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1 Introduction and main results
It is common knowledge that the Bernoulli polynomials Bn(x) and the Euler polynomials
En(x) for n ≥  can be generated by

t
et – 

ext =
∞∑

n=

Bn(x)
tn

n!

and


et + 

ext =
∞∑

n=

En(x)
tn

n!
,

respectively (see [–]).
With the viewpoint of deformed Bernoulli polynomials, the Daehee polynomials Dn(x)

for n ≥  are defined by the generating function to be

log ( + t)
t

( + t)x =
∞∑

n=

Dn(x)
tn

n!
. ()

It is easy to see that the generating function of the Daehee polynomials Dn(x) can be
reformed as

log ( + t)
t

( + t)x =
log ( + t)
elog (+t) – 

ex log (+t).
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From (), we note that

log ( + t)
elog (+t) – 

ex log (+t) =
∞∑

n=

Bn(x)

n!

(
log ( + t)

)n

=
∞∑

n=

Bn(x)
∞∑

m=n
S(m, n)

tm

m!

=
∞∑

m=

( m∑

n=

Bn(x)S(m, n)

)
tm

m!
, ()

where S(m, n) stands for the Stirling number of the first kind which is defined as

(x) = , (x)n = x(x – ) · · · (x – n + ) =
n∑

l=

S(n, l)xl (n ≥ ).

Combining () with () yields the following relation:

Dm(x) =
m∑

n=

Bn(x)S(m, n) (m ≥ ).

By replacing t by et –  in (), we can derive

∞∑

n=

Bn(x)
tn

n!
=

t
et – 

ext =
∞∑

m=

Dm(x)


m!
(
et – 

)m

=
∞∑

m=

Dm(x)
∞∑

n=m
S(n, m)

tn

n!

=
∞∑

n=

( n∑

m=

Dn(x)S(n, m)

)
tn

n!
, ()

where S(n, m) is the Stirling number of the second kind which is given by xn =
∑∞

l= S(n, l)(x)l (n ≥ ).
Comparing the coefficients on the both sides of (), we obtain

Bn(x) =
n∑

m=

Dm(x)S(n, m) (n ≥ ).

Also, with the viewpoint of deformed Euler polynomials, the Changhee polynomials
Chn(x) for n ≥  are defined by the generating function to be


 + t

( + t)x =
∞∑

n=

Chn(x)
tn

n!
. ()
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Definition () can be written as


elog (+t) + 

ex log (+t) =
∞∑

n=

En(x)

n!

(
log ( + t)

)n

=
∞∑

n=

En(x)
∞∑

m=n
S(m, n)

tm

m!

=
∞∑

m=

( m∑

n=

En(x)S(m, n)

)
tm

m!
.

Combination of this identity with () results in the following relation:

Chm(x) =
m∑

n=

En(x)S(m, n) (m ≥ ).

Now replacing t by et –  in (), we have

∞∑

n=

En(x)
tn

n!
=


et + 

ext =
∞∑

m=

Chm(x)


m!
(
et – 

)m

=
∞∑

m=

Chm(x)
∞∑

n=m
S(n, m)

tn

n!

=
∞∑

n=

( n∑

m=

Chn(x)S(n, m)

)
tn

n!
.

Equating coefficients on the very ends of the above identity leads to

En(x) =
n∑

m=

Chm(x)S(n, m) (n ≥ ).

In recent decades, many mathematicians have investigated some interesting extensions
or modifications of the Daehee and Changhee polynomials along with related combinato-
rial identities and their applications (see [, , , , , , , ]). Especially, Kim and his
coauthors have studied the Fourier series related to various types of Bernoulli functions
in [, –, ]. The purpose of this paper is to study the Fourier series related to higher-
order Daehee and Changhee functions and establish some new identities for higher-order
Daehee and Changhee functions.

For any real number x, we define

〈x〉 = x – [x] ∈ (, ),

where [x] is the integer part of x. Then Dn(〈x〉) are functions defined on (–∞,∞) and
periodic with period , which are called Daehee functions.

For r ∈ N and n ≥ , we note that the higher-order Daehee polynomials D(r)
n (x) and the

higher-order Changhee polynomials Ch(r)
n (x) may also be represented by the following
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generating function:

(
log ( + t)

t

)r

( + t)x =
∞∑

n=

D(r)
n (x)

tn

n!
()

and

(


 + t

)r

( + t)x =
∞∑

n=

Ch(r)
n (x)

tn

n!
, ()

respectively (see [, , ]). When x = , D(r)
n = D(r)

n () are called the higher-order Daehee
numbers and Ch(r)

n = Ch(r)
n () are called the higher-order Changhee numbers. And it is

easy to see that

D()
n (x) = Dn(x), Ch()

n (x) = Chn(x).

Then D(r)
n (〈x〉) and Ch(r)

n (〈x〉) are functions defined on (–∞,∞) and periodic of period ,
which are called Daehee functions of order r and Changhee functions of order r, respec-
tively.

Recall from [, ] that the Bernoulli function may be represented by

Bm
(〈x〉) = –m!

∞∑

n=–∞
n�=

eπ inx

(π in)m (m ≥ ) ()

and

–m!
∞∑

n=–∞
n�=

eπ inx

(π in)m =

⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z.
()

The Fourier series expansion of the Bernoulli functions is useful in computing the special
values of the Dirichlet L-functions. For details, one is referred to [].

Our main results in this paper can be stated as the following theorems.

Theorem  Let m ≥ , r ≥ . Assume that D(r)
m– = .

(a) D(r)
m (〈x〉) has the Fourier series expansion

D(r)
m

(〈x〉) = D(r)
m –

∞∑

n=–∞
n�=

( m∑

k=

(m)k

(π in)k D(r)
m–k

)
eπ inx

for x ∈ (–∞,∞). Here the convergence is uniform.
(b) D(r)

m (〈x〉) =
∑m

k=
k �=

(m
k
)
D(r)

m–Bk(〈x〉), for all x ∈ (–∞,∞), where Bk(〈x〉) is the Bernoulli

function.
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Theorem  Let m ≥ , r ≥ . Assume that D(r)
m– �= .

(a)

D(r)
m –

∞∑

n=–∞
n�=

( m∑

k=

(m)k

(π in)k D(r)
m–k

)
eπ inx =

⎧
⎨

⎩
D(r)

m (〈x〉) for x /∈ Z,

D(r)
m + m

 D(r)
m– for x ∈ Z.

Here the convergence is pointwise.
(b)

m∑

k=

(
m
k

)
D(r)

m–kBk
(〈x〉) = D(r)

m (x) for x /∈ Z

and

m∑

k=
k �=

(
m
k

)
D(r)

m–kBk
(〈x〉) = D(r)

m +
m


D(r)
m– for x ∈ Z,

where Bk(〈x〉) is the Bernoulli function.

Theorem  Let m ≥ , r ≥ . Assume that Ch(r)
m = Ch(r–)

m .
(a) Ch(r)

m (〈x〉) has the Fourier series expansion

Ch(r)
m

(〈x〉) =


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)

+
∞∑

n=–∞
n�=

( m∑

k=

(m)k–

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)
)

eπ inx

for x ∈ (–∞,∞). Here the convergence is uniform.
(b)

Ch(r)
m

(〈x〉) =


m + 
(
Ch(r)

m+ – Ch(r)
m+

)

+
m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m+

)
Bk

(〈x〉) for x /∈ Z

and

Ch(r)
m

(〈x〉) =


m + 
(
Ch(r–)

m+ – Ch(r)
m–k+

)

+
m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m+

)
Bk

(〈x〉) for x ∈ Z,

where Bk(〈x〉) is the Bernoulli function.
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Theorem  Let m ≥ , r ≥ . Assume that Ch(r)
m �= Ch(r–)

m .
(a)


m + 

(
Ch(r–)

m+ – Ch(r)
m+

)
+

∞∑

n=–∞
n�=

( n∑

k=

(m)k–

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)
)

eπ inx

=

⎧
⎨

⎩
Ch(r)

m (〈x〉) for x /∈ Z,

Ch(r–)
m for x ∈ Z.

Here the convergence is pointwise.
(b)


m + 

(
Ch(r–)

m+ – Ch(r)
m+

)
+

m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m–k+

)
Bk

(〈x〉)

= Ch(r)
m

(〈x〉) for x /∈ Z

and


m + 

(
Ch(r–)

m+ – Ch(r)
m+

)
+

m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m–k+

)
Bk

(〈x〉)

= Ch(r–)
m

(〈x〉) for x ∈ Z,

where Bk(〈x〉) is the Bernoulli function.

2 Proofs of Theorems 1-4
We are now in a position to prove our four theorems.

By analyzing definition (), we have

D(r)
m (x + ) = D(r)

m (x) + mD(r)
m–(x) (m ≥ ).

Furthermore, we observe that

∞∑

m=

D(r)
m (x)

tm

m!
=

(
log ( + t)

t

)r

( + t)x+

=
(

log ( + t)
t

)r

( + t)x +
(

log ( + t)
t

)r

( + t)xt

=
∞∑

m=

D(r)
m (x)

tm

m!
+

∞∑

m=

D(r)
m (x)

tm+

m!

=
∞∑

m=

(
D(r)

m (x) + mD(r)
m–(x)

) tm

m!
.

Letting x =  in the above equation leads to

D(r)
m () = D(r)

m + mD(r)
m– (m ≥ ).
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Now, we assume that m, r ≥ . D(r)
m (〈x〉) is piecewise C∞. Further, in view of (), D(r)

m (〈x〉)
is continuous for those (r, m) with D(r)

m– = , and is discontinuous with jump disconti-
nuities at integers for those (r, m) with D(r)

m– �= . The Fourier series of D(r)
m (〈x〉) may be

represented by

∞∑

n=–∞
C(r,m)

n eπ inx (i =
√

–),

where

C(r,m)
n =

∫ 


D(r)

m
(〈x〉)e–π inx dx =

∫ 


D(r)

m (x)e–π inx dx

=
[


m + 

D(r)
m+(x)e–π inx

]


+

π in
m + 

∫ 


D(r)

m+(x)e–π inx dx

=


m + 
(
D(r)

m+() – D(r)
m+

)
+

π in
m + 

C(r,m+)
n

= D(r)
m +

π in
m + 

C(r,m+)
n . ()

Replacing m by m –  in (), we arrive at the following result:

C(r,m–)
n = D(r)

m– +
π in

m
C(r,m)

n .

Case  Let n �= . Then we acquire that

C(r,m)
n =

m
π in

C(r,m–)
n –

m
π in

D(r)
m–

=
m

π in

(
m – 
π in

C(r,m–)
n –

m – 
π in

D(r)
m–

)
–

m
π in

D(r)
m–

=
m(m – )
(π in) C(r,m–)

n –
m(m – )
(π in) D(r)

m– –
m

π in
D(r)

m–

=
m(m – )
(π in)

(
m – 
π in

C(r,m–)
n –

m – 
π in

D(r)
m–

)

–
m(m – )
(π in) D(r)

m– –
m

π in
D(r)

m–

=
m(m – )(m – )

(π in) C(r,m–)
n –

m(m – )(m – )
(π in) D(r)

m–

–
m(m – )
(π in) D(r)

m– –
m

π in
D(r)

m–

= · · ·

=
m(m – )(m – ) · · ·

(π in)m– C(r,)
n –

m–∑

k=

(m)k

(π in)k D(r)
m–k . ()
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Moreover, we observe that

C(r,)
n =

∫ 


D(r)

 (x)e–π inx dx =
∫ 



(
x + D(r)


)
e–π inx dx

=
∫ 


xe–π inx dx + D(r)



∫ 


e–π inx dx

= –


π in
[
xe–π inx]

 +


π in

∫ 


e–π inx dx = –


π in

. ()

Combining () with (), we immediately derive the following equation:

C(r,m)
n =

m!
(π in)m –

m–∑

k=

(m)k

(π in)k D(r)
m–k = –

m∑

k=

(m)k

(π in)k D(r)
m–k .

Case  Let n = . Then we have

C(r,m)
 =

∫ 


D(r)

m
(〈x〉)dx =

∫ 


D(r)

m (x) dx

=


m + 
[
D(r)

m+(x)
]



=


m + 
(
D(r)

m+() – D(r)
m+

)
= D(r)

m .

While that in () converges pointwise, the series in () converges uniformly. We assume
that D(r)

m– = . Then we have D(r)
m () = D(r)

m for m ≥ . As D(r)
m (〈x〉) is piecewise C∞ and

continuous, the Fourier series of D(r)
m (〈x〉) converges uniformly to D(r)

m (〈x〉) and

D(r)
m

(〈x〉) =
∞∑

n=–∞
C(r,m)

n eπ inx

= D(r)
m –

∞∑

n=–∞
n�=

( m∑

k=

(m)k

(π in)k D(r)
m–k

)
eπ inx

= D(r)
m +

m∑

k=

(m)k

k!
D(r)

m–k

(
k!

∞∑

n=–∞
n�=

eπ inx

(π in)k

)

= D(r)
m +

m∑

k=

(
m
k

)
D(r)

m–kBk
(〈x〉) +

(
m


)
D(r)

m– ×
⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z

=

⎧
⎨

⎩

∑m
k=

(m
k
)
D(r)

m–Bk(〈x〉) for x /∈ Z,
∑m

k=
k �=

(m
k
)
D(r)

m–Bk(〈x〉) for x ∈ Z.
()

Note that () holds whether D(r)
m– =  or not. However, if D(r–)

m– = , then

D(r)
m

(〈x〉) =
m∑

k=
k �=

(
m
k

)
D(r)

m–Bk
(〈x〉) for all x ∈ (–∞,∞).

Therefore, we obtain the result in Theorem .
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Assume next that D(r)
m– �= . Then we have D(r)

m () �= D(r)
m and hence D(r)

m (〈x〉) is piecewise
C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier series of
D(r)

m (〈x〉) converges pointwise to D(r)
m (〈x〉) for x /∈ Z, and converges to 

 (D(r)
m + D(r)

m ()) =
D(r)

m + (m/)D(r)
m– for x ∈ Z. Finally, we obtain the formulas in Theorem .

From now on we focus on definition (). Then we can find

Ch(r)
m (x + ) + Ch(r)

m (x) = Ch(r–)
m (x). ()

In other words,

∞∑

m=

Ch(r)
m (x + )

tm

m!
=

(


 + t

)r

( + t)x+

= 
(


 + t

)r–

( + t)x –
(


 + t

)r

( + t)x

= 
∞∑

m=

Ch(r–)
m (x)

tm

m!
–

∞∑

m=

Ch(r)
m (x)

tm

m!

=
∞∑

m=

[
Ch(r–)

m (x) – Ch(r)
m (x)

] tm

m!
.

Taking x =  in () yields

Ch(r)
m () + Ch(r)

m = Ch(r–)
m (m ≥ ).

This equation means that

Ch(r)
m = Ch(r)

m () ⇔ Ch(r)
m = Ch(r–)

m .

Assume that m ≥  and r ≥  Ch(r)
m (〈x〉) is piecewise C∞. In addition, Ch(r)

m (〈x〉) is con-
tinuous for those (r, m) with Ch(r)

m = Ch(r–)
m and discontinuous with jump discontinuities

at integers for those (r, m) with Ch(r)
m �= Ch(r–)

m . The Fourier series of Ch(r)
m (〈x〉) is

∞∑

n=–∞
C(r,m)

n eπ inx.

Here

C(r,m)
n =

∫ 


Ch(r)

m
(〈x〉)e–π inx dx =

∫ 


Ch(r)

m (x)e–π inx dx

=


m + 
[
Ch(r)

m+(x)e–π inx]
 +

π in
m + 

∫ 


Ch(r)

m+(x)e–π inx dx

=


m + 
(
Ch(r)

m+() – Ch(r)
m+

)
+

π in
m + 

C(r,m+)
n

=


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)
+

π in
m + 

C(r,m+)
n . ()

By virtue of replacing m by m –  in (), we can find

π in
m

C(r,m)
n = C(r,m–)

n +

m

(
–Ch(r–)

m + Ch(r)
m

)
.
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Case  Let n �= . Then we acquire that

C(r,m)
n =

m
π in

C(r,m–)
n +


π in

(
Ch(r)

m – Ch(r–)
m

)

=
m

π in

(
m – 
π in

C(r,m–)
n –


π in

(
Ch(r)

m– – Ch(r–)
m–

))

+


π in
(
Ch(r)

m – Ch(r–)
m

)

=
m(m – )
(π in) C(r,m–)

n +
m

(π in)

(
Ch(r)

m– – Ch(r–)
m–

)

+


π in
(
Ch(r)

m – Ch(r–)
m

)

=
m(m – )
(π in)

(
m – 
π in

C(r,m–)
n –


π in

(
Ch(r)

m– – Ch(r–)
m–

))

+
m

(π in)

(
Ch(r)

m– – Ch(r–)
m–

)
+


π in

(
Ch(r)

m – Ch(r–)
m

)

=
m(m – )(m – )

(π in) C(r,m–)
n +

m(m – )
(π in)

(
Ch(r)

m– – Ch(r–)
m–

)

+
m

(π in)

(
Ch(r)

m– – Ch(r–)
m–

)
+


π in

(
Ch(r)

m – Ch(r–)
m

)

= · · ·

=
m!

(π in)m– C(r,)
n +

m–∑

k=

(m)k

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)
.

In addition, we observe that

C(r,)
n =

∫ 


Ch(r)

 (x)e–π inx dx =
∫ 



(
x + Ch(r)


)
e–π inx dx

=
∫ 


xe–π inx dx + Ch(r)



∫ 


e–π inx dx

= –


π in
[
xe–π inx]

 +


π in

∫ 


e–π inx dx

= –


π in
.

Therefore, we can derive the following equation:

C(r,m)
n =

–m!
(π in)m +

m–∑

k=

(m)k–

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)

=
m∑

k=

(m)k–

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)
.

Here, we used the fact that

Ch(r)
 – Ch(r–)

 = rCh – (r – )Ch = Ch = –



.
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Indeed,

∞∑

n=

Ch(r)
n

tn

n!
=

(


 + t

)
× · · · ×

(


 + t

)

=
∞∑

n=

( ∑

l+···+lr=n

(
n

l, l, . . . , lr

)
Chl Chl · · ·Chlr

)
tn

n!
.

Accordingly, it follows that

Ch(r)
 =

∑

l+···+lr=

(


l, l, . . . , lr

)
Chl Chl · · ·Chlr

= Ch + Ch + · · · + Ch = rCh.

Case  Let n = . Then we have

C(r,m)
 =

∫ 


Ch(r)

m (x) dx

=


m + 
[
Ch(r)

m+() – Ch(r)
m+

]


=


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)
.

Assume first that Ch(r)
m () = Ch(r)

m . Then we have Ch(r)
m () = Ch(r)

m for m ≥ . Ch(r)
m (〈x〉) is

piecewise C∞ and continuous. Hence the Fourier series of Ch(r)
m (〈x〉) converges uniformly

to Ch(r)
m (〈x〉), and

Ch(r)
m

(〈x〉) =


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)

+
∑

n=–∞
n�=

[ m∑

k=

(m)k–

(π in)k

(
Ch(r)

m–k+ – Ch(r–)
m–k+

)
]

eπ inx.

Consequently, it follows that

Ch(r)
m

(〈x〉) =


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)

+
m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m–k+

) ∑

n=–∞
n�=

(–k!)
eπ inx

(π in)k

=


m + 
(
Ch(r–)

m+ – Ch(r)
m+

)

+
m∑

k=

(m)k–

k!
(
Ch(r–)

m–k+ – Ch(r)
m–k+

)
Bk

(〈x〉)

+ 
(
Ch(r–)

m – Ch(r)
m

) ×
⎧
⎨

⎩
B(〈x〉) for x /∈ Z,

 for x ∈ Z.

Thus the proof of Theorem  is complete.
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Finally, assume that Ch(r)
m �= Ch(r–)

m . Then we have Ch(r)
m () �= Ch(r)

m and hence Ch(r)
m (〈x〉) is

piecewise C∞ and discontinuous with jump discontinuities at integers. Thus the Fourier
series of Ch(r)

m (〈x〉) converges pointwise to Ch(r)
m (〈x〉) for x /∈ Z, and converges to 

 (Ch(r)
m +

Ch(r)
m ()) = Ch(r–)

m for x ∈ Z. From the above considerations, the proof of Theorem  is
complete.

3 Conclusions
In this paper, the author considered the Fourier series expansion of the higher-order Dae-
hee functions D(r)

n (〈x〉) and the higher-order Changhee functions Ch(r)
n (〈x〉) which are ob-

tained by extending by periodicity of period  the higher-order Daehee polynomials D(r)
n (x)

and the higher-order Changhee polynomials Ch(r)
n (x) on [, ), respectively. The Fourier

series are explicitly determined. Depending on whether D(r)
n (〈x〉) and Ch(r)

n (〈x〉) are zero
or not, the Fourier series of these functions converge uniformly or converge pointwise. In
addition, the Fourier series of the higher-order Daehee functions D(r)

n (〈x〉) and the higher-
order Changhee functions Ch(r)

n (〈x〉) are expressed in terms of the Bernoulli functions
Bk(〈x〉). Thus we established the relations between these functions and Bernoulli func-
tions.
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