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Abstract
In this paper, we consider the Lp-Hardy inequalities on the sphere. By the divergence
theorem, we establish the Lp-Hardy inequalities on the sphere. Furthermore, we also
obtain their best constants. Our results can be regarded as the extension of Xiao’s
(J. Math. Inequal. 10:793-805, 2016).
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1 Introduction
The classical Hardy inequality states that for N ≥  and p > 

∫
RN

|∇u|p dx ≥
∣∣∣∣N – p

p

∣∣∣∣
p ∫

RN

|u|p
|x|p dx, ()

with u ∈ C∞
 (RN ) \ {} and |N–p

p |p the best constant. In recent years, many papers have
been dedicated to improved versions of the above inequality because of its application
to singular problems. We see [–] and the references therein. Hardy inequalities are a
subfamily of the Caffarelli-Kohn-Nirenberg inequalities. In a Riemannian manifold, the
knowledge of the validity of these inequalities and their best constants allows us to obtain
qualitative properties on the manifold [–].

Recently, Carron [] studied the weighted L-Hardy inequalities on a Riemannian man-
ifold under some geometric assumptions on the weighted function ρ and obtained the
following inequality:

∫
M

ρα|∇u| dx ≥
∣∣∣∣C + α – 



∣∣∣∣
 ∫

M
ρα |u|

ρ dx,

where the weighted function ρ satisfies |∇ρ| =  and �ρ ≥ C
ρ

. In [], Grillo obtained
Hardy, Rellich and Sobolev inequalities in homogeneous spaces. Recently, Kombe and
Özaydin [] extended Carron’s results to the general case p �= . Moreover, they obtained
the sharp versions of improved Hardy inequalities and an improved Rellich inequality
in hyperbolic spaces. By the divergence theorem and careful choices of a vector field,
D’Ambrosio and Dipierro [] proved a sufficient criterion to obtain Lp-Hardy inequal-
ities on Riemannian manifolds. That is, if ρ satisfies –�pρ ≥ , then the following Hardy
inequality was obtained:

C
∫

M
|∇ρ|p |u|p

ρp dVg ≤
∫

M
|∇u|p dVg , ∀u ∈ C∞

 (M).
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Very recently, by a similar approach that appeared in [], Xiao [] studied the L-Hardy
inequality and the Rellich inequality on the sphere, and obtained their best constants.
Yang, Su and Kong [] considered the Lp-Hardy inequalities on a complete, simply con-
nected Riemannian manifold with negative curvature. They obtained the sharp constants
of Hardy and Rellich inequalities related to the geodesic distance. In this paper, we aim to
extend Xiao’s results [] to a general case.

2 Our main results
Our main result is the following Lp-Hardy inequality on the sphere.

Theorem  Let N ≥ ,  < p < N , q ∈ SN , then there exists a positive constant C >  such
that for all f ∈ C∞(SN ), we have for  ≤ p < N ,

C
∫

SN

|f |p
sinp– d(x, q)

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
dp(x, q)

+
|f |p

(π – d(x, q))p

)
dV ()

for  < p < ,

C
∫

SN
|f |p dV +

∫
SN

|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
dp(x, q)

+
|f |p

(π – d(x, q))p

)
dV , ()

where d(x, q) is the geodesic distance of x and q. Moreover, ( N–p
p )p is the best constant.

Remark  When p = , inequality () was obtained by Xiao []. When  < p < ,∫
SN

|f |p
sinp– d(x,q) dV cannot control the right-hand side of () since sinp– d(x, q) is large

enough when x is close to q. Therefore, we use
∫

SN |f |p dV as the left-hand side of the
inequality instead of

∫
SN

|f |p
sinp– d(x,q) dV .

Although our approach is similar to Xiao’s [], the appearance of general p makes the
calculation more complicated, especially for the existence of the constant C in Theorem .

3 Preliminaries and notations
Let SN = {x = (x, x, . . . , xn+) ∈ RN+; |x| = } be the unit sphere of dimension N . Let
(θ, θ, . . . , θN ) be the angular variables on SN . For simplicity, we define θN = θ , where
xN+ = |x| cos θN . By polar coordinates associated with θ , we get

∫
SN

f dV =
∫

SN–

∫ π


f sinN– θ dσ dθ ,

where dσ is the canonical measure of the unit sphere SN–. We say that a function f on SN

is an angular function if f depends only on θ . In this case,

�Sf = sin–N θ
d

dθ

(
sinN– θ

df
dθ

)
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and

∣∣∇Sf (θ )
∣∣ =

∣∣f ′(θ )
∣∣.

See []. For more basic properties on the sphere, we refer to [].

4 The proof of Theorem 1
Now we give the proof of Theorem .

Let f = ργ ϕ, ρ = sin θ , γ = – N–p
p , by the calculation that appeared in [], one has

|∇Sf |p =
∣∣∇S

(
ργ

)
ϕ + ργ ∇Sϕ

∣∣p

≥ ∣∣∇S
(
ργ

)
ϕ
∣∣p + p

∣∣∇S
(
ργ

)
ϕ
∣∣p–|∇S

(
ργ

)
ϕ · ργ ∇Sϕ,

then integration by parts gives

∫
SN

|∇Sf |p dV ≥ |γ |p
∫

SN
ργ p–p|∇Sρ|p|ϕ|p dV –

|γ |p–γ

γ p – p + 

∫
SN

�S
(
ργ p–p+)|ϕ|p dV .

Since

|∇Sρ| = |∇S sin θ | = | cos θ |

and

�S
(
ργ p–p+) = �S

(
sin–N θ

)
= (N – ) sin–N θ ,

one has

∫
SN

|∇Sf |p dV ≥
(

N – p
p

)p ∫
SN

| cos θ |p|ϕ|p
sinN θ

dV –
(

N – p
p

)p– ∫
SN

|ϕ|p
sinN– θ

dV .

While

| cos θ |p =
∣∣cos θ

∣∣ p
 =

(
 – sin θ

) p
 ≥  –

p


sin θ for p ≥ 

and

| cos θ |p ≥ cos θ for  < p ≤ .

The previous inequality can be written as follows:

∫
SN

|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

|ϕ|p
sinN θ

dV

–
((

N – p
p

)p–

+ min

{
p


, 
}(

N – p
p

)p)∫
SN

|ϕ|p
sinN– θ

dV .
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Define C(N , p) = ( N–p
p )p– + min{ p

 , }( N–p
p )p, then

C(N , p)
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

|f |p
sinp θ

dV . ()

In order to get our result, we rewrite the above inequality as

C(N , p)
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV

+
(

N – p
p

)p ∫
SN

|f |p
sinp– θ

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
dV . ()

As we know, for p > ,

lim
θ→+

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
= lim

θ→+

θp – sinp θ

θp+

= lim
θ→+

 – ( sin θ
θ

)p

θ

≥ lim
θ→+

 – ( sin θ
θ

)

θ

=



> ,

and for p = ,

lim
θ→+

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
=




–

π

> .

Also, by a similar calculation, one has for p > 

lim
θ→π–

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
≥ 


> ,

and for p = 

lim
θ→π–

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
≥ 


–


π

> .

Therefore, there exist a constant θ >  small enough and θ < π close to π such that for
any θ ∈ (, θ] ∪ [θ,π ), one has that


sin θ

–
sinp– θ

θp –
sinp– θ

(π – θ )p >  for p ≥ .
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Thus from inequality (), one has

C(N , p)
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV

+
(

N – p
p

)p ∫
SN ∩([,θ]∪[θ,π ])

|f |p
sinp– θ

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
dV

+
(

N – p
p

)p ∫
SN ∩[θ,θ]

|f |p
sinp– θ

(


sin θ
–

sinp– θ

θp –
sinp– θ

(π – θ )p

)
dV

≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV – C

∫
SN

|f |p
sinp– θ

dV ,

where C = supθ∈[θ,θ]( 
sin θ

– sinp– θ
θp – sinp– θ

(π–θ )p ).
Let C = C(N , p) + C, one has that for p ≥ 

C
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV ≥

(
N – p

p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV ,

which is exactly inequality ().
While for  < p < , we get from inequality () that

C(N , p)
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV

+
(

N – p
p

)p ∫
SN

|f |p
(


sinp θ

–

θp –


(π – θ )p

)
dV . ()

By a similar calculation, we get that for  < p < 

–


(π – θ )p ≤
(


sinp θ

–

θp –


(π – θ )p

)

=
 – ( sin θ

θ
)p

sinp θ
–


(π – θ )p ≤  – ( sin θ

θ
)

sin θ
–


(π – θ )p .

Since

lim
θ→+

–


(π – θ )p = –


πp , lim
θ→+

 – ( sin θ
θ

)

sin θ
–


(π – θ )p =




–


πp ,

we get that there exists a constant θ >  small enough such that

sup
θ∈[,θ]

∣∣∣∣
(


sinp θ

–

θp –


(π – θ )p

)∣∣∣∣ < +∞.
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Furthermore, by a similar calculation, we get that there exists a constant θ close to π such
that

sup
θ∈[θ,π ]

∣∣∣∣
(


sinp θ

–

θp –


(π – θ )p

)∣∣∣∣ < +∞.

Therefore, we get that

C := sup
θ∈[,π ]

∣∣∣∣
(


sinp θ

–

θp –


(π – θ )p

)∣∣∣∣ < +∞.

Then, by inequality (), one has

C(N , p)
∫

SN

|f |p
sinp– θ

dV +
∫

SN
|∇Sf |p dV

≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV – C

(
N – p

p

)p ∫
SN

|f |p dV .

Let C = C(N , p) + C( N–p
p )p, we get for  < p < 

C
∫

SN
|f |p dV +

∫
SN

|∇Sf |p dV ≥
(

N – p
p

)p ∫
SN

( |f |p
θp +

|f |p
(π – θ )p

)
dV ,

which is exactly inequality ().
Now we prove that ( N–p

p )p is the best constant of inequalities () and ().
Let ϕ(t) ∈ [, ] be a cut-off function such that ϕ(t) ≡  for |t| ≤ ; ϕ(t) ≡  for |t| > .

Define H(t) =  – ϕ(t) and

fε(θ ) = H
(

θ

ε

)
θ

p–N
p for  < θ ≤ π ; fε(θ ) =  for θ = .

Then we have

∫
SN

|fε |p
sinp– θ

dV =
∣∣SN–∣∣

∫ π

ε

Hp
(

θ

ε

)
θp–N sinN–p+ θ dθ ≤ ∣∣SN–∣∣π – ε


, ()

∫
SN

|fε |p dV =
∣∣SN–∣∣

∫ π

ε

Hp
(

θ

ε

)
θp–N sinN– θ dθ ≤ ∣∣SN–∣∣πp – εp

p
, ()

∫
SN

|fε |p
θp dV =

∣∣SN–∣∣ ∫ π

ε

Hp
(

θ

ε

)
θ–N sinN– θ dθ ≥ ∣∣SN–∣∣ ∫ π

ε

θ–N sinN– θ dθ , ()
∫

SN
|∇Sfε |p dV

=
∣∣SN–∣∣

∫ π

ε

∣∣∣∣ 
ε

H ′
(

θ

ε

)
θ

p–N
p +

p – N
q

H
(

θ

ε

)
θ

– N
p

∣∣∣∣
p

sinN– θ dθ

=
∣∣SN–∣∣ ∫ ε

ε

∣∣∣∣ 
ε

H ′
(

θ

ε

)
θ

p–N
p +

p – N
p

H
(

θ

ε

)
θ

– N
p

∣∣∣∣
p

sinN– θ dθ

+
∣∣SN–∣∣

(
N – p

p

)p ∫ π

ε

∣∣∣∣H
(

θ

ε

)
θ

– N
p

∣∣∣∣
p

sinN– θ dθ
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≤ C max
t∈[,]

∣∣H ′(t)
∣∣ + C

∫ ε

ε

θ– dθ +
∣∣SN–∣∣

(
N – p

p

)p ∫ π

ε

θ–N sinN– θ dθ

≤ C +
∣∣SN–∣∣

(
N – p

p

)p ∫ π

ε

θ–N sinN– θ dθ . ()

Therefore, for p ≥ , from inequalities (), () and (), one has

inf
f ∈C∞(SN )

C
∫

SN
|f |p

sinp– θ
dV +

∫
SN |∇Sf |p dV∫

SN
|f |p
θp dV

≤ C
∫

SN
|fε |p

sinp– θ
dV +

∫
SN |∇Sε f |p dV∫

SN
|fε |p
θp dV

≤ |SN–|π–ε

 + C + |SN–|( N–p
p )p ∫ π

ε
θ–N sinN– θ dθ

|SN–| ∫ π

ε
θ–N sinN– θ dθ

,

then passing to the limit as ε → +, we have

inf
f ∈C∞(SN )

C
∫

SN
|f |p

sinp– θ
dV +

∫
SN |∇Sf |p dV∫

SN
|f |p
θp dV

≤
(

N – p
p

)p

. ()

Since limε→+
∫ π

ε
θ–N sinN– θ dθ → +∞.

While for  < p < , from (), () and (), one has

inf
f ∈C∞(SN )

C
∫

SN |f |p dV +
∫

SN |∇Sf |p dV∫
SN

|f |p
θp dV

≤ C
∫

SN |fε |p dV +
∫

SN |∇Sε f |p dV∫
SN

|fε |p
θp dV

≤ |SN–|πp–εp

p + C + |SN–|( N–p
p )p ∫ π

ε
θ–N sinN– θ dθ

|SN–| ∫ π

ε
θ–N sinN– θ dθ

,

then passing to the limit as ε → +, we have

inf
f ∈C∞(SN )

C
∫

SN |f |p dV +
∫

SN |∇Sf |p dV∫
SN

|f |p
θp dV

≤
(

N – p
p

)p

. ()

Therefore, from (), (), () and (), we get that ( N–p
p )p is the best constant of inequalities

() and (). Proof of Theorem  is finished.

5 Conclusion
In this paper, we consider the Hardy type inequalities on the sphere. By the divergence
theorem [], we extend the results of Xiao [] to a general case. We establish the Lp-Hardy
inequalities on the sphere and obtain their best constants.
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