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Abstract
In this paper, we present two S-type Z-eigenvalue inclusion sets involved with a
nonempty proper subset S of N for general tensors. It is shown that the new sets are
tighter than those provided by Wang et al. (Discrete Contin. Dyn. Syst., Ser. B
22(1):187-198, 2017). Furthermore, we obtain upper bounds for the spectral radius of
weakly symmetric nonnegative tensors, which are sharper than existing results.
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1 Introduction
Let C (R) be the set of all complex (real) numbers and N = {, , . . . , n}. A real m-order
n-dimensional tensor A consists of nm elements:

A = (aii...im ), ∀aii...im ∈R, i, i, . . . , im ∈ N .

A is called nonnegative (positive) if aii...im ≥  (aii...im > ).
The following two definitions of eigenpairs were introduced by Qi [] and Lim [], re-

spectively.

Definition  Let A be a tensor with order m and dimension n. If there exist a nonzero
vector x = [x, x, . . . , xn]T ∈ Cn and a number λ ∈ C satisfying the equation

Axm– = λx[m–],

then (λ, x) is called an eigenvalue-eigenvector of A, where

Axm– =

( n∑
i,...,im=

aii...im xi · · ·xim

)
≤i≤n

and x[m–] = [xm–
 , xm–

 , . . . , xm–
n ]T . (λ, x) is called an H-eigenpair of A if they are all real.
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Definition  Let A be a tensor with order m and dimension n. We say that (λ, x) ∈ C ×
(Cn \ {}) is an E-eigenpair of A if

Axm– = λx and xT x = .

(λ, x) is called a Z-eigenpair if they are real.

As we know, the Z-eigenpair for nonnegative tensors plays an important role in some
applications such as high order Markov chains [, ] and best rank-one approximations in
statistical data analysis [, ]. Some effective algorithms for finding Z-eigenvalue and the
corresponding eigenvector of tensors have been implemented [, ]. Generally, we cannot
judge that Z-eigenvalues generated by the above algorithms are the largest Z-eigenvalues.
Therefore, the following definitions were introduced and used by Qi [] and by Chang []
for studying important characterizations of the largest Z-eigenvalue of a tensor.

Definition  ([]) LetA be a tensor with order m and dimension n. We define σ (A) the Z-
spectrum of A by the set of all Z-eigenvalues of A. Assume σ (A) �= ∅. Then the Z-spectral
radius of A is denoted as

ρ(A) = max
{|λ| : λ ∈ σ (A)

}
.

Definition  ([]) LetA be a tensor with order m and dimension n.A is weakly symmetric
if the associated homogeneous polynomial Axm satisfies

∇Axm = mAxm–.

Based on the weakly symmetric condition, Chang et al. [] established the equivalent re-
lation between the largest Z-eigenvalue and Z-spectral radius of nonnegative tensors. On
the basis of the relationship between the Gelfand formula and the spectral radius, Song et
al. [] gave the Z-spectral radius bound for nonnegative tensors. He et al. [–] pre-
sented the largest Z-eigenvalue for weakly symmetric nonnegative (positive) tensors. Fur-
thermore, Li et al. [] improved some bounds for the eigenvector and Z-spectral radius.
For general tensors, Wang et al. [] established Gershgorin-type Z-eigenvalue inclusion
theorems. Moreover, Zhao et al. [] extended some results of []. Very recently, Li et al.
[] introduced an S-partition method and established S-type H-eigenvalue localization
sets, which may reduce computations. Therefore, we want to use the S-partition method
and propose S-type Z-eigenvalue inclusion sets for general tensors.

The remainder of this paper is organized as follows. In Section , we establish S-type Z-
eigenvalue inclusion sets for general tensors by breaking N into a disjoint subset S and its
complement, which is proved to be tighter than the sets in []. In Section , as applications
of the above results, we propose some new bounds on the Z-spectral radius of a weakly
symmetric tensor and show that they are tighter than the existing bounds in [, , –,
] by Example .

2 S-Type Z-eigenvalue inclusion sets
In this section, we give S-type Z-eigenvalue inclusion sets of the tensor A by dividing
N into disjoint subsets S and S̄, where S̄ is the complement of S in N . Furthermore, we
establish comparisons among different Z-eigenvalue inclusion sets.
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In what follows, we introduce a lemma for a general tensor.

Lemma  (Theorem . of []) Let A be a tensor with order m and dimension n ≥ . Then
all Z-eigenvalues of A are located in the union of the following sets:

σ (A) ⊆K(A) =
⋃
i∈N

Ki(A),

where Ki(A) = {z ∈ C : |z| ≤ Ri(A)} and Ri(A) =
∑

i,...,im∈N |aii...im |.

By using the partition technique in [], we present the following notations. Let A be an
mth order n-dimensional tensor and S be a nonempty proper subset of N . Set

�N :=
{

(i, i, . . . , im) : each ij ∈ N for j = , . . . , m
}

,

�S :=
{

(i, i, . . . , im) : each ij ∈ S for j = , . . . , m
}

,

�S = �N \ �S.

Then

Ri(A) =
∑

i,...,im∈N

|aii...im | = R�S
i (A) + R�S

i (A), ∀i ∈ S,

where

R�S
i (A) =

∑
(i,...,im)∈�S

|aii...im |, R�S
i (A) =

∑
(i,...,im)∈�S

|aii...im |.

Theorem  Let A be a tensor with order m and dimension n ≥  and S be a nonempty
proper subset of N . Then all Z-eigenvalues of A are located in the union of the following
sets:

σ (A) ⊆ GS(A) =
( ⋃

i∈S,j∈S̄

GS
i,j(A)

)
∪

( ⋃
i∈S̄,j∈S

G S̄
i,j(A)

)
,

where

GS
i,j(A) =

{
z ∈ C : |z|(|z| – R�S

j (A)
) ≤ Ri(A)R�S

j (A)
}

,

G S̄
i,j(A) =

{
z ∈ C : |z|(|z| – R�S̄

j (A)
) ≤ Ri(A)R�S̄

j (A)
}

.

Proof Let λ be a Z-eigenvalue of A with corresponding eigenvector x, i.e.,

Axm– = λx, xT x = . ()

Let |xt| = max{|xi| : i ∈ S}, |xs| = max{|xi| : i ∈ S̄}. Then at least one of |xt| and |xs| is
nonzero. We next divide the proof into three parts.
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(i) If xtxs �=  and |xs| ≥ |xt|, then |xs| = max{|xi| : i ∈ N} > . From equality (), we have

λxs =
∑

(i,...,im)∈�S

asi...im xi · · ·xim +
∑

(i,...,im)∈�S

asi...im xi · · ·xim .

Noting that |xt|m– ≤ |xt| ≤ , |xs|m– ≤ |xs| ≤  and taking modulus in the above equation,
one has

|λ||xs| ≤
∑

(i,...,im)∈�S

|asi...im ||xi | · · · |xim | +
∑

(i,...,im)∈�S

|asi...im ||xi | · · · |xim |

≤
∑

(i,...,im)∈�S

|asi...im ||xt|m– +
∑

(i,...,im)∈�S

|asi...im ||xs|m–

≤ R�S
s (A)|xt| + R�S

s (A)|xs|. ()

Dividing both sides by |xs| in (), we get

|λ| ≤ R�S
s (A)

|xt|
|xs| + R�S

s (A). ()

On the other hand, by (), we obtain

|λ||xt| ≤
∑

i,...,im∈N

|ati...im ||xi | · · · |xim | ≤
∑

i,...,im∈N

|ati...im ||xs|m–.

Dividing both sides by |xt| in the above inequality and from |xs|m– ≤ |xs|, one has

|λ| ≤
∑

i,...,im∈N

|ati...im | |xs|m–

|xt| ≤
∑

i,...,im∈N

|ati...im | |xs|
|xt| = Rt(A)

|xs|
|xt| . ()

Multiplying () by (), we see

|λ|(|λ| – R�S
s (A)

) ≤ Rt(A)R�S
s (A),

thus, λ ∈ GS
t,s(A) ⊆ GS(A).

(ii) If xtxs �=  and |xt| ≥ |xs|, then |xt| = max{|xi| : i ∈ N}. Similar to the proof of (i), we
can get that

|λ| – R�S̄
t (A) ≤ R�S̄

t (A)
|xs|
|xt|

and

|λ| ≤ Rs(A)
|xt|
|xs| ,

which implies

|λ|(|λ| – R�S̄
t (A)

) ≤ Rs(A)R�S̄
t (A),

that is, λ ∈ G S̄
s,t(A) ⊆ GS(A).
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(iii) If xtxs = , without loss of generality, let |xt| =  and |xs| �= . It follows from () that

|λ| – R�S
s (A) ≤ .

For any i ∈ S, we have

|λ|(|λ| – R�S
s (A)

) ≤  ≤ Ri(A)R�S
s (A),

that is, λ ∈ GS
i,s(A) ⊆ GS(A).

The result follows from (i), (ii) and (iii). �

Corollary  Let A be a tensor with order m and dimension n ≥ , and S be a nonempty
proper subset of N . Then

σ (A) ⊆ GS(A) ⊆K(A),

where K(A) is a Z-eigenvalue inclusion set in Lemma .

Proof Let z be a point of K(A). Two cases are discussed as follows:
(i) There exist t ∈ S and s ∈ S̄ such that z ∈ GS

t,s(A), i.e.,

|z|(|z| – R�S
s (A)

) ≤ Rt(A)R�S
s (A). ()

If Rt(A)R�S
s (A) = , then z =  or |z| – R�S

s (A) ≤ . Hence, z ∈Kt(A) ∪Ks(A). Otherwise,
it follows from () that

|z|
Rt(A)

|z| – R�S
s (A)

R�S
s (A)

≤ . ()

Furthermore,

|z|
Rt(A)

≤  or
|z| – R�S

s (A)
R�S

s (A)
≤ ,

that is, z ∈Kt(A) or z ∈Ks(A). This implies z ∈Kt(A) ∪Ks(A) ⊆K(A).
(ii) There exist s ∈ S̄ and t ∈ S such that z ∈ G S̄

s,t(A), i.e.,

|z|(|z| – R�S̄
t (A)

) ≤ Rs(A)R�S̄
t (A),

similar to (i), we obtain z ∈Ks(A) ∪Kt(A) ⊆K(A). So, the result holds. �

Based on an exact characterization of (), another S-type Z-eigenvalue localization set
involved with a proper subset S of N is given below.

Theorem  Let A be a tensor with order m and dimension n ≥  and S be a nonempty
proper subset of N . Then

σ (A) ⊆ �S(A) =
( ⋃

i∈S,j∈S̄

(
�S

i,j(A) ∪ �S
i,j(A)

)) ∪
( ⋃

i∈S̄,j∈S

(
�S̄

i,j(A) ∪ �S̄
i,j(A)

))
,
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where

�S
i,j(A) =

{
z ∈ C :

(|z| – R�S
i (A)

)(|z| – R�S
j (A)

) ≤ R�S
i (A)R�S

j (A)
}

,

�S̄
i,j(A) =

{
z ∈ C :

(|z| – R�S̄
i (A)

)(|z| – R�S̄
j (A)

) ≤ R�S̄
i (A)R�S̄

j (A)
}

,

�S
i,j(A) =

{
z ∈ C : |z| ≤ R�S

i (A), |z| ≤ R�S
j (A)

}
,

�S̄
i,j(A) =

{
z ∈ C : |z| ≤ R�S̄

i (A), |z| ≤ R�S̄
j (A)

}
.

Proof Let λ be a Z-eigenvalue of A with corresponding eigenvector x. Let |xt| = maxi∈S |xi|
and |xs| = maxi∈S̄ |xi|. Similar to the proof of Theorem , we also divide the proof into three
cases as follows.

(i) If xtxs �=  and |xs| ≥ |xt|, then |xs| = max{|xi| : i ∈ N}. By an exact characterization of
(), one has

|λ||xt| ≤
∑

(i,...,im)∈�S

|ati...im ||xi | · · · |xim | +
∑

(i,...,im)∈�S

|ati...im ||xi | · · · |xim |

≤ R�S
t (A)|xt|m– + R�S

t (A)|xs|m– ≤ R�S
t (A)|xt| + R�S

t (A)|xs|,

since |xt|m– ≤ |xt| ≤ , |xs|m– ≤ |xs| ≤  hold. Furthermore,

(|λ| – R�S
t (A)

)|xt| ≤ R�S
t (A)|xs|. ()

When |λ| > R�S
s (A) or |λ| > R�S

t (A) holds, multiplying () by (), we see

(|λ| – R�S
t (A)

)(|λ| – R�S
s (A)

) ≤ R�S
t (A)R�S

s (A).

This shows λ ∈ �S
t,s(A) ⊆ �S(A). Otherwise, when |λ| ≤ R�S

s (A) and |λ| ≤ R�S
t (A) hold,

one has λ ∈ �S
t,s(A) ⊆ �S(A).

(ii) If xtxs �=  and |xt| ≥ |xs|, then |xt| = max{|xi| : i ∈ N}. Similarly, by equality (), we get

(|λ| – R�S̄
t (A)

)|xt| ≤ R�S̄
t (A)|xs|

and

(|λ| – R�S̄
s (A)

)|xs| ≤ R�S̄
s (A)|xt|.

When |λ| – R�S̄
s (A) >  or |λ| – R�S̄

t (A) >  holds, we obtain

(|λ| – R�S̄
s (A)

)(|λ| – R�S̄
t (A)

) ≤ R�S̄
t (A)R�S̄

s (A),

which implies λ ∈ �S̄
s,t(A) ⊆ �S(A). When |λ| – R�S̄

s (A) ≤  and |λ| – R�S̄
t (A) ≤  hold,

one has λ ∈ �S̄
s,t(A) ⊆ �S(A).

(iii) If |xt||xs| = , we could assume that |xs| =  and |xt| �= . It follows from () that

|λ| – R�S
t (A) ≤ .
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For any j ∈ S̄, when |λ| – R�S
j (A) >  holds, we get

(|λ| – R�S
t (A)

)(|λ| – R�S
j (A)

) ≤ R�S
t (A)R�S

j (A),

that is, λ ∈ �S
t,j(A) ⊆ �S(A); otherwise, when |λ|–R�S

j (A) ≤  holds, λ ∈ �S
t,j(A) ⊆ �S(A).

It follows from (i), (ii) and (iii) that the results hold. �

Corollary  Let A be a tensor with order m and dimension n ≥ .
(I) If there exists S ⊆ N such that

(i) for all i ∈ S, j ∈ S̄, R�S
j (A) ≤ |z| ≤ Ri(A) and R�S

i (A)R�S
j (A) >  hold;

(ii) for all i ∈ S̄, j ∈ S, R�S̄
j (A) ≤ |z| ≤ Ri(A) and R�S̄

i (A)R�S̄
j (A) >  hold, then

GS(A) ⊆ �S(A).

(II) If there exists S ⊆ N such that
(i) for all i ∈ S, j ∈ S̄, |z| ≤ min{R�S

i (A), R�S
j (A)} holds; or |z| ≥ max{Ri(A), R�S

j (A)}
and R�S

i (A)R�S
j (A) >  are satisfied;

(ii) for all i ∈ S̄, j ∈ S, |z| ≤ min{R�S̄
i (A), R�S̄

j (A)} holds; or |z| ≥ max{Ri(A), R�S̄
j (A)}

and R�S̄
i (A)R�S̄

j (A) >  are satisfied, then

�S(A) ⊆ GS(A).

Proof (I) Let z ∈ GS(A), then z ∈ GS
i,j(A) or z ∈ G S̄

i,j(A). We divide the proof into two parts.
(i) Suppose that z ∈ GS

i,j(A), then there exist t ∈ S and s ∈ S̄ such that z ∈ GS
t,s(A).

If Rt(A) = , then R�S
t (A) = R�S

t (A) = , we have z =  or |z| – R�S
s (A) ≤ . Hence,

z ∈ �S
t,s(A).

If Rt(A)R�S
s (A) > , by (), we have

|z|
Rt(A)

≤  or
|z| – R�S

s (A)
R�S

s (A)
≤ .

When |z|–R�S
s (A)

R�S
s (A)

≥  and |z|
Rt (A) ≤ , letting a = |z|, b = R�S

t (A), c = , d = R�S
t (A) > , from

Lemma  in [] and (), we get

|z| – R�S
t (A)

R�S
t (A)

|z| – R�S
s (A)

R�S
s (A)

≤ |z|
Rt(A)

|z| – R�S
s (A)

R�S
s (A)

≤ .

Furthermore,

(|z| – R�S
t (A)

)(|z| – R�S
s (A)

) ≤ R�S
t (A)R�S

s (A),

which implies z ∈ �S
t,s(A). So,

z ∈ GS
t,s(A) ⊆ �S

t,s(A) and GS(A) ⊆ �S(A).
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(ii) Suppose that z ∈ G S̄(A), then there exist s ∈ S̄ and t ∈ S such that z ∈ G S̄
s,t(A). Similar

to the proof of (i), the conclusion holds.
(II) Let z ∈ �S(A), then z ∈ ⋃

i∈S,j∈S̄ �S
i,j(A) ∪ �S

i,j(A) or z ∈ ⋃
i∈S̄,j∈S �S̄

i,j(A) ∪ �S̄
i,j(A). We

also divide the proof into two parts.
(i) Suppose that z ∈ ⋃

i∈S,j∈S̄ �S
i,j(A) ∪ �S

i,j(A), then there exist t ∈ S and s ∈ S̄ such that
z ∈ �S

t,s(A) or z ∈ �S
t,s(A).

If z ∈ �S
t,s(A), that is, |z| ≤ R�S

t (A) and |z| ≤ R�S
s (A), then it is easy to get that

�S(A) ⊆ GS(A).
If z ∈ �S

t,s(A), that is,

(|z| – R�S
t (A)

)(|z| – R�S
s (A)

) ≤ R�S
t (A)R�S

s (A). ()

We assume R�S
t (A)R�S

s (A) > , it follows from () that

|z| – R�S
t (A)

R�S
t (A)

|z| – R�S
s (A)

R�S
s (A)

≤ . ()

When |z|–R�S
s (A)

R�S
s (A)

≥  and |z|
Rt (A) ≥ , letting a = |z|, b = R�S

t (A), c = , d = R�S
t (A) > , from

Lemma  in [] and (), we obtain

|z|
Rt(A)

|z| – R�S
s (A)

R�S
s (A)

≤ |z| – R�S
t (A)

R�S
t (A)

|z| – R�S
s (A)

R�S
s (A)

≤ .

Moreover,

|z|(|z| – R�S
s (A)

) ≤ Rt(A)R�S
s (A),

which implies z ∈ GS
t,s(A). Hence,

z ∈ �S
t,s(A) ⊆ GS

t,s(A) and �S(A) ⊆ GS(A).

(ii) Suppose that z ∈ ⋃
i∈S̄,j∈S (�S̄

i,j(A) ∪ �S̄
i,j(A)). Similar to the proof of (i), we arrive at

the result. �

Owing to the uncertainty of S, we cannot compare GS(A) with �S(A) theoretically
without the conditions of Corollary . Example  shows that they are different, since GS

i,j

(A)(G S̄
i,j(A)) and �S

i,j (A)(�S̄
i,j(A)) do not include each other.

Example  Let A = (aijk) ∈R[,] be a tensor with elements defined as follows:

aijk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = ; a = –; a = ; a = –;
a = –; a = ; a = ; a = –;
a = ; a = –; a = –; a = ;
aijk = , otherwise.
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According to Lemma , we have

K(A) =
⋃
i∈N

Ki(A) =
{
λ ∈ C : |λ| ≤ 

}
.

Let S = {}. Obviously, S̄ = {, }. From Theorem , one has

σ (A) ⊆ GS(A) =
{
λ ∈ C : |λ| ≤  +

√




}
,

where

GS
,(A) =

{
λ ∈ C : |λ| ≤  + 

√

}

, GS
,(A) =

{
λ ∈ C : |λ| ≤  +

√




}
,

G S̄
,(A) =

{
λ ∈ C : |λ| ≤  +

√


}
, G S̄

,(A) =
{
λ ∈ C : |λ| ≤  +

√


}
.

And it follows from Theorem  that

σ (A) ⊆ �S(A) =
{
λ ∈ C : |λ| ≤  +

√


}
,

where

�S
,(A) =

{
λ ∈ C : |λ| ≤  +

√




}
, �S

,(A) =
{
λ ∈ C : |λ| ≤  +

√


}
,

�S̄
,(A) =

{
λ ∈ C : |λ| ≤  +

√




}
, �S̄

,(A) =
{
λ ∈ C : |λ| ≤ 

}
.

3 Bounds on the largest Z-eigenvalue of weakly symmetric nonnegative
tensors

In this section, by Theorem  and Theorem , we give new sharp upper bounds for weakly
symmetric nonnegative tensors, which improve the results of [, , –, ] in a sense.
We start this section with some fundamental results of nonnegative tensors [].

Lemma  (Theorem . of []) Assume that A is a weakly symmetric nonnegative tensor.
Then ρ(A) = λ∗, where λ∗ denotes the largest Z-eigenvalue.

Theorem  Suppose that an m-order n-dimensional nonnegative tensor A is weakly sym-
metric and S is a nonempty proper subset of N . Then

ρ(A) ≤ uS = max
{

uS, uS̄},

where

uS = max
i∈S,j∈S̄




{
R�S

j (A) +
√(

R�S
j (A)

) + Ri(A)R�S
j (A)

}
,

uS̄ = max
i∈S̄,j∈S




{
R�S̄

j (A) +
√(

R�S̄
j (A)

) + Ri(A)R�S̄
j (A)

}
.
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Proof According to Lemma , we assume that ρ(A) = λ∗ is the largest Z-eigenvalue of A.
From Theorem , we get

ρ(A) ∈
⋃

i∈S,j∈S̄

GS
i,j(A)

or

ρ(A) ∈
⋃

i∈S̄,j∈S

G S̄
i,j(A).

For the case that ρ(A) ∈ ⋃
i∈S,j∈S̄ GS

i,j(A), there exist t ∈ S, s ∈ S̄ such that

(
ρ(A) – R�S

s (A)
)
ρ(A) ≤ Rt(A)R�S

s (A). ()

Solving ρ(A) in inequality (), we obtain

ρ(A) ≤ 


{
R�S

s (A) +
√(

R�S
s (A)

) + Rt(A)R�S
s (A)

}
. ()

Furthermore,

ρ(A) ≤ max
i∈S,j∈S̄




{
R�S

j (A) +
√(

R�S
j (A)

) + Ri(A)R�S
j (A)

}
. ()

For another case that ρ(A) ∈ ⋃
i∈S̄,j∈S G S̄

i,j(A), we also get

ρ(A) ≤ max
i∈S̄,j∈S




{
R�S̄

j (A) +
√(

R�S̄
j (A)

) + Ri(A)R�S̄
j (A)

}
. ()

It follows from () and () that the upper bound holds. �

On the basis of Theorem , we obtain another sharp bound of the largest Z-eigenvalue
for a weakly symmetric nonnegative tensor.

Theorem  Suppose that an m-order n-dimensional nonnegative tensor A is weakly sym-
metric and S is a nonempty proper subset of N . Then

ρ(A) ≤ vS = max
{

max
i∈S,j∈S̄

{
v̂S, ṽS}, max

i∈S̄,j∈S

{
v̂S̄, ṽS̄}},

where

v̂S = min
i∈S,j∈S̄

{
R�S

i (A), R�S
j (A)

}
,

ṽS =



{
R�S

i (A) + R�S
j (A) +

√(
R�S

i (A) – R�S
j (A)

) + R�S
i (A)R�S

j (A)
}

.

Proof Similar to the proof of Theorem , according to Lemma  and Theorem , the con-
clusion holds. �
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Remark  For a weakly symmetric nonnegative tensor A, as shown in the proofs of The-
orem  and Theorem , it is not hard to obtain that

uS ≤ max
i∈N

Ri(A) and vS ≤ max
i∈N

Ri(A).

Next, we take the following example to show the efficiency of our new upper bounds.

Example  ([]) Consider  order  dimensional tensor A = (aijk) defined by

aijk =

{
a = 

 ; a = ; a = ;
aijk = 

 , otherwise.

By computation, we get (ρ(A), x) = (., (., ., .)).
From Proposition . of [], we have

ρ(A) ≤ ..

From Corollary . of [], we have

ρ(A) ≤ ..

From Theorem . of [], we have

ρ(A) ≤ ..

From Theorem  of [], we have

ρ(A) ≤ ..

From Theorem . of [], we have

ρ(A) ≤ ..

From Theorem . of [], we have

ρ(A) ≤ ..

Let S = {}, then S̄ = {, }. By Theorem , we obtain

ρ(A) ≤ .;

according to Theorem , we obtain

ρ(A) ≤ ..
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4 Conclusions
In this paper, we consider the Z-eigenvalue for general tensors and obtain two new S-type
Z-eigenvalue inclusion sets. According to the above results, we present upper bounds on
the spectral radius of weakly symmetric nonnegative tensors and show that the results are
sharper than the upper bounds provided by [, , –, ] in Example .
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