Garg et al. Journal of Inequalities and Applications (2017) 2017:156 ® Journal of Inequalities and Applications
DOI 10.11 86/51 3660-017-1430-z a SpringerOpen Journal

RESEARCH Open Access

. , CrossMark
Rate of convergence by Kantorovich-5zasz
type operators based on Brenke type
polynomials
Tarul Garg', Purshottam Narain Agrawal' and Serkan Araci?’
"Correspondence:
mtsrkn@hotmail.com Abstract
; ,
O?Efg:gf,g(j\fjfnol:ﬁggsvicnﬂty The present paper deals with the approximation properties of the univariate
Social Sciences, Hasan Kalyoncu operators which are the generalization of the Kantorovich-5z4sz type operators
University, Gaziantep, 27410, Turkey involving Brenke type polynomials. We investigate the order of convergence by using

Full list of author information is

available at the end of the article Peetre’s K-functional and the Ditzian-Totik modulus of smoothness and study the

degree of approximation of the univariate operators for continuous functions in a
Lipschitz space, a Lipschitz type maximal function and a weighted space. The rate of
approximation of functions having derivatives equivalent with a function of bounded
variation is also obtained.

MSC: 41A10;41A25;41A36

Keywords: Brenke type polynomials; Szész operator; Ditzian-Totik modulus of
smoothness; derivative of bounded variation; Peetre’s K-functional; rate of
convergence

1 Introduction
Linear positive operators play an important role in the study of approximation theory. One
of the best known among these operators is the Szdsz operator [1]

& k
Su(f;x) = e‘”"z (n:') f(k> x>0,neN,
. n
k=0

a generalization of Bernstein polynomials to the infinite interval. Jakimovski and Levi-
atan [2] generalized Szdsz operators by means of the Appell polynomials. Subsequently,
Ismail [3] gave another generalization of the Szasz operators by involving the Sheffer poly-
nomials. Varma et al. [4] presented yet another generalization of the Szész operators by
utilizing the Brenke type polynomials and showed that these polynomials include the Ap-
pell polynomials and Gould-Hopper polynomials as special cases. Varma and Tasdelen
[5] determined a link between the Szdsz operators and the discrete orthogonal polyno-
mials, e.g., Charlier polynomials, and established the Korovkin type theorem and the rate
of convergence by means of the classical modulus of continuity. Tasdelen et al. [6] intro-
duced a Kantorovich variant of the Szasz operators based on Brenke type polynomials and
discussed the order of convergence with the aid of the moduli of continuity and Peetre’s K-
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functional. Oksiizer et al. [7] estimated the rate of convergence for functions of bounded
variation for these operators by means of some results of probability theory. Later on, Ak-
tas et al. [8] considered a Stancu type modification of the Szdsz Kantorovich operators
involving Brenke type polynomials and obtained the degree of approximation by means
of the classical modulus of continuity and Peetre’s K-functional. A Voronovskaya type the-
orem for the considered operators including Gould-Hopper polynomials was also proven.
Mursaleen and Ansari [9] presented a Chlodowsky type generalization of Szdsz opera-
tors defined by using Brenke type polynomials and studied the order of convergence for
functions in a weighted space besides other classical approximation results.

Recently, for f € C¢[0,00) := {f € C[0,00) : |[f(t)| < ae”,a € R*,b € R}, Atakut and
Biiyiikyazici [10] considered the Kantorovich-Szasz type operators involving Brenke type

polynomials as

B (k+1)/Bn

B (f. - o
L) = i ko) [ 0 W

where {a,}, {B,} are strictly increasing sequences of positive numbers such that

. 1 oy, 1
lim — =0, —=l+O<—), as 1 — 00 (2)
n—oo B, Bn Bnu

and p(x) = Y 0p ak—rbyx", k = 0,1,2,..., are Brenke type polynomials having the following

generating function:

AD)B(t) = Y pr()t, (3)

k=0

where A(2), B(t) are analytic functions such that
[o¢]
A(t) = Zﬂrtr, ao #0;
r=0
o0
B(t)=) bit', b #0(r=0)
r=0

hold. Assume that
(i) A1) #0, ;Tl‘)’ >0for0<r<kk=0,12,...,

(ii) B:[0,00) — (0,00),

(iii) (3) and the power series (4) converges for [t| < R (R > 1),

(iv) 1im, o B(,f—()y()” “1fork=1,2,3,4.
Atakut and Biiyiikyazici [10] studied the order of convergence of the operators defined
in (1). For the special case «, = 8, = n, the operators (1) are reduced to the Kantorovich
variant of a generalization of Szdsz operators based on the Brenke type polynomials. For
some other significant papers dealing with the generalization of Sz4sz type operators, we
refer to [11-13].

In the present paper we establish the order of approximation of the operators (1) by
using Peetre’s K-functional and the Ditzian-Totik modulus of smoothness. Also, we study
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the rate of convergence of these operators for a Lipschitz space, a Lipschitz type maximal
function and a weighted space. The rate of approximation of functions having derivatives

equivalent to a function of bounded variation is also obtained.

2 Preliminaries
To examine the approximation properties of the operator L&P" defined in (1), we give
some basic results in the form of lemmas as follows.

Lemma 2.1 ([10]) For x € [0, 00), we have

(i) LePr(x) =1,
an Blax) 1 24Q)+AQ)
U el
,Bn B(O‘nx) ,Bn 2A(1)
o B'(ax) 5 20, A'(1) + AQ1) B (ot%)
B2 Blayw) | B2 AQ)  Blagw)
1 347(1) + 6A'(1) + A1)
L L
342 A(D)
o B (ayx) 5 3o 24'(1) + 3A(1) B"(anx) ,
B2 Bloww) 283 AQ)  Blogx)
a, 6A"(1)+18A'(1) + 7A(1) B (a,x)

(i) LI (tx) =

’

(iii) L2 (%) =

’

(iv) LowPn (ts;x) =

Y AQ) Bloyx)
1 4A”(1) +18A"(1) + 144’ (1) + A(1)
Tap A(D) ’

at BV (a,x) ,  4ad A1) +2A(1) B (oux) 5
BE Bloww) | Bt AQ)  Blaw)
302 2A4"(1) + 8A'(1) + 5A(1) B"(an)
B A Bloy®)

o, 4A” (1) + 244" (1) + 304’ (1) + 6A(1) B (%)
"B AQ) Blo)

1 5AW(Q) + 404”7 (1) + 75A”(1) + 304’(1) + A(1)

T 5pr AQ)

(v) LePr(t*x) =

+

As a consequence of Lemma 2.1, we have the following.

Lemma 2.2 For x € [0, 00),

’

(W) Lyt - xx) = <%B/(a”x) - 1) 1240 +40)

Bo Blan) ) BT 240)

2 pI /
(i) Ly ((t - x)%5x) = (%BBi(Ezz) - 2/%7;((3:;) + 1) 2
20, A'(1) + A1) B' (%) 1 24'(1)+AQ)
( B2 A()  Blaw) B, 24Q) >
1 347(1) +64'(1) + A(1)
" 32 AQ)

)
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ot BW (o) ~ 4o B (apx) 602 B'(atyx)

(i) L7 ((t-x)*%x) = (

/3_;‘,‘ B(a,x)

4a,, B (o,x)
By Blawx)

B2 Blawx) = 2 Blanw)

o (4o} A1) +2A(1) B (o)
) ( Br A1) Blawx)

~ 6a2 2A'(1) + 3A(1) B (o) 120, A'(1) + A(1) B' ()

B

Bloyx) =~ B2 A1)  Blow)

_224() +A(1)) s, (3;“2 2A47(1) + 8A4'(1) + 5A(1)

Bn  AQ)

B’ (0t,x)

Ba A1)

2a, 6A"(1) + 18A'(1) + 7A(1) B (ax)

* Bloaw) B3

A1) B(ayx)

+
Bi

2 347(1) + 6A'(1) + A1) ,
B2 AQ) )

. ( o 4A"(1) + 244" (1) + 304'(1) + 6A(1) B ()

B

A1) B(a,x)

B

1 4A”(1) + 18A"(1) + 14A’(1) + A(1)
B2 AQD) )x

1 5A@ (1) + 40A”(1) + 754" (1) + 304’(1) + A(1)

+
585

3 Local theorem of approximation

A1)

Page 4 of 21

In what follows, let L% (¢t — x;x) = Yo, (*) and LOmPn((t — x)%%) = 82 4, (x). Further, M

denotes a constant not necessarily the same at each occurrence.

The Lipschitz type space [1] is defined as follows:

Lipj(r) = {f € C10,00) : (1) £ ()| < Mf%;x,t . 0} )

|t
t+

for some My > 0 and 0 < r < 1. Several researchers have considered the approximation of

functions in this space for different sequences of linear positive operators (cf. [12, 14—16]

etc.).

Theorem 3.1 Let f € Lip},(r) and r € (0,1], then Vx >0

|LPr (f3x0) - f ()| < Mf(L”’ﬂ” (x)>r.

Jx
Proof Since f € Lipj,(r), by definition (5)

|t ="

an,Bn

Operating by L,”"" on the above equation, we get

|LG»5n (f,x) —f(x)| < Msznvﬂn <

|t -l
(t +x)72’
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Now, applying Holder’s inequality with p = 2/r, g = 2/(2 — r) and using Lemma 2.1, we get

)2 r/2
|LG,ﬂn(f;x) —f(x)| < Mf <LG,ﬂn((t x) ,x)) (LG,ﬂn(l;x))(z—r)/z

(t +x)
M ,
< S (- 2750) ",

which gives the required result. O

Let Cg[0,00) denote the space of all real-valued bounded and uniformly continuous
functions f on [0, 00), endowed with the norm |[f]lec = SUp,c(o,0) [f (x)|. Further, we ob-
tain a local direct estimate for the operators (1) using the Lipschitz maximal function of

order r introduced by Lenze [17]

@,(f;%) = sup M

tx,t€[0,00) |t - xlr

(6)

where x € [0,00) and r € (0,1]. For contributions of researchers on approximation of func-
tions in this space, we refer to [12, 14, 15, 18].

Theorem 3.2 Letf € Cz[0,00) and r € (0,1], then Vx € [0, 00)
(L5 (F;20) = £ ()] < @r(f32) (a0 (%))
Proof By equation (6),

[f(t) —f(x)’ <o, (f;x)|t —x|".

an,Bn
n

Applying the operator L on both sides of the above equation, and then using

Lemma 2.1 and Holder’s inequality with p = 2/r, g = 2/(2 — r), we get

|LenPn(f;0) — f(x)] < @, (F30) L P (|t — x| )
< p(f5) (L (¢~ 55)) ™ (L 050) "

= &, (%) (8, (%))
Thus, we get the desired result. O

Forf e C5[0,00) and 8 > 0, the first order modulus of continuity is defined as

o(f;8) = sup sup [f(x+h)—f(x)

0<|h|<8 x,x+he[0,00)

, (7)
and Peetre’s K-functional is given by

K(f;8) = inf {If —glloo +8ligliez },

geC210,00)
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where C3[0,00) = {g € C5[0,00) : ¢',¢" € C5[0,00)} with norm gllez = liglloo + ¢ lloc +
llg" lloo. Also

K(f;8) < M(ws(f;/8) + min{L, 8}|f |0

holds for all § > 0 and where w; is the second order modulus of smoothness of f €
C;[0, 00), which is defined as follows:

w(f;8) = sup sup  |f(x+2h) = 2f (x + h) + f(%)].
)

0<|h|<8 x,x+2he[0,00

Theorem 3.3 Iff € Cz[0,00), then

| LB (F; x) — ()| < AK(f3 Koy (%)) + O(F Vet s (¥))

where Ky, p, (%) = (82 5 (%) + Vg 5 (X))/4. Furthermore,

L P (f20) = f ()| < M(02(F3 /K, %)) + min{1, ke, 5, () HIF lloc)
+ of,

Vo (¥)])-

Proof For f € C3[0,00), we define the auxiliary operator as follows:

(8)

F b g N _ panpu (g, o GnBlanx) 1 2A’(1)+A(1)>
B i = L i) f(ﬁn Baw B, 2@ )

After taking the modulus of both sides and applying Lemma 2.1, we obtain

|LowPn(fx)| < |L9Pn(f;2)] + P(
+|f ()]
< W lloo| L& P @) | + 11 lloo + If lloo

= 3 lloo- ©)

o, B (a,x) 1 24'(1) + A(l)) ‘
B Blon®) " B 24(1)

Now, by Lemma 2.1, we get
LonPn (t; x) = x,
and therefore
LomPn(t —x;x) = 0. (10)

Let g € C2[0, 00), then using Taylor’s theorem we can write

() = g) + (- g (x) + / (¢ - u)g () d.
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Operating L&P* on the above equation and using (10), we get

Lo (g;x) - g(x)

= [ombn (/t(t —u)g" (u) du;x>
= [%nPn (ft(t -u)g" (u) du;x)

an Banx) ., 1 24’ 1)+AQ)

/ﬁ7 Blann ** Bn 240 %B’(anx) s iZA’(1)+A(1) ) "w)d
; B Bloanx)  Ba 24Q) )8 OA

Now taking the modulus on both sides, we obtain

|LerPr (g;x) — g()]

LonoPn (ft(t —u)g" (u) du; x)

24’ (1)+AQ1)

220 (o, B(ax) 1 2A'(1) + A(D) ") d
(E B(a,x) xr E 2A(1) - u)g v

)

=<

B(anx) .., 1
B Bland) ** Bn

+

X

SL‘;‘””B”Q/ |(t— u)||g/’(u)| du

B e e A0 oy Blax) 1 24'(1) + A(L) i
En x4 — " y||¢" ()| du
x B B(anx) Bu 2A(1)

< 'l e (| [ 6=l )

( /ﬁ_ Homd ¥ i P10 | Blapx) 1 24/(1) + A1) ‘ )H
— X+ —————— —uldu
x Bn Blax) B 24(1)

Therefore, by using [Igll¢z = lIgllo + 1€ lloo + 18" oo,

+

+

|LenPn (g x) - ()|

L remBa (5 — 02 an Blayx) 124’1 +AQ) 2
= ”gHClZ*{L” ((6=a) (ﬁn Bl B 240

< liglea {LomPn (¢ - %) + (Lo (¢ - )7}

= ligliez {82, 6, + Ve , 0. (11)
Now, using the definition of auxiliary operators (8), we have
| L (f ) = f ()]

TomBu (fo ) _ a_VlB/(anx) iZA/(l) +A(1)) B ‘
LymPr(f; %) — f (x) +f(,3n Ban B 2AM) f(x)

< |Lembu(f — g;x)| + |L2nPr (g2) — g(x)] + |g(x) — f ()]

‘f o, B (a,x) 1 24'1)+AQ) ( )‘
* <EB<anx)“E 24(1) )‘f 2

=<
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Combining (7), (9) and (11) with the above equation, we get

|2 P (f2) = f (%)

<4If ~ gl + lglez {85, 5, ) + Vo, 5,0} + of,

You,Bn (x)‘)

< 41If ~ glloo + 118122 4Ky, (0) + O (F' | Varn (%)),

and, after taking the infimum on the right-hand side over all g € 6'123, we obtain

Ly (f50) = f ()|
< 4K (fi ke, %)) + O(Fs [ Ve @)
< M(2(f3 K, @) + min L ke 5, (0} 1 1)
colf,

)/a}’lv,B}’l (x) |)'
This completes the proof. d

Theorem 3.4 Letf € C'}B[O, 00), then Vx> 0 and § > 0,
an,p 4 ’ aan,ﬂn(x)
’Ln" "(f;%) —f(x)’ < [f(x)} +2wlf, - Bty ().
Proof Since f € C}[0,00), we may write
SO0 = W=+ [ (707 @)

Now, using the well-known property of modulus of continuity, for § >0 and f € C'}B[O, 00),

we get

[(OEIE w(f’,8)<|u(;x| +1),

hence

/ (F' () —f ) dus

< w(f’,S)(% + |t—x|).

Therefore,

|L2mPn(F; ) — £ ()] < |/ (@) [LPr (16— ;%)

+o(f',98) (;—aLﬁ"'ﬂ” (£ =2)%) + LyPr (1t — x|;x)).
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After applying the Cauchy-Schwarz inequality, we have

|LamPn(f;x) — f ()] < (If'(%)] + w(f/,(S))\/ij"’f’" ((t - x)z;x)\/LZ‘mﬁn(l;x)
+ w(ff, 5) (2_15LG:ﬂn ((t _ x)2;x)>
52
= (0] 0l78) 05,01+ 00) (2222,

Choosing § = %801714371 (x), we get our result. d

Let ¢(x) = /x. For f € Cz[0, 00), the Ditzian-Totik modulus of smoothness of first order
is given by

wy(f;8) = sup H/(x+ h¢(x)) —f(x— h¢(x)>’;x:|: ") € [0,00)},
0<h<$ 2 2 2

and appropriate Peetre’s K-functional is defined by
Ky(f;6)= inf —glloo + 8|08’ , 6>0,
o(f39) gev}f[o,oo){”f gllo+8]0g| ) 8>

where W;,[0,00) := {g: g € ACjoc[0,00), |¢g'llc < 00} and g € ACjoc[0, 00) means that g
is differentiable and absolutely continuous on every compact subset [a, b] of [0, 00). It is
known from [19] that there exists a constant M > 0 such that

M wy(f;8) < Ky(f;8) < Mwy(f;9). (12)

Now, we find the order of approximation of the operator (1) by means of the Ditzian-Totik
modulus of smoothness.

Theorem 3.5 Foranyf € C3[0,00) and x € (0,00),

(San,ﬁn (X) )

Proof By Taylor’s theorem, for any g € W4 [0, 00), we get

L2 (f2) — £(2)] < Moo <f;

a(t) = go) + / &) du

=g(x) +/ %d%

therefore,

T
lg(t) -g@)| < | og IIOO\ / ) du’
= [¢¢']l. -21vE- VAl

|t — x|

VN

=2]¢¢']
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which gives

|t — x|
Jx

| — x|

> ¢x)

g(®) - g < 2] ¢g|

=2[eg|
For any g € Wy[0, 00), using Lemma 2.1 and the above equation, we get

Ly (fr) = f )] < [LyPr(f —gs) | + | Ly (gs0) - g@)| + |g(0) —f ()]
2|lpg

oo
<2|f - o X pambu (|t — x; x).
<2||f —glloo + o) (1t —xl;)

After applying the Cauchy-Schwarz inequality, we obtain

2 N so
’LG,ﬁn (f;x) —f(x)’ < 2”]0 —glloo + ”Z%[Lzmﬁn ((t _x)z;x)]l/z

2||¢¢ lloo

=2[lf -gllo + e

(Samﬂn (x)

Taking the infimum on the right-hand side over all g € Wy[0, 00), we get

8&}1) n
|Lz”’ﬂ"(f;x) _f(x)| <2K, <f, %QC)),

which leads us to the required result with the help of the relation between Peetre’s K-

functional and the Ditzian-Totik modulus of smoothness as given in (12). a

4 Weighted approximation
For y > 0, let C,[0,00) := {f € C[0,00) : |f(¢)] < Ms(1 + t),Vt > 0} equipped with the

norm

1l = sup L

. (13)
te[0,00) (1 + ty)

Further, let C5[0,00) be the subspace of C,[0,00) consisting of functions f such that

t

limy— o0 (1f+(—t)2) exists. Such type of spaces is studied by many mathematicians as described

in [20-22] etc.
Theorem 4.1 For each f € C;[0,00) and r > 0,

Lgn:ﬂn ; _
lim sup | (fi%) f(x)|=

0.
=00 1c(0,00) (1 +x2)ter




Garg et al. Journal of Inequalities and Applications (2017) 2017:156 Page 11 of 21

Proof Let x¢ > 0 be arbitrary but fixed, then in view of (13) we get

Lo () = f ()]

sup

xelooo) (L)
an,Pn an,Bn
L ;x) —f(x L ;x) —f(x
= qup I SO ) - @)
xX=Xx0 (1 + x2)1+7’ xX>X0 (1 + x2)1+r

. LB ()] + [ ()]
=< JCS;JE){ ‘anﬁn (f; x) _f(x)H + illxlg (1(,_: x2)1+rlf K :

Since |f(£)| < ||[f|l2(1 + £2), hence

n'ﬂn
L™ (f %) — f ()]
su < ||[LéPn(f;x) — f(x
xe[OEO) (1 +x2)ler = L0 -f( )”C[O’xO]

l 1L P (1 + £ )|
+ SUup ——————
2 x>xI; (1 + x2)l+r

+ sup 4If(x)|
xxg (1 +x2)147

=L +L+1, say. (14)
By the Korovkin theorem, the sequence Ly (f;x)} converges uniformly to the function
f on every closed interval [0, a], as n — o0, (cf. [10], p.1491), therefore for a given € > 0,
3Im; € N such that

€

-, VYn>m. 15
3 >m (15)

I = || Ly P (f;x) - £ (x) ”C[O,xo] <

By using Lemma 2.1, we can find 7, € N such that

|L2mPr (1 + £5x) — (1+4%)| < m, Vn=n,, or,
Lz"’ﬂ" (1 + tz;x) < (1 +x2) + m, Vi > ny.
Hence
Lan:ﬂn 1 tZ;
b = Il sup L L)

x50 (1 + x2)1+r

1 €
< |fl2 su 7<1+x2 +—>, Vn>n
2o G (04 ) * 3 ?

If] S V>
< su + -, n n
2x>xlz (1 + x2)r 3 =
€
|lf||§ + =, Vn>n,. (16)
1+x5)" 3

Now, using (13), we get

b e sup @ W

wxg (L+ a2~ (L+ad)



Garg et al. Journal of Inequalities and Applications (2017) 2017:156 Page 12 of 21

Let ny = max{m, n,}, then by (15), (16) and (17)

2 2
Wz 2¢ g o (18)
(L+x3)y 3

L+L+15<

Choose x to be so large that

20Ifll. €
A+ 22y < —. (19)

Then, combining (14), (18) and (19), we have

L5 (F ) — £ ()]

sup <€, VYn>ng.
x€[0,00) (1 +x2)t+r
Hence the proof is done. d

Bojanic [23] studied the rate of convergence for Fourier series of functions of bounded
variation. Cheng [24] obtained the rate of convergence of Bernstein polynomials of func-
tions of bounded variation. Later on many researchers have made important contributions
in this area of approximation theory (cf. [25-29] etc.). Bojanic and Cheng [30] studied the
rate of convergence of Bernstein polynomials for functions with derivatives of bounded
variation. Later on, Bojanic and Khan [31] estimated the rate of convergence of some oper-
ators of functions with derivatives of bounded variation. Shaw et al. [32] obtained the rates
for approximation of functions of bounded variation and for functions with derivatives of
bounded variation by positive linear operators. Many mathematicians studied in this di-
rection and their work pertaining to this area is described in the papers [14, 26, 33-38]
etc.

Now, we shall obtain the rate of convergence of Ly

(f;x) for functions having deriva-
tives of bounded variation. Let DBV|[0, co) be the space of functions in C,[0, c0), which
have the derivative of bounded variation on every finite subinterval of [0,00). Here we
show that at the points x, where f(x+) and f’(x—) exist, the operator Lo (f;x) converges

to the function f(x). A function f € DBV]0, oo) can be represented as

f) = /0 g(t)dt +£(0)

where g denotes a function of bounded variation on every finite subinterval of [0, 00).

LG»ﬂn

In order to study the convergence of the operators for the functions having a

derivative of bounded variation, we rewrite the operator (1) as follows:

Lo (f; ) = / ” W (¢, x)f (¢) dt, 20)
0

where W (¢, x) is the kernel given by

W (t,x) = W Zpk(anx)xla)

x1(t) being the characteristic function of I = [ K k” ].
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Lemma 4.2 Let for all x > 0 and sufficiently large n
82
(1) Aaypy (&%) = fy W(tt,x) dus < “Z’ﬁ”(zx), 0<t<x,

(2) 1= Aapp (6,%) = [ W (tt,x) dus < ""f"')i),xft<oo.

Proof Using Lemma 2.1 and the definition of kernel, we get

t
Ny B (£ %) =/ W (u,x) du

5/0 (i b;) W (u,x) du

< ﬁ fot(u - x)2 W (u,x) du.

Hence

)\.an,ﬂn(t,x)f( ! )ZLGﬁn((u )% %)
= ( t)Z an ﬂn(x)

Similarly, we can prove the other inequality, therefore we omit the details. g

Let \/Zf be the total variation of f on [a, b], i.e.,

b n
\/f =V(f;la,b]) = iug(Z[f(xi) —f (%)
a N\

), bounded variation, (21)

where P is the set of all partitions P = {a = xo,%1,...,%, = b} of [a,b] and it also has the
property

b c b
Vr=Vr e Vs
Let

f@)—f'(x=), 0<t<x
f;c/(t) =10, t=ux, (22)
@) —f(x+), x<t<oo.

Theorem 4.3 Let f € DBV[0,00), x > 0 and n be sufficiently large, then

’L(::n,lsn(f;x) I (f x+) +f(x ‘|Vanﬁn )’
e >§ V2 VA
Oln n f) ( f;)
k=1 <x—x/k ﬁ xX—x/ /1

52
+ "‘";’"( )sz) —f (%) = af (4|
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s <Mf + |[f ()]

o 4Mf) oy @)+ [ (64)] 80, (%)

_)5

o, Bn (JC)

Proof By hypothesis (22),

1) = %(f/(x+) +f (x=)) +£(8) + %(f’(x+) —f'(x-)) sgn(t — %)

+0,(2) (f’(t) — % (f (x+) +f’(x—))), (23)
where
1, t=ux,
6x(t) = {
0, t#x.

Now, using Lemma 2.1, equations (20) and (23), we get

LEmPr(f;x) - f(x)
= /0 (F(&) —f(x)) W (¢, %) dt

:/oo(/tf/(u)du>w(t,X)dt

0 x
orore(1, / , 1 /

i f U {a(f (o) +£/(e)) +£00) + 5 (o4) =f (5-)) sen(u =)
0 x

+8.u) <f’(u) S+ f’(x—))) } du] Wt %) dt.
Smcef 8x(u) du =0,

L (fi) £ )
1 ’ , [e%e) (e} t ’
= E(f (x+) +f (x—))/o (t—x)W(t,x)dt +/0 </x o) du) W(t,x)dt

* %(f’(x+) ~f'(x-) / "l 2 Wt ) de. (24)
0

Now, we break the second term on the right-hand side of the above equation as follows:

[7([ rwa)wena--["( [ foa)wona
* / ( / f;(u)du>W(t,x)dt

= —11 + 12,
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where

I = /Ox(/txﬂ(u) du) W (t,x) dt,
I = /xoo(/xtfx’(u)du> W (t,x)dt.

Taking the modulus on both sides of (24), we get

’Lﬂtnﬂn(fx) fx)|<| (f x+) +f(x ‘|Lanﬂnt X;X )|+|11|

S0 —f )

+ || +
After applying the Cauchy-Schwarz inequality, we get

L5 (f30) = f )] < ‘%(f/(m) +f’(x—>)‘|yan,ﬂn ()] + || + |1

+
2

3 76 = o) VL (= 5)
= '%(f’(aw) +f/(x—))‘|7/an,ﬂn(x)| + L] + |I|

+ %(f/(x+) —f'(x-))|8

o, Bn (x)

Now applying Lemma 4.2 and integration by parts, I; can be written as

L= /x(/‘xfx/(u) du) W (t,x) dt
/ </ £ u)du) Aay,p, (t, %) dt
- [ £0rs e at

After taking the modulus, we have

X
) < / 110 |y (8,20 i
0

—x//n
5/ () | A (£ %) A + V()| My, (&%)
0 x—x//n

=K+ Ky, say.

Since f](x) = 0, by hypothesis (22),

x—x/\/n
1<1 B /0 lf;(t) _f;‘/(x)|)"am,5n (t: x) dt.

L;"I"’ﬁ"(|t - x|;x).

Page 15 of 21

(25)
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Now, using Lemma 4.2, we get

x—x//n d
ki<, [0

By the definition of total variation (21) and taking ¢ = x — x/u, we have

x—x//n
s (i)

s (V)%

x—x/u

Now, after breaking integral into summation,

52 [f]

K < enn® /hl(\x/f)du

x—x/u

e )%](\x/fx/m du)

k=1 \x—«x/k

aﬁ()[\/_] x
- Z(V}i)

k=1 \x—x/k

By Lemma 4.2, Ay, p,(t,%) <1 and using hypothesis (22), we have

K, = V() [ Ay, (8, )

x—x//n

< If1(2) — £ ()] dt.

x—x//n

Now, by the definition of total variation (21),

K, < fxx/f(\/f)dt
5( \/ ﬂ)/xxx/ﬁdt

x—x/ /1

V)

| < ""’5"( )Z(\/f) ﬁ< \/ f) (26)

k=1 \x—x/k xX—x//n
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Using Lemma 4.2, we can write

oo( / tfx’(u) du) W (t,x) dt‘

(/f u)du> (1= A g, (&, x))dt‘
( f fx’(u)du> W(t,x)dt’.

2x x

Now, applying integration by parts and hypothesis (22), we obtain

| =

L] <

2x 2x
fiw)du - (1= gy 5,2%,5) = | fLO1 = happ, (6:5)) dt‘

m( / t(f/(u) —f'(x+)) du) W (t,x) dt‘
2x x

2x
f,:<u)du] “""""() /Lft)l (1= Ry p,(t,x)) dt

+ V/(x+)|

+ foo(f(t)—f(x))W(t,x)dt / (t—x)W(t,x)dtl
2x 2x

=Py +Py+P3+ Py, say.

Now, by hypothesis (22),

‘Sin,ﬁn (%)
Py = P
X

5, ﬁn (x)

(f () —f'(x+)) du

S )
< TV(M — f(x) — xf ' (x+)|

and
2x
P, =/ @] - (1= Aeayp, (8 )) dit
x+x//n
- f 0] - (1 =k, (60)) e

“MU;’@)\ (L= R (6,0)) it

=h+/, say.

Using Lemma 4.2, 1 — Ay, 6, (t,%) <1 and hypothesis (22), we get

x+x//n
e [ O] 0 ha o)

x+x//n
< f If1(6) ~ fi()| it
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x x+x/f
(V)

Now, again with the help of Lemma 4.2 and by hypothesis (22), we get

2x
Jo = x/(t) (1= R, .p, (L)) dt
2 Wflf - ( i (£,0))

i ®) o -fwl

<s 5.
X+x/n t x)

By using (21) and ¢ = x + x/u,

J2 < 83,5, /,fo(vf) 7
5w fﬁ (K?f)
) % [ (\// f) .
_ P §<\/ f) ( /k“ a)
) agnﬁn( %) %(\//kf)

k=1 x
Hence,
I () Wnl fx+xik
<5V 257
k=1 x

Now, using the Cauchy-Schwarz inequality, we estimate Py

Py = lf’(x+)|

OO(t—ac)W(L‘,x) dt‘
2x
< V’(x+)‘ /2‘:0 |t — x| W (t,x)dt

<|f'(x+)| /oo |t — x| W (t,x) dt
0

= | Gen) [ L (2 - %)% %)

= |f(0+4) | Saay 1, ().

Page 18 of 21
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Further, as t > 2x, then 2(t —x) > ¢t and £ — x > x gives

(f ) tx)dt‘
= /2 i f(O|W(t,x)dt + f2 :O[f(x)|W(t,x)dt

< Mf/w(l + )W (t,x)dt + |f(x))| /Oo W (¢, x) dt
2x

2x

= (M + [f(x)])/oo W(t,x)dt+Mf/oot2W(t,x)dt

2x

W(t, x)dt

< el [

2x

[o.¢]
+ My / 4(t — %)W (t,x) dt
2x

- (Mf ;if(x)l

+4Mf) /m(t—x)ZW(t,x)dt

2x

M,
- () 0

X

< (MY g, Y- 7

< “"'3"( )Lf(2x) —f (@) = af (x+))|

x+x/ /7 (x) [Vn] fx+xik
( V f) P Z(Vfé)
1\ «x
N <Mf;72lf(x)| ) o )+ [ (4) |80, (%)

Now from (25)-(27) we obtain

Vo @®)| + L] + 1]

|Lr;ltn,/3n (f; %) —f(x)| < ‘%(f/(x+) +f/(x—))

" %(f’(m) ~f'(@2)) |8, (%)
< ‘l(f’(x+) +f () || Vam i )]
a ( )[f] X
“25(07)- (1.
k=1 \x—x/k —x//n

82
+%"()V2 ) = f(x) = xf (x+))|

x+x/ /1 a 52,5,%) (x) Wnl [x+xik ,
( V f) w2 Z(fo)

k=1 x

Page 19 of 21

(27)
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s <Mf + Lf(x)l

X + 4Mf) agn:ﬁn (x) + lf/(x+) is‘)‘”’ﬁ” (x)

+ aan,ﬁn (x)1

S0 )

which finally gives the required result. O

5 Conclusion

We study the order of approximation of the Kantorovich-Szédsz type operators based on
Brenke type polynomials with the aid of Peetre’s K-functional and the Ditzian-Totik mod-
ulus of smoothness. The rate of convergence of these operators for functions in a Lipschitz
type space and a weighted space is investigated. The degree of approximation of functions
whose derivatives coincide a.e. with a function of bounded variation is also discussed.
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