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Abstract
This paper studies group selection for the partially linear model with a diverging
number of parameters. We propose an adaptive group bridge method and study the
consistency, convergence rate and asymptotic distribution of the global adaptive
group bridge estimator under regularity conditions. Simulation studies and a real
example show the finite sample performance of our method.
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1 Introduction
Consider the following model:

Y = xTβ + f (U) + ε, ()

where x = (xT
 , xT

 , . . . , xT
pn )T is a covariate vector with xj = (Xjk , k = , . . . , dj)T being a dj × 

vector corresponding to the jth group in the linear part, β = (βT
j , j = , . . . , pn)T with β j

being the dj ×  vector of regression coefficients, f is an unknown function of U , and
ε is the random error with mean zero. Without loss of generality, U is scaled to [, ].
Furthermore, (x, U) and ε are independent.

Variable selection for high-dimensional data is a hot and important issue. Penalized
regression methods have been widely used in the literature such as [–], and so on.
Among these methods, bridge regression including lasso and ridge as two well-known
special cases has been studied by many authors (e.g., [–]). [] studied adaptive bridge
estimation for high-dimensional linear models. In addition, group structure of variables
arise always in many contemporary statistical modeling problems. [] proposed a group
bridge method which not only effectively removes unimportant groups, but also maintains
the flexibility of selecting variables within identified groups. [] investigated an adaptive
choice of the penalty order in group bridge regression.

The aforementioned model () is just the partially linear model that originated from
[]. The partially linear model is a common semiparametric model enjoying the inter-
pretability and flexibility. Our contributions in this paper include: () we propose an adap-
tive group bridge method to achieve the group selection for a high-dimensional partially
linear model; () we consider the choice of index γ in the adaptive group bridge and use
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leave-one-observation-out cross-validation (CV) to implement this choice. It can signif-
icantly reduce the computational burden; () we give the consistency, convergence rate
and asymptotic distribution of the adaptive group bridge estimator which is the global
minimizer of the objective function.

The rest of the article is organized as follows. Section  gives the adaptive group bridge
method. In Section , we show the assumptions and asymptotic results for the global adap-
tive group bridge estimator. Section  shows computational algorithm and selection of
tuning parameters. Simulation studies and real data are presented in Section . Section 
gives a short discussion. Technical proofs are relegated to Appendix.

2 Adaptive group bridge in the partially linear model
Suppose that we have a collection of independent observations {(xi, Ui, Yi),  ≤ i ≤ n} from
model (). That is,

Yi = xT
i β + f (Ui) + εi, i = , . . . , n, ()

where ε, . . . , εn are i.i.d. random errors with mean zero and finite variance σ  < ∞.
To obtain an estimate of function f (·), we employ a B-spline basis. Denote Sn as the

space of polynomial splines of degree m ≥ . Let {Bk(u),  ≤ k ≤ qn} be a normalized B-
spline basis with ‖Bk‖∞ ≤ , where ‖ · ‖∞ is the sup norm. Then, for any fn ∈ Sn, we have

fn(u) =
qn∑

j=

Bj(u)αj � B(u)Tα.

Under some smoothness conditions, the nonparametric function f can well be approxi-
mated by functions in Sn.

Consider the following adaptive group bridge penalized objective function:

n∑

i=

(
Yi – xT

i β – B(Ui)Tα
) +

pn∑

j=

λj‖β j‖γ , ()

where λj, j = , . . . , pn, are the tuning parameters, and ‖ · ‖ denotes the L norm on
the Euclidean space. Let Y = (Y, . . . , Yn)T , X = (Xijk ,  ≤ i ≤ n,  ≤ j ≤ pn,  ≤ k ≤ dj) =
(x, . . . , xn)T and Z = (B(U), . . . , B(Un))T . Then () can be changed into

Ln(β ,α) = ‖Y – Xβ – Zα‖ +
pn∑

j=

λj‖β j‖γ . ()

For some β , the optimal α minimizing Ln(·) meets the partial differential equation

∂Ln(β ,α)/∂α = ,

namely,

ZT Zα = ZT (Y – Xβ).
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Let H = Z(ZT Z)–ZT , note that H is a projection matrix. We can rewrite the expression
() as follows:

Qn(β) =
∥∥(I – H)(Y – Xβ)

∥∥ +
pn∑

j=

λj‖β j‖γ . ()

For some fixed γ > , define β̂ = arg min Qn(β), then β̂ is called the adaptive group bridge
estimator. If β̂ is obtained, then the estimator α̂ can be achieved. Thus we can get the
estimator of the nonparametric part, namely, f̂n(u) = B(u)T α̂.

3 Asymptotic properties
In this section, we show the oracle property of the parametric part. For convenience of
the statement, we first give some notations. Define g(u) = E(x|U = u) and x̃ = x – E(x|U).
Let �(u) be the conditional covariance matrix of x̃, i.e., �(u) = cov(x̃|U = u). Denote 	

as the unconditional covariance matrix of x̃, i.e., 	 = E[�(U)]. The corresponding sample
version is G = (g(U), . . . , g(Un))T with g(Ui) = E(xi|Ui) and X̃ = (x̃, . . . , x̃n)T with x̃i = xi –
E(xi|Ui).

Let the true parameter be β = (βT
, . . . ,βT

pn )T � (βT
,βT

)T . Let A = { ≤ j ≤ pn :
‖βj‖ �= } be the index set of the nonzero groups. Without loss of generality, we assume
that coefficients of the first kn group are nonzero, i.e., A = {, , . . . , kn}. Let |A| = kn be
the cardinality of the set A, which is allowed to increase with n. For j /∈ A, ‖βj‖ = . De-
fine β = (βT

j, j ∈ A)T , β = (βT
j, j /∈ A)T . Let d∗ = max≤j≤pn dj, ϕn = max{λj, j ∈ A} and

ϕn = min{λj, j /∈A}.
Corresponding to the partition of β, denote β̂ = (β̂

T
(), β̂

T
())T and decompose

X = (XX), G = (GG), X̃ = (X̃X̃), 	 =

(
	 	

	 	

)
.

The following conditions are required for the B-spline approximation of function f .
(C) The distribution of U is absolutely continuous, and its density is bounded away

from  and ∞.
(C) (Hölder conditions of f (·) and gj(·), where gj is the jth component of g) Let l, δ and

M be real constants such that  < δ ≤  and M > . f (·) and gj(·) belong to a class of
functions H,

H =
{

h :
∣∣h(l)(u) – h(l)(u)

∣∣ ≤ M|u – u|δ , for  ≤ u, u ≤ 
}

,

where  < l ≤ m –  and r = l + δ.
The following part lists all the reasonable conditions which are necessary to attain the

asymptotic results.
(A) Let λmax(	) and λmin(	) be the largest and smallest eigenvalue of 	, respectively.

There exist constants τ and τ such that

 < τ ≤ λmin(	) ≤ λmax(	) ≤ τ < ∞.
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(A) There exist constants  < b < b < ∞ such that

b ≤ min
{‖βj‖,  ≤ j ≤ kn

} ≤ max
{‖βj‖,  ≤ j ≤ kn

} ≤ b.

(A) ‖n–
X

T (I – H)X – 	‖ P→ ; E[tr(XT (I – H)X)] = O(npn).
(A) d∗ = O(), p

n/n →  and n–ϕnkn → .
(A) (a) ϕnk/

n /(√npn + n√pnq–r
n ) → ; (b) ϕn(

√
n–pn + √pnq–r

n )γ –/n → ∞.
(A) For every  ≤ j ≤ pn and  ≤ k ≤ dj, E[Xjk – E(Xjk|U)] is bounded. Furthermore,

E(ε) is bounded.
Conditions (A) and (A) are commonly used. Condition (A) holds under some condi-

tions. The proof can be found in Lemmas  and  in []. Condition (A) is used to obtain
the consistency of the estimator. Condition (A) is needed in the proof of convergence
rate. Condition (A) is necessary to attain the asymptotic distribution.

Theorem . (Consistency) Suppose that γ >  and conditions (A)-(A) hold, then

‖β̂ – β‖ = OP
(
n–d∗pn + q–r

n + n–ϕnkn
)
,

namely, ‖β̂ – β‖ P→ .

Theorem . implies that under some conditions the estimators converge to the true
values of parameters.

Theorem . (Convergence rate) Suppose that conditions (A)-(A) hold, then

‖β̂ – β‖ = OP
(√

n–pn +
√

pnq–r
n

)
.

This theorem shows that the adaptive group bridge can give the optimal convergence
rate with pn → ∞.

Theorem . (Oracle property) Suppose that  < γ < , n–knqn →  and nq–r
n → . If

conditions (A)-(A) are satisfied, then we have
(i) Pr(β̂ () = ) → , n → ∞;

(ii) Let u
n = nωT

n (XT
 (I – H)X)–	(XT

 (I – H)X)–ωn with ωn being some
∑kn

j= dj-vector with ‖ωn‖ = , then

n/u–
n ωT

n (β̂ () – β) D→ N
(
,σ ).

This theorem states that the adaptive group bridge performs as well as the oracle [].

4 Computational algorithm and selection of tuning parameters
4.1 Computational algorithm
In this section, we apply the LQA algorithm proposed by [] to compute the adaptive group
bridge estimate.
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We take the initial value β (). Here the ordinary least square estimate is chosen as the
initial value β (). The penalty term pλj (‖β j‖) = λj‖β j‖γ can be approximated as

pλj

(‖β j‖
) ≈ pλj

(∥∥β
()
j

∥∥)
+



{

p′
λj

(∥∥β
()
j

∥∥)
/
∥∥β

()
j

∥∥}(‖β j‖ –
∥∥β

()
j

∥∥),

when ‖β ()
j ‖ > . The following iterative expression of β can be obtained:

β () =
[
X

T (I – H)X + n�λ,γ
(
β ())]–

X
T (I – H)Y, ()

where

�λ,γ
(
β ()) = diag

{p′
λj

(‖β ()
j ‖)

‖β ()
j ‖ Idj , j = , . . . , pn

}
,

with Idj being a dj ×dj unit matrix. If some ‖β ()
j ‖ is smaller than –, then we set β

()
j = .

The finial estimate can be obtained iteratively by formula () until the convergence is
achieved.

4.2 Selection of the tuning parameters
For our method, qn, γ , and λj (j = , . . . , pn) should be chosen. For convenience, cubic spline
basis (m = ) is used. We set qn = . Simulation results demonstrate that this choice per-
forms quite well. There are also many tuning parameters that should be chosen. In fact,
we only need to select one tuning parameter by setting λj = λ/‖β ()

j ‖. We use ‘leave-one-
observation-out’ cross-validation (CV) to select λ and γ . Due to the convergence of the
algorithm, we have

β̂ =
[
X

T (I – H)X + n�λ,γ (β̂)
]–

X
T (I – H)Y,

where β̂ is obtained based on the whole data set. Note that it is the solution of the ridge
regression

∥∥Y∗ – X
∗β

∥∥ + nβT�λ,γ (β̂)β , ()

where Y∗ = (I – H)Y and X
∗ = (I – H)X. Let Y∗ = (y∗

 , . . . , y∗
n)T and X

∗ = (x∗
 , . . . , x∗

n)T . The
CV error is

CV (λ,γ ) =

n

n∑

i=

(
y∗

i – x∗T
i β̂

–i),

where β̂
–i

is achieved by solving () without the ith observation. The computation of the
CV error is intensive, so we will use the following formula, which can be proved similar
to []:

CV (λ,γ ) =

n

n∑

i=

(
y∗

i – x∗T
i β̂

)/( – Dii),
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where Dii is the (i, i)th diagonal element of (I – H)X[XT (I – H)X + n�λ,γ (β̂)]–
X

T (I –
H). It is obvious that this method can significantly reduce the computational bur-
den.

5 Simulation studies and application
In this section, we investigate the finite sample performance of the adaptive group bridge
method through simulations and a real data application.

5.1 Monte Carlo simulations
We simulate  datasets consisting of n observations from the following partially linear
model:

Yi =
pn∑

j=

xT
ij β j + cos(πUi) + εi, i = , . . . , n,

where n = , and the error εi ∼ N(,σ ) with σ = ., , . We consider that there are
pn groups with pn = , ,  and each group consists of three variables. The true values
of parameters βT

 = (., , .), βT
 = (, –, ), βT

 = (., ., .), βT
 = · · · = βT

pn = (, , ).
Ui follows the uniform distribution on [, ]. To generate covariate x = (xT

 , xT
 , . . . , xT

pn )T

with xj = (Xjk , k = , , )T , we first simulate R, . . . , Rpn independently from the standard
normal distribution. Next, simulate Zj, j = , . . . , pn, from a multivariate normal distribu-
tion with the mean zero and Cov(Zj, Zl) = .|j–l|. Then the covariates are generated as
Xjk = (Zj + R(j–)+k)/

√
, j = , . . . , pn, k = , , .

We compare the adaptive group bridge (AGB) with the group lasso (GL) and the group
bridge (GB). The following three performance measures are calculated:

. L loss of parametric estimate, which is defined as ‖β̂ – β‖.
. Average number of nonzero groups identified by the method (NN).
. Average number of nonzero groups identified by the method that are truly nonzero

(NNT).
Group selection results are depicted in Table . The numbers in the parentheses in the

columns labeled ‘NN’ and ‘NNT’ are the corresponding sample standard deviations based
on the  runs. Boxplots of the L losses under different settings are given in Figures -.

From Table , we can have the following observations:
() Both GB and AGB perform better than GL for all settings. All these three methods

can retain all the true nonzero groups, but GL always keeps more redundant groups
that are unrelated with the response than both GB and AGB.

() AGB performs much better for larger σ and pn. When pn =  for AGB, groups
selected for the case σ =  are about .% lower than that for the case σ = ..
While groups selected for GB decrease by .% in the same situation.

() For pn = , GB performs better than AGB, but the stability of GB is bad for σ = .
Figures - present L losses with varying σ and pn. We can see that the performances

of estimates are similar for GB and AGB. For pn =  and , both GB and AGB perform
better than GL. However, when pn = , the median of L losses for all these three are
similar for σ = . and , but the L losses of GL fluctuate more widely.
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Table 1 Group selection results

pn Method σ = 0.5 σ = 1 σ = 4

NN NNT NN NNT NN NNT

10 GL 7.80 3 7.59 3 6.02 3
(1.231) (0) (2.396) (0) (1.255) (0)

GB 4.64 3 4.80 3 4.55 3
(1.259) (0) (1.356) (0) (1.258) (0)

AGB 5.22 3 5.00 3 4.56 3
(1.605) (0) (1.735) (0) (1.131) (0)

30 GL 20.47 3 11.49 3 14.46 3
(2.504) (0) (4.464) (0) (2.022) (0)

GB 11.04 3 10.96 3 10.18 3
(3.643) (0) (3.784) (0) (2.350) (0)

AGB 13.06 3 10.64 3 9.57 3
(5.510) (0) (5.921) (0) (2.046) (0)

50 GL 33.17 3 16.48 3 22.37 3
(3.223) (0) (5.018) (0) (3.308) (0)

GB 17.23 3 17.79 3 15.96 3
(4.608) (0) (3.952) (0) (3.284) (0)

AGB 19.25 3 15.67 3 15.68 3
(8.437) (0) (8.385) (0) (3.684) (0)

Figure 1 Boxplots of L2 loss for pn = 10.
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Figure 2 Boxplots of L2 loss for pn = 30.

Figure 3 Boxplots of L2 loss for pn = 50.
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Table 2 Estimates of the wage data

Variable Description GL GB AGB

edu Number of years of education 0.0694 0.0668 0.0635

south 1 = southern region, 0 = other –0.0723 –0.0679 –0.0490

sex 1 = Female, 0 = Male –0.1999 –0.1983 –0.2031

union 1 = union member, 0 = nonmember 0.1951 0.1934 0.2030

race 1 = other, 0 = White –0.0559 –0.0585 –0.0582
1 = Hispanic, 0 = White –0.0537 –0.0615 –0.0614

occup 1 = management, 0 = other 0.1874 0.2173 0.2516
1 = sales, 0 = other –0.0797 –0.0809 –0.0721
1 = clerical, 0 = other 0.0166 0.0262 0.0430
1 = service, 0 = other –0.1171 –0.1173 –0.1104
1 = professional, 0 = other 0.1533 0.1768 0.2061

sector 1 = manufacturing, 0 = other 0.0848 0.0912 0.0994
1 = construction, 0 = other 0.0546 0.0622 0.0674

marr 1 = married, 0 = other 0.0000 0.0000 0.0000

5.2 Wage data analysis
The workers’ wage data from Berndt[] contains a random sample of  observations on
 variables sampled from the current population survey of . It provides information
on wages and other characteristics of the workers, including continuous variables: the
number of years of education, years of work experience, age and nominal variables: race,
sex, region of residence, occupational status, sector, marital status and union membership.
Our goal is to study the important factors for the wage, so it is reasonable to use our
proposed method for these data.

From the residual plot, we can easily see that the variance of wages is not a constant. So
the log transformation is used to stabilize the variance of wages. Due to the multicollinear-
ity problem between age and experience, we need to get rid of either age or experience.
Here we remove the age variable from the model. Xie and Huang [] analyzed these data
without considering the transformation of Y . Furthermore, they did not consider group
selection of factors. Similar to Xie and Huang [], we fit these data using a partially linear
model with U being ‘years of work experience’.

Table  reports estimated regression coefficients of GL, GB and AGB. All these three
methods exclude marital status. We use the first  observations as a training dataset to
select and fit the model, and use the rest of  observations as a testing dataset to evalu-
ate the prediction ability of the selected model. The prediction performance is measured
by the median of {|yi – ŷi|, i = , , . . . , } for GL, GB and AGB using the testing data,
respectively. Here yi’s are those  observations in the testing dataset and ŷi ’s are corre-
sponding prediction values. The median absolute prediction errors of GL, GB and AGB
are ., . and ., respectively. Therefore, we can conclude that the AGB
gives the smallest prediction error, so it is an attractive technique in group selection.

6 Discussion
This paper studies group selection for high-dimensional partially linear model with the
adaptive group bridge method. We also consider the choice of γ in the bridge penalty. It is
worth mentioning that we use ‘leave-one-observation-out’ cross-validation to select both
λ and γ . This method can significantly reduce the computational burden. This is the first
try to use this method in group selection for the partially linear model.
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Appendix

Proof of Theorem . By the definition of β̂ , it is easy to get

∥∥(I – H)(Y – Xβ̂)
∥∥ +

pn∑

j=

λj‖β̂ j‖γ ≤ ∥∥(I – H)(Y – Xβ)
∥∥ +

pn∑

j=

λj‖βj‖γ ,

that is,

∥∥(I – H)(Y – Xβ̂)
∥∥ –

∥∥(I – H)(Y – Xβ)
∥∥ ≤

pn∑

j=

λj‖βj‖γ .

As Y = Xβ + f(U) + ε with f(U) = (f (U), . . . , f (Un))T and ε = (ε, . . . , εn)T , we can rewrite
the upper inequality as follows:

∥∥(I – H)X(β̂ – β)
∥∥ – 

(
f(U) + ε

)T (I – H)X(β̂ – β) ≤
pn∑

j=

λj‖βj‖γ .

Let

an = n–/[
X

T (I – H)X
]/(β̂ – β),

bn = n–/[
X

T (I – H)X
]–/

X
T (I – H)

(
f(U) + ε

)
.

Then we have

‖an‖ ≤ 
(‖an – bn‖ + ‖bn‖) ≤ 

n

pn∑

j=

λj‖βj‖γ + ‖bn‖.

Since |A| = kn, under condition (A),


n

pn∑

j=

λj‖βj‖γ = O
(

ϕnkn

n

)
.

While

‖bn‖ =

n

(
f(U) + ε

)T (I – H)X
[
X

T (I – H)X
]–

X
T (I – H)

(
f(U) + ε

)

≤ 
n

εT Aε +

n

f(U)T Af(U), ()

where

A = (I – H)X
[
X

T (I – H)X
]–

X
T (I – H).

For the first term on the right-hand side of (),

E
(


n

εT Aε

)
=

σ 

n
tr
(
E(A)

) ≤ n–d∗pnσ
.
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Thus

n–εT Aε = OP
(
n–d∗pn

)
. ()

For the second term on the right-hand side of (), by conditions (C) and (C),

E
(


n

f(U)T Af(U)
)

≤ 
n

E
{
λmax

{
(I – H)X

[
X

T (I – H)X
]–

X
T (I – H)

}

× tr
[

f(U)T (I – H)f(U)
]}

=

n

E
[

f(U)T (I – H)f(U)
]

= O
(
q–r

n
)
. ()

Combining ()-(),

‖bn‖ = OP
(
n–d∗pn + q–r

n
)
.

By conditions (A) and (A),

E‖an‖ =

n

E
[
(β̂ – β)T

X
T (I – H)X(β̂ – β)

]

= E
[

(β̂ – β)T
(


n
X

T (I – H)X – 	

)
(β̂ – β)

]

+ E
[
(β̂ – β)T	(β̂ – β)

]

≥ τ


E‖β̂ – β‖.

Therefore

‖β̂ – β‖ = OP
(
n–d∗pn + q–r

n + n–ϕnkn
)
.

Under condition (A), we have

‖β̂ – β‖ P→ . �

Proof of Theorem . Let μn =
√

n–pn + q–r
n +

√
n–ϕnkn, we can choose a sequence

{rn, rn > } which satisfies rn → . Partition R

∑pn
j= dj\{} into shells {Snj : j = , , . . .}, where

Snj = {β : j–rn ≤ ‖β – β‖ < jrn}. For an arbitrary fixed constant L ∈ R
+, if ‖β̂ – β‖ is

larger than Lrn, β̂ is in one of the shells with j ≥ L, we have

Pr
(‖β̂ – β‖ ≥ Lrn

)
=

∑

l>L,lrn>L μn

Pr(β̂ ∈ Snl)

+
∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl) (L is an arbitrary constant),

where

∑

l>L,lrn>L μn

Pr(β̂ ∈ Snl) ≤ Pr
(‖β̂ – β‖ ≥ L–μn

)
= o(),
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and

∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl)

=
∑

l>L,lrn≤L μn

Pr

(
β̂ ∈ Snl,‖�n‖ ≤ τ



)

+
∑

l>L,lrn≤L μn

Pr

(
β̂ ∈ Snl,‖�n‖ >

τ



)
,

where �n = n–
X

T (I – H)X – 	. By condition (A),

∑

l>L,lrn≤L μn

Pr

(
β̂ ∈ Snl,‖�n‖ >

τ



)
≤ Pr

(
‖�n‖ >

τ



)
= o().

Therefore,

Pr
(‖β̂ – β‖ ≥ Lrn

)

= o() +
∑

l>L,lrn≤L μn

Pr

(
inf

β∈Snl

(
Qn(β) – Qn(β)

)
< ,‖�n‖ ≤ τ



)
.

Since

Qn(β) – Qn(β)

=
∥∥(I – H)X(β – β)

∥∥ – 
(

f(U) + ε
)T (I – H)X(β – β)

+
pn∑

j=

λj
(‖β j‖γ – ‖βj‖γ

)

≥ ∥∥(I – H)X(β – β)
∥∥ – 

(
f(U) + ε

)T (I – H)X(β – β)

+
kn∑

j=

λj
(‖β j‖γ – ‖βj‖γ

)

�= In + In + In.

For In,

In ≥ inf
β∈Snl

nτ


‖β – β‖,

for all β ∈ Snl , there exists ‖β – β‖ ≥ l–r
n, therefore In ≥ nτl–r

n.
For In, we have

|In| =
kn∑

j=

λjγ
∥∥β∗

j
∥∥γ –(‖β j‖ – ‖βj‖

)

≤ ϕnγ

kn∑

j=

∥∥β∗
j
∥∥γ –‖β j – βj‖,
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where β∗
j is between β j and βj. By condition (A) and since we only need to consider β

with β ∈ Snl , lrn ≤ Lμn, there exists a constant C >  such that

|In| ≤ Cϕnγ

kn∑

j=

‖β j – βj‖ ≤ Cϕnk/
n γ ‖β – β‖.

So for all β ∈ Snl such that |In| ≤ Cϕnk/
n γ lrn, by the Markov inequality, we have

Pr
(

inf
β∈Snl

(
Qn(β) – Qn(β)

) ≤ 
)

≤ Pr
(

sup
β∈Snl

|In| ≥ nτl–r
n – Cϕnk/

n γ lrn

)

≤ E(supβ∈Snl
|In|)

nτl–r
n – Cϕnk/

n γ lrn
.

Using the Cauchy-Schwarz inequality, we have

E
(

sup
β∈Snl

|In|
)

≤ 
[
E
((

f(U) + ε
)T (I – H)XXT (I – H)

(
f(U) + ε

))]/

×
[
E
(

sup
β∈Snl

‖β – β‖
)]/

≤ l+/rn
[
E
(
εT (I – H)XXT (I – H)ε

)

+ E
(

f(U)T (I – H)XXT (I – H)f(U)
)]/,

where

E
(
εT (I – H)XXT (I – H)ε

)
= σ E

(
tr
(
(I – H)XXT (I – H)

))
= O(npn)

and

E
[

f(U)T (I – H)XXT (I – H)f(U)
]

≤ E
[
tr
(
X

T (I – H)X
)

tr
(

f(U)T (I – H)f(U)
)]

= O(npn)O
(
nq–r

n
)

= O
(
npnq–r

n
)
.

Accordingly,

E
(

sup
β∈Snl

|In|
)

≤ Clrn
(√

npn + n
√

pnq–r
n

)
.

Then we can get

∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl) ≤
∑

l>L

Clrn(√npn + n√pnq–r
n )

nτl–r
n – Cϕnk/

n γ lrn
.
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We choose rn = (
√

pn/n + √pnq–r
n ), we have

∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl) =
∑

l>L

C

τl– – Cϕnk/
n γ /(√npn + n√pnq–r

n )
.

By condition (A)(a) ϕnk/
n /(√npn + n√pnq–r

n ) → , for sufficiently large n,

l– – Cτ
–
 λjk/

n /
(√

npn + n
√

pnM–rg
n

) ≥ l–.

Thus

∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl) ≤
∑

l>L

C

l– ≤ C–(L–).

Let L → ∞, then

∑

l>L,lrn≤L μn

Pr(β̂ ∈ Snl) → .

Hence

‖β̂ – β‖ = OP
(√

n–pn +
√

pnq–r
n

)
. �

Proof of Theorem . (i) By Theorem ., for sufficiently large C, β̂ lies in the ball {β :
‖β – β‖ ≤ vnC} with probability converging to , where vn =

√
n–pn + √pnq–r

n . Let β () =
β + vnν and β () = β + vnν = vnν with ‖ν‖ = ‖ν‖ + ‖ν‖ ≤ C

 . Let

Vn(ν,ν) = Qn(β (),β ()) – Qn(β, ) = Qn(β + vnν, vnν) – Qn(β, ).

Then β̂ and β̂ can be attained by minimizing Vn(ν,ν) over ‖ν‖ ≤ C, except on an
event with probability converging to zero. We only need to show that, for some ν and ν

with ‖ν‖ ≤ C, if ‖ν‖ > ,

Pr
(
Vn(ν,ν) – Vn(ν, ) > 

) → , n → ∞.

Some simple calculations show that

Vn(ν,ν) – Vn(ν, ) = v
n
∥∥(I – H)Xν

∥∥ + v
n(Xν)T (I – H)(Xν)

– vn
(

f(U) + ε
)T (I – H)(Xν) +

∑

j /∈A
λj‖vnνj‖γ

�= IIn + IIn + IIn + IIn.

For the first two terms IIn and IIn,

IIn + IIn ≥ –v
n
∥∥(I – H)Xν

∥∥ = –nv
nC


(
oP() + τ

)
.
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For IIn, we have

E
[(

f(U) + ε
)T (I – H)Xν

]

≤ 
{

E
[

f(U)T (I – H)Xνν
T
 X

T
 (I – H)f(U)

+ εT (I – H)Xνν
T
 X

T
 (I – H)ε

]}

≤ C
{

E
[
tr
(
X

T
 (I – H)X

)
tr
(

f(U)T (I – H)f(U)
)]

+ σ E
[
tr
(
X

T
 (I – H)X

)]}

= O
(
npnq–r

n + npn
)
.

Thus we have

IIn = vn
(
np/

n q–r
n + n/p/

n
)
OP().

For IIn, by  < γ < ,

(∑

j /∈A
‖vnνj‖γ

)/γ

≥
(∑

j /∈A
‖vnνj‖

)/

= vn‖ν‖.

Accordingly,

IIn ≥ ϕnvγ
n ‖ν‖γ .

By condition (A)(b), for some ‖ν‖ > , we have

Pr
(
Vn(ν,ν) – Vn(ν, ) > 

) → .

(ii) Let ωn be some
∑kn

j= dj-vector with ‖ωn‖ = . By Theorem .(i), with probability
tending to , we have the following result:

∂Qn(β ())
∂β ()

∣∣∣∣
β()=β̂()

= X
T
 (I – H)X(β̂ () – β) – X

T
 (I – H)

(
f(U) + ε

)
+ ξn = ,

where ξn = (λγ ‖β̂‖γ –β̂
T
 , . . . ,λknγ ‖β̂kn‖γ –β̂

T
kn )T . We consider the limit distribution

n–/ωT
n 	–/


[
X

T
 (I – H)X

]
(β̂ () – β)

= n–/ωT
n 	–/

 X
T
 (I – H)f(U) + n–/ωT

n 	–/
 X

T
 (I – H)ε

– n–/ωT
n 	–/

 ξn

�= Jn + Jn + Jn.

For Jn,

J
n = n–∣∣ωT

n 	–/
 X

T
 (I – H)f(U)

∣∣ = OP
(
nq–r

n
)
.
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For Jn, by conditions (A) and (A), we have

E
(
J
n

) ≤ n–τ–
 ϕnγ


kn∑

j=

E‖β̂ j‖(γ –) = O
(
n–ϕnkn

)
.

For Jn,

Jn = n–/ωT
n 	–/

 GT
 (I – H)ε + n–/ωT

n 	–/
 X̃

T
 ε

– n–/ωT
n 	–/

 X̃
T
 Hε

�= Kn + Kn + Kn.

Under conditions (C) and (C),

EK
n = n–ωT

n 	–/
 E

[
GT

 (I – H)εεT (I – H)G
]
	–/

 ωn

= O
(
knq–r

n
)
.

By condition (A), we have

EK
n = n–ωT

n 	–/
 E

[
X̃

T
 HεεT HX̃

]
	–/

 ωn

= O
(
n–knqn

)
.

Now we focus on Kn

Kn = n–/ωT
n 	–/

 X̃
T
 ε

�=
√
n

n∑

i=

sniεi.

First,

E(sniεi) = ;

Var

( n∑

i=

sniεi

)
=

n∑

i=

Var(sniεi) = σ .

Next we verify the conditions of the Lindeberg-Feller central limit. For any ε > ,

n∑

i=

E
[(

s
niε


i
)

(|sniεi| > ε

)]
= nE

[(
s

nε


)

(|snε| > ε

)]

≤ n
[
E
(
s

nε


)]/[

Pr
(|snε| > ε

)]/.

By condition (A),

E
(
s

nε


)

= n–E
{
ωT

n 	–/


[
x – E(x|U)

][
x – E(x|U)

]T
	–/

 ωn
}Eε



≤ n–ρ
min

(
ωnω

T
n
)
ρ

max

(
	–


)
E
{[

x – E(x|U)
]T[

x – E(x|U)
]}Eε
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≤ n–ρ
min

(
ωnω

T
n
)
ρ

max

(
	–


)
Eε

 knd∗
kn∑

j=

dj∑

k=

E
[
Xjk – E(Xjk|U)

]

= O
(
k

nn–)

and

P
(|snε| > ε

) ≤ 
ε E(snε)

=
σ 

ε n–ωT
n 	–/

 E
{[

x – E(x|U)
][

x – E(x|U)
]T}

	–/
 ωn

=
σ 

ε n– = O
(
n–).

Thus we have

n∑

i=

E
[(

s
niε


i
)

(|sniεi| > ε

)]
= O

(
nknn–n–/) = o().

This means that Kn
D→ N(,σ ). Using Slutsky’s theorem, we have

n–/ωT
n 	–/


[
X

T
 (I – H)X

]
(β̂ () – β) D→ N

(
,σ ).

Let u
n = nωT

n (XT
 (I – H)X)–	(XT

 (I – H)X)–ωn, then

n/u–
n ωT

n (β̂ () – β) D→ N
(
,σ ). �
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