a measurable set E ⊂ Rh+ in an open set A ⊂ Rh+ is defined as

Pα(E; A) = sup

{∫

E
divα ϕ dx dy : ϕ ∈ C

c
(
A; Rh+),‖ϕ‖∞ = max

(x,y)∈A

∣
∣ϕ(x, y)

∣
∣ ≤ 

}

,

where the α-divergence of the vector field ϕ : A → Rh+ is given by

divα ϕ = Xϕ + · · · + Xhϕh + Yϕh+.

If Pα(E; A) < ∞, by the Riesz representation theorem there exist a positive Radon mea-
sure μE on A and a μE-measurable function vE : A → Rh+ such that |vE| =  μE-a.e. on A
and the generalized Gauss-Green formula

∫

E
divα ϕ dx dy = –

∫

A
〈ϕ, vE〉dμE ()

holds for all ϕ ∈ C
c (A; Rh+). Here and hereafter, 〈·, ·〉 denotes the standard Euclidean scalar

product. The measure μE is called α-perimeter measure and the function vE is called mea-
sure theoretic inner unit α-normal of E.

Now we endow the Grushin space Rh+ with density eφ and define the weighted α-
perimeter of a measurable set E ⊂ Rh+ in an open set A ⊂ Rh+ as

Pα,φ(E; A) = sup

{∫

E
(divα,φ ϕ)eφ dx dy : ϕ ∈ C

c
(
A; Rh+),

‖ϕ‖∞ = max
(x,y)∈A

∣
∣ϕ(x, y)

∣
∣ ≤ 

}

, ()

where divα,φ ϕ = e–φ divα(eφϕ) is called the weighted α-divergence of ϕ.
By the definition of divα,φ ϕ, () can also be rewritten as

Pα,φ(E; A) = sup

{∫

E
divα

(
eφϕ

)
dx dy : ϕ ∈ C

c
(
A; Rh+),

‖ϕ‖∞ = max
(x,y)∈A

∣
∣ϕ(x, y)

∣
∣ ≤ 

}

. ()

If Pα,φ(E; A) < ∞, then by () we have
∫

E
divα,φ ϕ dVφ = –

∫

A
〈ϕ, vE〉dμE,φ , ()

where dVφ = eφ dx dy is the weighted volume measure and dμE,φ = eφ dμE is called the
weighted α-perimeter measure. For any open set A ⊂ Rh+, we have Pα,φ(E; A) = μE,φ(A).
When A = Rh+, let Pα,φ(E) = Pα,φ(E; Rh+).
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Let 	 be a hypersurface in the Grushin space Rh+ with density eφ . 	 can be locally
given by the zero set of a function u ∈ C such that |∇αu| �=  on 	, where ∇αu =
(Xu, . . . , Xhu, Yu) is called the α-gradient of u. For a set E = {(x, y) ∈ Rh+ : u(x, y) > },
the inner unit α-normal in equation () is given on 	 = ∂E by the vector

vE =
∇αu(x, y)
|∇αu(x, y)| .

Then we define the weighted α-mean curvature of 	 as

H	,φ = –

h

divα,φ vE = –

h
(
divα vE + 〈vE ,∇αφ〉). ()

Remark . Noticing that the α-mean curvature of 	 is defined by H	 = – 
h divα vE , then

from () we have

H	,φ = H	 –

h
〈vE ,∇αφ〉.

To prove Theorem ., we need the following lemma.

Lemma . Let the Grushin space Rh+ be endowed with density eφ = |x|p. For any  ≤
ε < , let Cε = {(x, y) ∈ Rh+ : |x| < , y > yε} be half-cylinders, where yε = f ( – ε) with
f (r) =

∫ π


arcsin r sinα+(t) dt. There exists a continuous function u : Cε → R with level sets
	ε = {(x, y) ∈ Cε : u(x, y) = s}, s ∈ R, such that

(i) u ∈ C(Cε ∩ Eα) ∩ C(Cε \ Eα) and ∇αu(x,y)
|∇αu(x,y)| is continuously defined on Cε \ {x = };

(ii)
⋃

s> 	s = Cε ∩ Eα and
⋃

s≤ 	s = Cε \ Eα ;
(iii) 	s is a hypersurface of class C with constant weighted α-mean curvature, that is,

H	s ,φ =

s

(

 +
p
h

)

for s > 

and

H	s ,φ =  +
p
h

for s ≤ ;

(iv) for any point (x, f (|x|) – y) ∈ 	s with s > , we have

 –
h

h + p
H	s ,φ

(
x, f

(|x|) – y
) ≥ 


y when ε =  ()

and

 –
h

h + p
H	s ,φ

(
x, f

(|x|) – y
) ≥

√
ε

( – ε)α +
√

ε
y when  < ε < . ()

Proof The profile function of the set Eα is the function f : [, ] → R,

f (r) =
∫ π



arcsin r
sinα+(t) dt. ()
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Its first and second derivatives are

f ′(r) = –
rα+

√
 – r

, f ′′(r) =
rα[αr – (α + )]

( – r) 


. ()

We define the function g : [, ] → R,

g(r) = (α + )f (r) – rf ′(r)

= (α + )
∫ π



arcsin r
sinα+(t) dt +

rα+
√

 – r
. ()

Its derivative is

g ′(r) =
rα+

( – r) 


> . ()

Now we construct a foliation of Cε . In Cε \ Eα , the leaves 	s of the foliation are vertical
translations of the top part of the boundary ∂Eα . In Cε ∩ Eα , the leaves 	s are constructed
as follows: the surface ∂Eα is dilated by a factor larger than  where dilation is defined by
(x, y) → (λx,λα+y) (∀λ > ), and then it is translated downwards in such a way that the
surface {y = yε = f ( – ε)} is also the leaf at last.

We construct a function u on the set Cε \ Eα as

u(x, y) = f
(|x|) – y + , (x, y) ∈ Cε \ Eα . ()

Let 	s = {(x, y) ∈ Cε \ Eα : u(x, y) = s}. Then we have s ≤  and 	 = ∂Eα . From (), we
know u ∈ C(Cε \ Eα) and

⋃
s≤ 	s = Cε \ Eα .

In the following we will define the function u on the set Dε = Cε ∩ Eα . Setting r = |x| and
rε =  – ε, we let Fε : Dε × (,∞) → R be a function

Fε(x, y, s) = sα+
[

f
(

r
s

)

– f
(

rε

s

)]

+ yε – y. ()

For any (x, y) ∈ Dε we have

lim
s→+

Fε(x, y, s) = f (r) – y > , lim
s→∞ Fε(x, y, s) = yε – y < .

On the other hand, using () and () we have

∂sFε = sα

[

g
(

r
s

)

– g
(

rε

s

)]

< . ()

So there exists a unique s >  such that Fε(x, y, s) =  for any (x, y) ∈ Dε . Furthermore we
can define a function u : Dε → R, s = u(x, y) determined by the equation Fε(x, y, s) = . Ob-
viously we have u ∈ C(Cε ∩ Eα) and Cε ∩ Eα =

⋃
s> 	s, where 	s = {(x, y) ∈ Cε ∩ Eα : s =

u(x, y) is determined by Fε(x, y, s) = }.
By (), we find

∂xi Fε(x, y, s) =
sαxi

r
f ′

(
r
s

)

, i = , . . . , h; ∂yFε(x, y, s) = –. ()
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Using (), () and (), we obtain

∂xi u(x, y) =
xirα

sα
√

s – r[g( r
s ) – g( rε

s )]
, ∂yu(x, y) =


sα[g( r

s ) – g( rε
s )]

. ()

Then we have

Xiu = ∂xi u =
xirα

sα
√

s – r[g( r
s ) – g( rε

s )]
, Yu = |x|α∂yu =

rα

sα[g( r
s ) – g( rε

s )]
,

and the square length of the α-gradient of u on Dε is

|∇αu| =
h∑

i=

(Xiu) + (Yu) =
rα

sα–(s – r)[g( r
s ) – g( rε

s )] .

Note that |∇αu| =  if and only if x = . So for any (x, y) ∈ Dε with x �= , we have

Xiu
|∇αu| = –

xi

s
, i = , . . . , h;

Yu
|∇αu| = –

√
s – r

s
. ()

If (x, y) ∈ Dε tends to (x, y) ∈ ∂Eα with x �=  and y > , then s = u(x, y) converges to .
From (), we have

lim
(x,y)→(x,y)

∇αu(x, y)
|∇αu(x, y)| =

(
–x, . . . , –xh,

√
 – |x|) =

∇αu(x, y)
|∇αu(x, y)| ,

where the right hand side is computed by the definition () of u. The above equality shows
that ∇αu

|∇αu| is continuous on Cε \ {x = }.
In the case of eφ = |x|p, we get φ = p ln |x| and ∇αφ = ( p

|x| x, . . . , p
|x| xh, ) for x �= .

From (), we know that the inner unit α-normal of 	s with s ≤  is

v	s =
(
–x, . . . , –xh, –

√
 – |x|).

So the weighted α-mean curvature H	s ,φ of 	s with s ≤  is given by

H	s ,φ =

h
(
– divα vEα – 〈vEα ,∇αφ〉) =  +

p
h

.

From () we know that the inner unit α-normal of 	s with s >  is

v	s =
(

–
x

s
, . . . , –

xh

s
, –

√
s – |x|

s

)

.

So the weighted α-mean curvature H	s ,φ of 	s with s >  is given by

H	s ,φ =

s

(

 +
p
h

)

.

Fixing a point x with |x| <  – ε and for  ≤ y < f (|x|) – yε , we define the function

hx(y) = u
(
x, f

(|x|) – y
)

= s =
(

 +
p
h

)


H	s ,φ
, ()
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where s ≥  is uniquely determined by (x, f (|x|) – y) ∈ 	s. Then the function y → hx(y) is
increasing and hx() = .

From () and (), we know

h′
x(y) = –∂yu

(
x, f

(|x|) – y
)

=


(hx(y))α[g( rε
hx(y) ) – g( r

hx(y) )]
,

for all  ≤ y < f (|x|) – yε .
By (), g is strictly increasing. So hx(y) satisfies

h′
x(y) ≥ 

hα
x (y)[g( rε

hx(y) ) – g()]
. ()

On the other hand, for any s >  we have

sα

[

g
(

rε

s

)

– g()
]

= sα

∫ rε
s


g ′(r) dr

= sα

∫ rε
s



rα+

( – r) 


dr

≤ rα
ε

∫ rε
s



r
( – r) 


dr

= rα
ε

[(

 –
(

rε

s

))– 


– 
]

≤ rα
ε

s
√

s – r
ε

≤ rα
ε

√s – rε

. ()

When ε = , we have rε = . So () turns into

sα

[

g
(

rε

s

)

– g()
]

≤ √
s – 

.

By (), we get

h′
x(y) ≥ √

hx(y) – , y ≥ . ()

Integrating () with hx() = , we get

hx(y) ≥  +



y.

Thus we obtain

 –
h

h + p
H	s ,φ

(
x, f

(|x|) – y
)

=  –


hx(y)
≥ y

 + y .
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Noticing

y < f
(|x|) ≤ f () =

∫ π



sinα+(t) dt ≤

∫ π



sin(t) dt = ,

we have

 –
h

h + p
H	s ,φ

(
x, f

(|x|) – y
) ≥ 


y. ()

When  < ε < , () turns into

sα

[

g
(

rε

s

)

– g()
]

≤ ( – ε)α√
s –  + ε

.

So by (), we have

h′
x(y) ≥

√
ε

( – ε)α
, y ≥ . ()

Integrating () with hx() = , we have

hx(y) ≥  +
√

ε

( – ε)α
y.

Noticing y < f (|x|) – yε ≤ , so we have

 –
h

h + p
H	s ,φ

(
x, f

(|x|) – y
)

=  –


hx(y)

≥  –


 +
√

ε

(–ε)α y

≥
√

ε

( – ε)α +
√

ε
y. ()

�

3 Proof of Theorem 1.1
Let u : Cε → R be the function given by Lemma . and let 	s = {(x, y) ∈ Cε : u(x, y) = s} be
leaves of the foliation, s ∈ R. We define the vector field X : Cε \ {x = } → Rh+ by

X = –
�αu

| �α u| .

Then X satisfies the following properties:
(i) |X| = ;

(ii) for (x, y) ∈ ∂Eα ∩ Cε , we have X(x, y) = –vEα (x, y) where vEα (x, y) is the unit inner
α-normal to ∂Eα ;

(iii) for any point (x, y) ∈ 	s with s ≤ , we have

divα,φ X(x, y) = h + p. ()
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For any point (x, y) ∈ 	s with s > , we have

divα,φ X(x, y) =

s

(h + p) < h + p. ()

Let F ⊂ Rh+ be a set with finite weighted α-perimeter such that Vφ(F) = Vφ(Eα) and
F�Eα ⊂⊂ Cε . By Theorem .. in [], without loss of generality we can assume that the
boundary ∂F of F is C∞.

For δ > , let Eδ
α = {(x, y) ∈ Eα : |x| > δ}. By () and (), we have

Vφ

(
Eδ

α \ F
)

=
∫

Eδ
α\F

|x|p dx dy

≥
∫

Eδ
α\F

divα,φ X
h + p

|x|p dx dy

=


h + p

{∫

∂F∩Eδ
α

〈X, vF〉dμF ,φ –
∫

∂Eδ
α∩F

〈X, vEδ
α
〉dμEδ

α ,φ

}

.

Letting δ → + and using the Cauchy-Schwarz inequality, we obtain

Vφ(Eα \ F) =
∫

Eα\F
|x|p dx dy

≥
∫

Eα\F

divα,φ X
h + p

|x|p dx dy

=


h + p

{∫

∂F∩Eα

〈X, vF〉dμF ,φ –
∫

∂Eα\F
〈X, vEα 〉dμEα ,φ

}

≥ 
h + p

{∫

∂Eα\F
dμEα ,φ –

∫

∂F∩Eα

dμF ,φ

}

=


h + p
{

Pα,φ(Eα ; Cε \ F) – Pα,φ(F ; Eα)
}

. ()

By a similar computation, we also have

Vφ(F \ Eα)

=
∫

F\Eα

|x|p dx dy

=
∫

F\Eα

divα,φ X
h + p

|x|p dx dy

=


h + p

{

–
∫

∂F\Eα

〈X, vF〉dμF ,φ +
∫

∂Eα∩F
〈X, vEα 〉dμEα ,φ

}

≤ 
h + p

{∫

∂F\Eα

dμF ,φ –
∫

∂Eα∩F
dμEα ,φ

}

=


h + p
{

Pα,φ(F ; Cε \ Eα) – Pα,φ(Eα ; F)
}

. ()
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On the other hand, we have

∫

Eα\F

divα,φ X
h + p

|x|p dx dy =
∫

Eα\F

[

 +
(

divα,φ X
h + p

– 
)]

|x|p dx dy

= Vφ(Eα \ F) –
∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy. ()

From (), () and (), we obtain


h + p

{
Pα,φ(Eα ; Cε \ F) – Pα,φ(F ; Eα)

}

≤
∫

Eα\F

divα,φ X
h + p

|x|p dx dy

= Vφ(Eα \ F) –
∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy

= Vφ(F \ Eα) –
∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy

≤ 
h + p

{
Pα,φ(F ; Cε \ Eα) – Pα,φ(Eα ; F)

}
–

∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy.

It is equivalent to

Pα,φ(F) – Pα,φ(Eα) ≥ (h + p)
∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy. ()

For any x with |x| <  – ε, we define the vertical sections Ex
α = {y : (x, y) ∈ Eα} and Fx = {y :

(x, y) ∈ F}. By the Fubini theorem, we have

∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy

=
∫

{|x|<–ε}

∫

Ex
α\Fx

(

 –
divα,φ X

h + p

)

|x|p dy dx.

Letting m(x) = L(Ex
α \ Fx), where L denotes -dimensional Lebesgue measure, then we

obtain

∫

Eα\F

(

 –
divα,φ X

h + p

)

|x|p dx dy =
∫

{|x|<–ε}

∫ f (|x|)

f (|x|)–m(x)

(

 –
divα,φ X

h + p

)

|x|p dy dx

=
∫

{|x|<–ε}

∫ m(x)



(

 –


hx(y)

)

|x|p dy dx, ()

where hx(y) = u(x, f (|x|) – y) is the function introduced in ().
So from () and () we have

Pα,φ(F) – Pα,φ(Eα) ≥ (h + p)
∫

{|x|<–ε}

∫ m(x)



(

 –


hx(y)

)

|x|p dy dx. ()
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When ε = , by () in Lemma . and the Hölder inequality, () turns into

Pα,φ(F) – Pα,φ(Eα) ≥ (h + p)
∫

{|x|<}

∫ m(x)






y dy|x|p dx

≥ h + p


∫

{|x|<}

(
m(x)

)|x|p dx

≥ h
ω

h

(∫

{|x|<}
m(x)|x|p dx

)

=
h + p

ω
h

Vφ(Eα�F). ()

When  < ε < , by () in Lemma ., and the Hölder inequality, () turns into

Pα,φ(F) – Pα,φ(Eα) ≥ (h + p)
∫

{|x|<–ε}

∫ m(x)



√
ε

( – ε)α +
√

ε
y dy|x|p dx

≥
√

ε(h + p)
[( – ε)α +

√
ε]

∫

{|x|<–ε}

(
m(x)

)|x|p dx

≥
√

ε(h + p)
[( – ε)α+h + ( – ε)h√ε]ωh

(∫

{|x|<–ε}
m(x)|x|p dx

)

=
√

ε(h + p)
[( – ε)α+h + ( – ε)h√ε]ωh

Vφ(Eα�F). ()
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