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Abstract

This paper studies group selection for the partially linear model with a diverging
number of parameters. We propose an adaptive group bridge method and study the
consistency, convergence rate and asymptotic distribution of the global adaptive
group bridge estimator under regularity conditions. Simulation studies and a real
example show the finite sample performance of our method.

MSC: 62E20;62J07; 62F12

Keywords: adaptive group bridge; high dimension; partially linear model

1 Introduction
Consider the following model:

Y=xTB+f(U)+e, 1)

where x = (xI,x7,... ,XZH)T is a covariate vector with X; = (Xj, k =1,...,d;)" beingad; x 1
vector corresponding to the jth group in the linear part, g = (ﬁjT,j =1,...,p,)" with B;
being the d; x 1 vector of regression coefficients, f is an unknown function of U/, and
¢ is the random error with mean zero. Without loss of generality, U is scaled to [0,1].
Furthermore, (x, ) and ¢ are independent.

Variable selection for high-dimensional data is a hot and important issue. Penalized
regression methods have been widely used in the literature such as [1-5], and so on.
Among these methods, bridge regression including lasso and ridge as two well-known
special cases has been studied by many authors (e.g., [6-10]). [11] studied adaptive bridge
estimation for high-dimensional linear models. In addition, group structure of variables
arise always in many contemporary statistical modeling problems. [12] proposed a group
bridge method which not only effectively removes unimportant groups, but also maintains
the flexibility of selecting variables within identified groups. [13] investigated an adaptive
choice of the penalty order in group bridge regression.

The aforementioned model (1) is just the partially linear model that originated from
[14]. The partially linear model is a common semiparametric model enjoying the inter-
pretability and flexibility. Our contributions in this paper include: (1) we propose an adap-
tive group bridge method to achieve the group selection for a high-dimensional partially
linear model; (2) we consider the choice of index y in the adaptive group bridge and use
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leave-one-observation-out cross-validation (CV) to implement this choice. It can signif-
icantly reduce the computational burden; (3) we give the consistency, convergence rate
and asymptotic distribution of the adaptive group bridge estimator which is the global
minimizer of the objective function.

The rest of the article is organized as follows. Section 2 gives the adaptive group bridge
method. In Section 3, we show the assumptions and asymptotic results for the global adap-
tive group bridge estimator. Section 4 shows computational algorithm and selection of
tuning parameters. Simulation studies and real data are presented in Section 5. Section 6

gives a short discussion. Technical proofs are relegated to Appendix.

2 Adaptive group bridge in the partially linear model
Suppose that we have a collection of independent observations {(x;, U, Y;),1 < i < n} from
model (1). That is,

Y,':xiTﬂ+f(L[,-)+si, i=1,...,n, (2)

where ¢i,...,¢, are i.i.d. random errors with mean zero and finite variance o2 < co.
To obtain an estimate of function f(-), we employ a B-spline basis. Denote S, as the
space of polynomial splines of degree m > 1. Let {Bx(u),1 < k < g,,} be a normalized B-

spline basis with ||Bi|ls <1, where | - ||« is the sup norm. Then, for any f, € S, we have
qn
Sfulu) = ZBj(u)a, £ Bu) a.
j=1

Under some smoothness conditions, the nonparametric function f can well be approxi-
mated by functions in S,,.

Consider the following adaptive group bridge penalized objective function:

n Pn
2
D (Yi-x[B-BU) @)+ MBI, (3)
i=1 j=1
where A;, j = 1,...,p,, are the tuning parameters, and | - || denotes the L, norm on

the FEuclidean space. Let Y = (13,...,Y,)T, X = Kl <i<nml<j<p,l<k=<d)=
(x1,...,x,)" and Z = (B(L}y),...,B(U,))T. Then (3) can be changed into

Pn
La(B, o) = Y = XB - Zer||* + Y 21181I”. (4)

j-1

For some B, the optimal @ minimizing L,(-) meets the partial differential equation
oL,(B,a)/da =0,
namely,

2770 =77 (Y - XB).
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Let H = Z(Z"Z)'Z", note that H is a projection matrix. We can rewrite the expression

(4) as follows:

Pn
Qu(B) = [ ~H)Y -XB)|* + > %1181 ()

Jj=1

For some fixed y > 0, define ,B = argmin Q,(B), then [§ is called the adaptive group bridge
estimator. If B is obtained, then the estimator & can be achieved. Thus we can get the

estimator of the nonparametric part, namely, f,,(u) =Bu)Ta.

3 Asymptotic properties

In this section, we show the oracle property of the parametric part. For convenience of
the statement, we first give some notations. Define g(u) = E(x|U = u) and X = x — E(x|U).
Let X (u) be the conditional covariance matrix of X, i.e., X (1) = cov(X|U = u). Denote 2
as the unconditional covariance matrix of X, i.e., 2 = E[X(U)]. The corresponding sample
version is G = (g(L11),...,g(U,))T with g(U)) = E(x;|U;) and X = (X1, ...,%,)7 with X; = x; -
E(x;|Uy).

Let the true parameter be §, = (ﬂgl,...,ﬂgpn)T = (ﬁlTO,,BZTO)T. Let A={1<j<py:
IBo;ll # 0} be the index set of the nonzero groups. Without loss of generality, we assume
that coefficients of the first k, group are nonzero, i.e., A = {1,2,...,k,}. Let |A| = k, be
the cardinality of the set .4, which is allowed to increase with 7. For j ¢ A, ||B;ll = 0. De-
fine B,y = (ﬁgj,j e AT, By = (ﬁOTj,j ¢ A)T. Let d* = maxi<j<p, dj, ¢ = max{);,j € A} and
@2 = min{A;,j ¢ A}.

Corresponding to the partition of 8, denote [3 = (ﬁ (Tl), ﬁé))T and decompose

X-(XX),  G-(GG) X-G%)  a- (Q“ 9”) .
Q1 Qx
The following conditions are required for the B-spline approximation of function f.
(C1) The distribution of U is absolutely continuous, and its density is bounded away
from 0 and oo.
(C2) (Hélder conditions of f(-) and gj(-), where g; is the jth component of g) Let /, § and
M be real constants such that 0 < 8§ <1and M > 0. f(-) and g;(-) belong to a class of

functions H,
H={h: |h<l)(141) - h(l)(M2)| <Mluy - up|’,for 0 < uy, up <1},

where0</<m—-1landr=1[+56.
The following part lists all the reasonable conditions which are necessary to attain the
asymptotic results.
(Al) Let Amax(2) and Amin(€2) be the largest and smallest eigenvalue of €2, respectively.

There exist constants 7; and 7, such that

0< 1= )\min(Q) =< }\max(Q) =173 <00.
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(A2) There exist constants 0 < by < by < 00 such that
bo <min{|| By, 1 <j < k,} < max{[|Byl,1 </ <ki} <br.

In X7 (1 - H)X - Q|| 5 0; E[te(XT(I - H)X)] = O(np,,).

d* =0(1), p2/n — 0 and n” g1k, — 0.

@) kY21 ( 7w + 1Bad;y”) = 03 (b) @ua (/17 Py + /Bua,")? 2/ — 0.
Foreveryl <j<p,and1<k <d, E[ Xy - E(X1,k|l,11)]4 is bounded. Furthermore,
E(e*) is bounded.

Conditions (A1) and (A2) are commonly used. Condition (A3) holds under some condi-

= = Z

A6

tions. The proof can be found in Lemmas 1 and 2 in [15]. Condition (A4) is used to obtain
the consistency of the estimator. Condition (A5) is needed in the proof of convergence

rate. Condition (A6) is necessary to attain the asymptotic distribution.

Theorem 3.1 (Consistency) Suppose that y > 0 and conditions (A1)-(A4) hold, then
1B = Boll” = Op(n7'd’ py + 4, + 17 o),

namely, ||B - B,ll = 0.

Theorem 3.1 implies that under some conditions the estimators converge to the true

values of parameters.

Theorem 3.2 (Convergence rate) Suppose that conditions (Al)-(A5) hold, then

1B = Boll = Op(v/n'p + /1ud)-

This theorem shows that the adaptive group bridge can give the optimal convergence

rate with p,, — oo.

Theorem 3.3 (Oracle property) Suppose that 0 <y <1, n"'k,q, — 0 and nq,*” — 0. If
conditions (A1)-(A6) are satisfied, then we have
(i) Pr(ﬁ@) =0)—> 1, n— o;
(il) Let u? = 2wl (XTI (I - H)X))'Qu(XT (I - H)X)) 0, with @, being some
ZJIZI dj-vector with ||@,||* = 1, then

_ - D
nl/zunla);(ﬂ(l) - B1) =~ N(O,oz).
This theorem states that the adaptive group bridge performs as well as the oracle [16].

4 Computational algorithm and selection of tuning parameters
4.1 Computational algorithm
In this section, we apply the LQA algorithm proposed by [3] to compute the adaptive group

bridge estimate.
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We take the initial value 8¥). Here the ordinary least square estimate is chosen as the
initial value ). The penalty term P (1B;1) = 4;1IB;1I” can be approximated as

]' /
P, (181) = s, (18°1) + 5 15, (187 /1B 13 (18,07 = 18°]°),
when || ﬂ;o) | > 0. The following iterative expression of 8 can be obtained:
BY = [XT(I - H)X +n%,, (B)] "X U - H)Y, 6)

where

7,871

iy (B :diag{i
r (87) 187

Id/,jzl,...,p,,},

with Iy, being a d; x d; unit matrix. If some ||,B§1) || is smaller than 1072, then we set ﬁ;l) =0.
The finial estimate can be obtained iteratively by formula (6) until the convergence is
achieved.

4.2 Selection of the tuning parameters

For our method, g,,, y,and A; (j = 1,..., p,) should be chosen. For convenience, cubic spline
basis (m = 4) is used. We set g,, = 7. Simulation results demonstrate that this choice per-
forms quite well. There are also many tuning parameters that should be chosen. In fact,
we only need to select one tuning parameter by setting A; = A/|| ﬂ](»o) II. We use ‘leave-one-
observation-out’ cross-validation (CV) to select A and y. Due to the convergence of the

algorithm, we have
B = [XT(-H)X +n%,,(B)] X (- HY,

where B is obtained based on the whole data set. Note that it is the solution of the ridge
regression

Y —x*B|* + nB7=,, (BB, )

where Y* = (I - H)Y and X* = (I - H)X. Let Y* = (5,...,5*)T and X* = (x},...,x})7. The
CV error is

n

1 Ai
CVGLy) == 0 -x"B")",

i=1

where ﬁ_l is achieved by solving (7) without the ith observation. The computation of the
CV error is intensive, so we will use the following formula, which can be proved similar
to [17]:

n

CV(h,y) = % > 0 -x"B) 11~ Dy),

i=1
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where Dj; is the (i, i)th diagonal element of (I — H)X[XT(I — H)X + nZ,, (B)]"'X7(I -
H). It is obvious that this method can significantly reduce the computational bur-
den.

5 Simulation studies and application
In this section, we investigate the finite sample performance of the adaptive group bridge

method through simulations and a real data application.

5.1 Monte Carlo simulations
We simulate 100 datasets consisting of # observations from the following partially linear

model:

bn
Yf:zxi;TﬂﬁCOS(EHUi)wi, i=1,...,m,
1

where # = 500, and the error &; ~ N(0,02) with ¢ = 0.5,1,4. We consider that there are
Pr groups with p, =10, 30,50 and each group consists of three variables. The true values
of parameters B =(0.5,1,1.5), B; = (1,-1,1), B3 =(0.5,0.5,0.5), B; =--- =B, =(0,0,0).
U; follows the uniform distribution on [0,1]. To generate covariate x = (x!,xZ,. ..,x;n)T
with x; = (X, k = 1,2, 3)T, we first simulate Ry, ... ,R3,,, independently from the standard
normal distribution. Next, simulate Z;, j = 1,..., p,, from a multivariate normal distribu-
tion with the mean zero and Cov(Z;,Z)) = 0.6V-!l, Then the covariates are generated as
X = (Z; + Rag-1ysk)/v/2,j=1,...,pn, k =1,2,3.

We compare the adaptive group bridge (AGB) with the group lasso (GL) and the group
bridge (GB). The following three performance measures are calculated:

1. L, loss of parametric estimate, which is defined as ||7§ - Boll-

2. Average number of nonzero groups identified by the method (NN).

3. Average number of nonzero groups identified by the method that are truly nonzero

(NNT).

Group selection results are depicted in Table 1. The numbers in the parentheses in the
columns labeled ‘NN’ and ‘NNT” are the corresponding sample standard deviations based
on the 100 runs. Boxplots of the L, losses under different settings are given in Figures 1-3.

From Table 1, we can have the following observations:

(1) Both GB and AGB perform better than GL for all settings. All these three methods
can retain all the true nonzero groups, but GL always keeps more redundant groups
that are unrelated with the response than both GB and AGB.

(2) AGB performs much better for larger o and p,,. When p,, = 50 for AGB, groups
selected for the case o = 4 are about 18.5% lower than that for the case o = 0.5.
While groups selected for GB decrease by 7.37% in the same situation.

(3) For p, =10, GB performs better than AGB, but the stability of GB is bad for o = 4.

Figures 1-3 present L, losses with varying o and p,,. We can see that the performances
of estimates are similar for GB and AGB. For p, = 30 and 50, both GB and AGB perform
better than GL. However, when p,, = 50, the median of L, losses for all these three are

similar for o = 0.5 and 4, but the L, losses of GL fluctuate more widely.
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Table 1 Group selection results
Pn Method 0=0.5 o=1 o=4
NN NNT NN NNT NN NNT
10 GL 7.80 3 7.59 3 6.02 3
(1.231) (0) (2.396) (0) (1.255) 0)
GB 4.64 3 4.80 3 4.55 3
(1.259) (0) (1.356) (0) (1.258) 0)
AGB 522 3 5.00 3 4.56 3
(1.605) (0) (1.735) (0) (1.131) 0)
30 GL 2047 3 11.49 3 14.46 3
(2.504) (©) (4.464) 0) (2.022) ©)
GB 11.04 3 10.96 3 10.18 3
(3.643) (0) (3.784) (0) (2.350) 0)
AGB 13.06 3 10.64 3 9.57 3
(5.510) (0) (5.921) (0) (2.046) 0)
50 GL 3317 3 16.48 3 2237 3
(3.223) (0) (5.018) (0) (3.308) )
GB 17.23 3 17.79 3 15.96 3
(4.608) ) (3.952) 0) (3.284) (©)
AGB 19.25 3 15.67 3 15.68 3
(8437) (©) (8.385) 0) (3.684) ©)
6=0.5 o=1 c=4
0 0.35 0 14 4 0
. 0.30 12 -
0.15 .
_E_ ’ e 025 ’ ’ . 1.0 _E_
: - - 0.20 , ° ° 08 E - _E_
0.10 - : H , ' . ! :
E E 015 1 E _E_ E 0.6 E E
0.05 | 0.10 . : 0.4 -
0.05 0.2 -
000 d —— - o 000 4 —— - —_ 0od —— —_ o
T T T T T T T T T
3 8 8 3 8 3 3 8 8
< < <
Figure 1 Boxplots of L, loss for p, = 10.




Page 8 of 18

Wang and Wang Journal of Inequalities and Applications (2017) 2017:158

o=

o=1

0=0.5

1.5 1

1.0 H

0.5

0.4

0.2

0.1

0.20

0.15

0.10

0.05

aov

a9

1

aov

a9

1

aov

a9

1

=30.

Figure 2 Boxplots of L; loss for p,

=4

6=0.5

° _v |||||||||||||||||||| lllA_

° _v ............... ...A_

T T T T T T

0 o 0 o 0 o
o~ o~ -~ ~ o o
o o * ...................... +

o o o0 * ..................... +

° _v ........... -uuA_

T T T T T T T

© ) < X o - o

o o o o o o o

o . * .......... +

. N S e +

T T T T T T T T
wn o w o wn o wn o
o @ I I = = S S
o o o o o o o o

aov

a9

1o

aov

a9

ab)

aov

a9

1

=50.

Figure 3 Boxplots of L loss for p,




Wang and Wang Journal of Inequalities and Applications (2017) 2017:158 Page 9 0of 18

Table 2 Estimates of the wage data

Variable Description GL GB AGB
edu Number of years of education 0.0694 0.0668 0.0635
south 1 = southern region, 0 = other -0.0723 -0.0679 -0.0490
sex 1 =Female, 0 = Male -0.1999 -0.1983 -0.2031
union 1 = union member, 0 = nonmember 0.1951 0.1934 0.2030
race 1 = other, 0 = White -0.0559 -0.0585 —-0.0582
1 = Hispanic, 0 = White -0.0537 -0.0615 -0.0614
occup 1 =management, 0 = other 0.1874 02173 02516
1 =sales, 0 = other -0.0797 -0.0809 -0.0721
1 = clerical, 0 = other 0.0166 0.0262 0.0430
1 = service, 0 = other -0.1171 -0.1173 -0.1104
1 = professional, 0 = other 0.1533 0.1768 0.2061
sector 1 = manufacturing, 0 = other 0.0848 0.0912 0.0994
1 = construction, 0 = other 0.0546 0.0622 0.0674
marr 1 =married, 0 = other 0.0000 0.0000 0.0000

5.2 Wage data analysis

The workers’ wage data from Berndt[18] contains a random sample of 534 observations on
11 variables sampled from the current population survey of 1985. It provides information
on wages and other characteristics of the workers, including continuous variables: the
number of years of education, years of work experience, age and nominal variables: race,
sex, region of residence, occupational status, sector, marital status and union membership.
Our goal is to study the important factors for the wage, so it is reasonable to use our
proposed method for these data.

From the residual plot, we can easily see that the variance of wages is not a constant. So
the log transformation is used to stabilize the variance of wages. Due to the multicollinear-
ity problem between age and experience, we need to get rid of either age or experience.
Here we remove the age variable from the model. Xie and Huang [15] analyzed these data
without considering the transformation of Y. Furthermore, they did not consider group
selection of factors. Similar to Xie and Huang [15], we fit these data using a partially linear
model with U being ‘years of work experience’

Table 2 reports estimated regression coefficients of GL, GB and AGB. All these three
methods exclude marital status. We use the first 400 observations as a training dataset to
select and fit the model, and use the rest of 134 observations as a testing dataset to evalu-
ate the prediction ability of the selected model. The prediction performance is measured
by the median of {|y; — ¥;|,i = 1,2,...,134} for GL, GB and AGB using the testing data,
respectively. Here y;’s are those 134 observations in the testing dataset and ¥;’s are corre-
sponding prediction values. The median absolute prediction errors of GL, GB and AGB
are 0.3072, 0.3062 and 0.3022, respectively. Therefore, we can conclude that the AGB

gives the smallest prediction error, so it is an attractive technique in group selection.

6 Discussion

This paper studies group selection for high-dimensional partially linear model with the
adaptive group bridge method. We also consider the choice of y in the bridge penalty. It is
worth mentioning that we use ‘leave-one-observation-out’ cross-validation to select both
A and y. This method can significantly reduce the computational burden. This is the first
try to use this method in group selection for the partially linear model.
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Appendix
Proof of Theorem 3.1 By the definition of B, itis easy to get

bn Pn
|- =XB)|* + S WIBI < (1~ )Y -XBo)|* + > 411 Bos1I7

j1 j1

that is,

Pn
| =Y =XB)|* ~ (1 = DY = XBo)|* = D" 111Boyl”

j=1

Page 10 of 18

AsY = XB, + f(U) + & with f(U) = (f(L11),...,f(U,))T and € = (¢y,...,&,)T, we can rewrite

the upper inequality as follows:
| - H)X(B - Bo)|* - 2(F(U) + ) (I - H)X(B - Bo) < ZA 1B 117

Let

1/2

a, =V [XT( - H)X]"(B - Bo),

-1/2

by =n?[XT(1 - H)X] XTI - H)(F(U) + ¢).

Then we have

2 &
lanl® < 2(Ian = ball* + 16a1%) < = 3 4118 I” + 415
j=1

Since | A| = k,, under condition (A2),

—Zx 1Bol” = ("”“k )

While
16,17 = % (F(U) +€) T - H)X[X"(1 - H)X]_IXT(I —H)(f(U) +¢)
< geTAe + Ef(U)TAf(U),
n n
where

A=(I-HX[XT( - H)X]"X (I - H).

For the first term on the right-hand side of (8),

1 7 o’ -1 g 2
E|-e"Ae ) = —u(EA) <n'd*p,o
n n

(8)



Wang and Wang Journal of Inequalities and Applications (2017) 2017:158 Page 11 of 18

Thus
neTAe = Op(n™'d*py). ©)
For the second term on the right-hand side of (8), by conditions (C1) and (C2),

E(%f(U)TAf(U)> < %E{Amax{(l - H)X[XT(1 - H)X]"'X"(I - H))

x tr[F(U)T(1 - HF(U)]}

= 1Js[f(U)T(I - H)f(U)] = O(q;,>). (10)

" n
Combining (9)-(10),

15,11> = Op(n7d*p, + 4;7).

By conditions (Al) and (A3),

Ellayl” =~ E[(B - B0)"X" (1~ H)X(B - B,)]
- E[(B - ﬂo)T<%XT(1—H)X - 9)([3 - ﬁo)}
+E[(B~Bo) QB - Bo)]
> DEIB - Boll™.
Therefore

1B = Boll> = Op(n'd"py + 4,7 + 1™ puaky).
Under condition (A4), we have
- P
1B-Boll = 0. d

Proof of Theorem 3.2 Let p, = \/m +q," + v/nloak,, we can choose a sequence
{r,, r» > 0} which satisfies r,, — 0. Partition ]szf1 d’\{O} into shells {S,;:j=1,2,...}, where
Sy ={B:27r, < IB - Byll < Zr,}. For an arbitrary fixed constant L € R, if 1B - Boll is
larger than 2Ly, /§ is in one of the shells with j > L, we have

Pr(IB-Bol = 2'r,) = > Pr(BeSw)

I>L,2lr,>2k1 n

+ Z Pr([? € Su) (Ly is an arbitrary constant),

I>L2l <2l

where

Y Pr(BeSu) <Pr(lIB - Boll = 27 11,) = 0(1),

11,2, >28 n
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and

Y. Pr(Besy)

I>L2rp<2l1p,

- Y Pr(Besnz,nAnns%)

I>L2r <2k,

N T
P ES,,, An I )
Y r(ﬂ bl ||>2)

l>L,2[rn§2L1 n

where A, =n XTI - H)X - Q. By condition (A3),

) Pr(B € S 1 All > %) < Pr(nAnn > %) = o(1).

1>L,2r, <2l n

Therefore,
Pr(|IB - Boll = 2"r,)

- 0(1) + Z Pr<ﬂlgsfl(Qn(ﬂ) - Qn(ﬂo)) < O, ||An|| = %)

502l <2k,

Since

Qu(B) - Qu(By)
= |- H)X(B - By)| - 2(F(U) + &) (1 - H)X(B - By)

Pn
> n (18,17 = 1Byl
j=1
> (1~ E)X(B - Bo)|* ~2(F(U) + &) (1 - H)X(B - B)
kn
+ > n (1B = 1Bl
j=1

A
:In1+In2+Iy’3-
For 1,4,
. nn 2
I, > inf —||B - s
= jnf SHIB Bl

for all B € Sy, there exists |8 — B [|? > 22272, therefore I,,; > nt;2273r2.

For I,;3, we have

kn
Ll =Y 2y |87 (1811~ 1Bo1)

j-1

kn
<@ay Y8718, - Byl

j-1
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where ﬂ;" is between B; and B;. By condition (A2) and since we only need to consider 8
with B € S, 2'r,, < 2", there exists a constant Cs > 0 such that

kn
Lis| < Cspmy Y I8, = Bojll < C3gnky*y 1B = Boll-

j=1

So for all B € S,; such that |I,3] < Cg(p,,lk}/ 2y2'r,, by the Markov inequality, we have

Pr( inf (Qu(B) - Qu(By) <0)
ﬂesnl
< Pr( sup |Lp| > n1122"3ri - ngonlkilzyer,,)
BeSu

- E(supges,, Ln2])
~ nty 22312 — Gy K2y 20,

Using the Cauchy-Schwarz inequality, we have

E(sup [Lal) < 2[E((F(U) + &) (1 - XX - H)(F(U) + £)) ]

BeESul
< [E(sup 18- 801)]

BESn

<2832y, [E(e"(I - H)XXT(I - H)e)

+ E(fO) (1 = XX (= Df(W)]™,
where
E(e"( - HXXT(I - H)e) = o*E(tr(( - H)XX" (I - H))) = O(np,)
and

E[fU)"(I - HXXT(I - H)f(U)]
< E[w(X"( - H)X) tr(F(U)" (I - H)F(U))]

= O(np,)O(ng,”) = O(n*puq,”).

Accordingly,

E( sup |1n2|) < Ca2!r, (1P + n/Pudy)-

BESH

Then we can get

! —r
Y Epesys Y ol D)

111 221-352 — Ca0,1kY2y 247,
L2 <2l IsL 1 n 3P K, Y &y
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We choose ry, = (\/pu/n + /pug;,"), we have

R Cy
Pr(B € S,y) = .
Z B € Su Z 71203 — G309k} 2y (/1P + 1 /Dnd;,)

L2l <2l1p, I>L

By condition (A5)(a) ¢,uky?/(/npx + n/Paq,”) — O, for sufficiently large 7,

208 _ C3rf1)\,'ki/2/(4/npn + 14 /p,,M;rg) > k4,

Thus

N C
Y PBesn <)y <C2t.

I>L2lr,<2l1y, I>L

Let L — oo, then

Z Pr([i €S, — 0.

11,27, <ol1 n
Hence

1B = Boll = Op(\/npw + V/Pud)- O
Proof of Theorem 3.3 (i) By Theorem 3.2, for sufficiently large Cs, B lies in the ball {8 :

1B - Byl < v,Cs} with probability converging to 1, where v, = \/n~1p, + /pnq,”. Let By =
Bio + vav1 and By = By + Vuva = vuwp with [[v[|* = [v1[|* + [[v2]|* < CZ. Let

Vu(v1,v2) = Qu(By, B(2)) = Qu(Bro, 0) = Qu(Big + viev1,vuv2) = Qu(B10, 0).
Then /§1 and /}2 can be attained by minimizing V,(v1,v;) over ||v| < Cs, except on an
event with probability converging to zero. We only need to show that, for some v; and v,
with [[v|| < Cs, if [|[v2]| > O,

Pr(V,(v1,v2) = Vu(v1,0)>0) > 1, n— oc.

Some simple calculations show that

V01, 92) = Vi(91,0) = V2 | (1 = H)Xows || > + 20v2(Xy01) T (I - H)(X3v2)
T
=20, (F(U) + &) (I = H)(Xav2) + Y 2llvavyyll”
j¢ A
A
Sy + 1L + 115 + I

For the first two terms II,; and II,,5,

1Ly + 1L, > —vﬁ ”(1 - H)X v; H2 = —nvfng (oP(l) + rz).
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For 11,3, we have

E[(F(U) + &) (1 - H)Xov,)
< 2{E[f(U)"(I - H)Xyv,v] X] (I - H)f(U)
+&"(I - H)Xavyv3 X3 (I - H)e]}
< Co{E[tr(X] (I - H)X,) tr(F(U)T (I - H)f(U))]
+ 0 E[ur(X] (I - H)X,) ]}
= O(’pug,” + npy).
Thus we have

L3 = v, (np,lq/zq;’ + l’ll/zpi/z)Op(l).

For 1,4, by0<y <1,

1y 1/2
2
(Z||vnvz;||y) z(Z||vnv2j||) = Vvall.

jEA jeA
Accordingly,
s = @uavy w2l
By condition (A5)(b), for some ||v3|| > 0, we have
Pr(V,(v1,v2) = Viu(v1,0) > 0) — 1.

(ii) Let w, be some Zf:l dj-vector with ll@,||> = 1. By Theorem 3.2(i), with probability
tending to 1, we have the following result:

3Qu(Bqy) P
T() - =XT(U-H)Xi(By) - Bro) - XF U - H)(F(U) +€) +£, =0,

®  1Bw=Bu)
where &, = (A 1B, ||V‘2[§1T, e M, Y ||ﬁkn ||V‘2ﬁ,fn)T. We consider the limit distribution

el Qi [XT (I - H)Xl](ﬁ(l) = B1)
="l QX (1 - H)f(U) + n 0] ! ?X] (1 - H)e
_ ”_1/2“’591_11/25;1

A
:]nl +]n2 +]n3'
For ]nl;

]31 = n’l{w,{ﬂﬁl/ZXIT(I - H)f(U)|2 = Op(nq;zr).
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For /.3, by conditions (A2) and (A4), we have
kn
E(J%) <n't omy® Y EIBIPY ™ = O(n guks).
j=1
For /2,
Juo = el Q112G (I - H)e + n’l/zwfﬂﬁl/zife
-1/2, T o-12%T
-l Ql?XT He

é I<nl + I<n2 + I(ng.
Under conditions (C1) and (C2),

EK}, = n"' o) Qi PE[G] (I - H)ee (I - H)G |2 w,

= O(k,,q;zr).
By condition (A6), we have

EK% = n_leQﬁl/zE[XlTHeeTHFNQ]Ql_lmw,,

= O(n’lk,,q,,).
Now we focus on K5

A

~ 1 &
-172 . T-12T §
I(nz =n W, Qll Xl &= 7 Snii.
n i=1

First,
E(sniei) = 0;
n n
Var(z Sm&) = Z Var(s,e;) = 0.
i1 i=1

Next we verify the conditions of the Lindeberg-Feller central limit. For any € > 0,

ZE[(siisiz)l(By,isA > e)] = nE[(silsf)l(|sn181| > e)]
i=1
< n[E(silsf)]m [Pr(|sn181| > e)]u2
By condition (A6),

E(spet) = n2E{w, 21 [xi - E(a|Wh)][x —E(XllUl)]TQl_ll/zoo,,}zEeiL

< 17224 (0400]) 02en (900 E{ [x1 - EGalU)]” [0 - E(xa|4) ]} e
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ki 9%
122 (@007 ) PRy (U Eethud® > > E[ Xy — EQ| )]
j=1 k=1

IA

= O(k2n™?)
and

1
P(|smer] > €) < ZE(S;«IISI)Z

2
= :_Zn_leQI_II/ZE{ [xl — E(Xllul)] [xl _ E(x1|u1)]T}Ql_11/2wn

0.2

= 6_2”_1 = O(n_l).

Thus we have

ZE[(sﬁisiz)lﬂsmm > €)] = O(nk,n ') = o(1).
i-1

This means that K, AN (0,02). Using Slutsky’s theorem, we have
n 2T QU2 [XT (- HYX|(Bgy - Bio) = N(0,02).
Let 12 = n20! (XI(I - H)X;)'Qn(XT (I - H)X;) @, then

- - D
nmunlwf(ﬂu) - B) — N(0,0‘z). O
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