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1 Introduction

Let R(C) be the real (complex) field, p, g, m, n be positive integers, [ = p + g, m,n > 2 and
N ={1,2,...,n}. Wecall A = (a;,...,j,.;,) areal (p,q)th order m x n dimensional rectangular
tensor, or simply a real rectangular tensor, denoted by A € Rlpamnl if

a eR, 1=<i,...,ip<ml1=<jy,...,.jy<n

i1-ipf1 g

When p = g =1, Ais simply areal m x n rectangular matrix. This justifies the word ‘rectan-

gular’ We call A nonnegative, denoted by A € R¥#”" if each of its entries iy ipjyjq = 0.
For any vectors x = (x1,%,. N L y =192, ..,y,,)T and any real number «, denote

2l = (¢, x5, ..., x9) T and Y1 = (99, 9%,...,9%)T. Let Ax?"1y7 be a vector in R” such that

m n
-1.4) —
(AxP"1y7), = Z Z itgeipfi g iy - Xip Vi Vg

12 seerip=1 1 pjq =1

where i = 1,...,m. Similarly, let Ax”y7! be a vector in R” such that

m

n
-1\ _ e A e X A e e e
('Axpyq ),‘ = Z § : Aiy-wipfjn-jq¥in " Kipdjp " Vigr

i1ip=1j2ynjg=1

where j = 1,...,n. If there are a number A € C, vectors x € C"\{0}, and y € C"\{0} such
that

AxP Lyt = pli-1),
Ax"yq‘l - Ay[l—ll,
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then A is called the singular value of 4, and (x, y) is a pair of left and right eigenvectors of
A, associated with A, respectively. If » € R,x € R”, and y € R”, then we say that A is an
H-singular value of A, and (x, y) is a pair of left and right H-eigenvectors associated with
A, respectively. If a singular value is not an H-singular value, we call it an N-singular value
of A [1]. We call

Ao = max{ |A] : A is a singular value of .A}

the largest singular value [2].

Note here that the definition of singular values for tensors was first proposed by Lim
in [3]. When [ is even, the definition in [1] is the same as in [3]. When [ is odd, the definition
in [1] is slightly different from that in [3], but parallel to the definition of eigenvalues of
square matrices [4]; see [1] for details.

When m = n, such real rectangular tensors have a sound application background. For
example, the elasticity tensor is a tensor with p = ¢ =2 and m = n = 2 or 3; for details,
see [1]. Due to the fact that singular values of rectangular tensors have a wide range of
practical applications in the strong ellipticity condition problem in solid mechanics [5, 6]
and the entanglement problem in quantum physics [7, 8], very recently, it has attracted
attention of researchers [9-17]. Chang et al. [1] studied some properties of singular val-
ues of rectangular tensors, which include the Perron-Frobenius theorem of nonnegative
irreducible tensors. Yang et al. [2] extended the Perron-Frobenius theorem of nonnegative
irreducible tensors to nonnegative tensors, and gave the upper and lower bounds of the
largest singular value of nonnegative rectangular tensors.

Our goal in this paper is to propose a singular value inclusion set for rectangular tensors
and use the set to obtain new upper and lower bounds for the largest singular value of

nonnegative rectangular tensors.

2 Main results
In this section, we begin with some notation. Let A € R%"") For Vi,j € N,i #j, denote

Ri(A) = Z @iy iy g |

i2,...,ip,j1,...,jq€N

r{(.A) = Z |aii2~~ip1’1qu| = R,(.A) - |6l,'j...j]‘.“}' ’

S/izA,.L‘pjlu,jq =0

CI(‘A) = Z |a,»1...,vpj,»2..‘,'q|,

iLeerippfarnjq€N

C;(.A) = Z |ﬂi1~<ipj]'2-~jq| = C](.A) - |ai»~iji~-i|r

i1 -ipifp g =0

where

5 1 ifi=-=ip=ji="=j,
i ipflejg =
e 0 otherwise.
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Theorem 1 Let A € RP%" S be a nonempty proper subset of N, S be the complement of
Sin N. Then

o(A) S T5(A) = U (?i,j(A) U ?i,j(-A)) U ( U (p%i,j(A) U :ri,j(-A))),
ieS,jeS ieS,jeS

where

Tij(A) = {zeC: (2] - ’{(A))|Z| < laj...j..;lmax{R;(A), C(A)}},
Tij(A) = [z € C: (12| - d(A)lz] < |a;..jiz;] max{R;(A), (A} .

Proof For any A € o (A), let x = (x1,%,...,%,)T € C"\{0} and y = (y1,¥2,...,y,)" € C"\{0}
be the associated left and right eigenvectors, that is,

{ Ax? 7Lyt = 1, @
AxPyT™t = pyl-1, (2)
Let
EX =IIZL%X{|xi|}; EA =r§1€%x{|xi|}, A =I§1€ng{|yi|}, |ynl =r§)€%X{|yi|},
wi=max{lsl lyil},  ws=maxiw),  ws=max{w).

Then, at least one of |x,| and |x;| is nonzero, and at least one of |y,| and |y,| is nonzero.
We divide the proof into four parts.
Case I: Suppose that wg = ||, wg = |x¢|, then |xs| > |ys|, %] > |yel-

(i) If |xs| > |o¢|, then |xs| = max;en{w;}. The sth equality in (1) is

-1 _ Z -1 4
Axs = asiz...iph...jqxiz B ~xipy,«1 .. 'y]'q + ast...tt...txf Ve

5;52.,.ipj1..,jq=0

Taking modulus in the above equation and using the triangle inequality give

-1
Mlxal™ < Y Naaigeipireig 0| i 11931 3
3ti2"'ip/1"'fq:0
-1
+ | Gspegpee |2 1P e

-1 -1
S D Asigeigirig 8l |t

Stioy-ipjy+jg =0

-1 -1
= "ﬁ(A)|xs| S (22 | ) R
ie.,

(IA] = 7 CA)) sl < (e e 3)
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If || = 0, then |A| — £(A) < 0 as |x,| > 0, and it is obvious that
(IX] = 7EHCA)) A < 0 < |age..sp-1|R(A),

which implies that A € ?S,t(A). Otherwise, |x¢| > 0. Moreover, from the ¢th equality in (1),

we can get
-1
Mlxel™ < D sigiog i i, |- |
12yl e qEN
-1
< Re(Alaxs| (4)

Multiplying (3) by (4) and noting that |x|"!|x,|"* > 0, we have
(|)L| - ’"ﬁ(A))|)h| < |ast..tt..t|R:(A),

which also implies that 1 € T;,(A) C UieS,jeS YA‘,»,,-(A).

(i) If |o¢| > |x], then |x¢| = max;en{w;}. Similarly, we can get
(|}‘| - r;(-A))|M < |as...ss.s|Rs(A),

and A € T4(A) € U ‘?\i,j(-A)'
Case II: Suppose that ws = [y,|, wg = |yxl, then [yg| > |xgl, [yul > |xnl.

ieS,jeS

(i) If |yg| = |ynl, then |yg| = max;en{w;}. The gth equality in (2) is

-1 _ o . . g-1
Ayg = E ullmlpglzm,qxll---xlpylz---y,q+ahmhghmhx§yh .

5,‘1,.A,-phj2,,.jq =0

Taking modulus in the above equation and using the triangle inequality give

-1
Mlyel™ < D0 iipgaig 1|+ 2, ||+ 13,
‘Sil"‘iphl'Z'“/'qzo
-1
+ | @h...ngh-.n 1 P |y
-1 -1
< Z iy ipgin-jg | 1Ye| ™ + |Gn-..gh-.n| | Yh]
551"'iph12"'/q=0
h -1 -1
= Co(A)ye|™ + |an..ngn-nllynl™
ie.,
)\‘ h A -1 < -1 5
(1M = cg(A)) 1ygl ™ < lanngh-nllyul " (5)

If |yy| = 0, then |A| - c‘é‘(A) <0 as |y,| >0, and furthermore

(1A = (A)IA < 0 < |ap..igh-u| Cu(A),
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which implies that A € fg,h (A). Otherwise, |y;| > 0. Moreover, from the hth equality in (2),

we can get

-1
Mlyal ™ = D0 @by 150 | -+ 0, 1]+ 3]
i1yemipsf2,ejqg €N

< Cyp(A)lyg|. (6)

Multiplying (5) by (6) and noting that [y,|"*|y;|'™* > 0, we have
(1M = GANIAL < |ap.igh-n Cu(A),

which also implies that A € Tgh(A) C UzeS;eS ,,(.A)
(ii) If [yn| > |y, l, then |yy| = max;en {w;}. Similarly, we can get

(121 = & (A) 1A < Ig-ghg--g| Co(A),
and A € T;,g(A) C UzeS;eS ,,(.A)
Case III: Suppose that wg = |x|, ws = |yu|, then |x5| > |y, [yu| = |xnl. If |x5] > |ynl, then
|xs| = max;cn {w;}. Similar to the proof of (3) and (6), we have
(I = P2 (A) s ™ < N lynl ™
and
[Alyal™ < Cr(A)lxsl
Furthermore, we have

(1Al = PH(A)) AL < |aginn| Cr(A),

which implies that A € "%sh ) C UzeS/ 1j(A). And if |y, | > |x], then |y,| = maxen{w;}.
Similarly, we can get

(|)"| - C;,(A))|)‘| = |ﬂs---shs---s|Rs(A):
which implies that A € T},(A) C UieS,jeS fi,,'(.A).

Case IV: Suppose that ws = |ygl, ws =[x, then |yg| = |xg], || = [yel. If |y4] > ||, then
|y| = max;en {w;}. Similar to the proof of (5) and (4), we have

(1M = (AN Iyel ™ < lar..ggrellel ™
and

1278 < Re(A) gl
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Furthermore, we have
(|)L| - C;(A))|)»| < las..igr.t|R(A),

which implies that A € ?g,t(A) c Uie&,jes “ﬁ-,j(A). And if |x;| > |y, ], then |x;| = max;en{w;}.
Similarly, we can get

(IA] = 75 (A)IA] < |ag...gg.-g] Co(A),

which implies that A € ﬁ,g(A) cy v, ;(A). The proof is completed. a

i€S,jes

Based on Theorem 1, bounds for the largest singular value of nonnegative rectangular

tensors are given.

Theorem 2 Let A= (a;,..;,) € R&”’q;n'n], S be a nonempty proper subset of N, S be the com-
plement of S in N. Then

LS(A) < 2o < US(A), 7)
where

L5(A) = min{Z5(A), L5(A), I5(A), I5(4)},
US(A) = max[U5(A), U5 (A), T5(A), T5(A))

and

ol

!
!
3

T5(A) = max ~{A) + [(A)? + day oy max|RICA), GLATH )

ieS,jeS

£5(4) = min %{r{f(A) + [((A) + dag oy min{R (A), C(A]

ieS,jeS

ST

I5(4) = min %{C{I(A) + [(AA)? + 455 min{R (A), A

ieSjeS

ST

I5(A) = max = {A(A) + [(M(A)” + 4ay..;.; max{R;(A), C(A)}]

1
i€Sjes 2

Proof First, we prove that the second inequality in (7) holds. By Theorem 2 in [2], we know
that Ag is a singular value of A. Hence, by Theorem 1, Ao € T5(A), that is,

e | (Tiy(AuTi(A) or
ieS,jeS
re | (Ti(AUTiiA).

ieS,jeS

If X0 € UieS,jeS(?iv/(A) U f,;/(A)), then there are i € S,j € S such that Ao € fi,j(A) or Ay €
T,»,,r(A). When Ao € 'AT,»J(A), i.e, (Ao — r{(A))Ao < ajj..;j..;max{R;(A), Ci(A)}, then solving A,
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gives

[A(A) + [(AA)? + 4ag . max{Ri(A), C(A)} ]2}

N =

Ao <

[T

< max l{r/i’(A) + [(7{(./4))2 +day.. .. max{Rj(A), C;(.A)}]

ieSjeS

=U5(A).

}

When A € 'Y"i,/(A), ie., (Ao — CZ(A)))LO < aj..jji.;max{R;(A), C;(A)}, then solving A, gives

Ao < %{4(,4) + [(A)* + 4ay. . max{ Ry (A), C(A)) ]}
< max %{ (A) + [(A) + a5 max{Ri(A), CA)}]?)
ieSje
=U5(A).

Andif A € Uieg,jes(?iv/(A) U “f,-,,'(.A)), similarly, we can obtain that 1y < l:[g(A) and Ag <
US(A).

Second, we prove that the first inequality in (7) holds. Assume that A is an irreducible
nonnegative rectangular tensor, by Theorem 6 of [1], then A > O with two positive left and

right associated eigenvectors x = (x1,%3,. .. )T and y = (91,92, ...,9a) 7. Let

xg =minfx;}, % =minfx;},  yp=min{y},  y,=min{y;],
ieS ieS ieS ieS

w; = minfx;, y;}, ws = min{w;}, wg = min{w;}.
ieN ieS ieS

We divide the proof into four parts.
Case I: Suppose that wg = x;, wg = x¢, then y; > xs, 9, > x;.

(i) If x; > x;, then x; = min;en{w;}. From the sth equality in (1), we have

—1 q
)"Oxs = E asizu.,‘ph.../qx,’z .. -xipyjl o -_)/jq + ast,.,m.txf Ve

sliZ“‘ip}'l'“l'q:O

-1 -1
> E zzsiz..,,»p,»l.“,’qxs + Attt 1%y

5ti2"'ip/1"'/q=0

= r (A ¥ ag g7
ie.,
(ho = 1A x> ag g o 8)

Moreover, from the ¢th equality in (1), we can get

hoxl! = Z Btiy-ipjsojaXin - Xig Vs -~ Vi = Re(AxlL. 9)

iz,‘.‘ip,jl,.‘.,quN
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Multiplying (8) by (9) and noting that x/x/"! > 0, we have

()MO - rst(A))ko > dgp.gp..tRe (A).

Then solving for Ay gives

ho(A) = = [rH(A) + [(H(A)? + 4dypiecRe(A)] )

v

1
2
> min %{r{f(A) () + gy R(A]E) = 15(A).

ieSjeS

(ii) If x5 > x;, then x; = min;en{w;}. Similarly, we can get

[T

ro(A) > %{@(A) () +4apsR(A)]

}

> min ~{2(A) + [(2A) + day iR (A]P) = 15(A).

ieS,jes 2
Case II: Suppose that ws = yg, w5 = ¥, then x, > y4, %1 > yp.

(i) If y, > y,, then y; = min;en{w;}. From the gth equality in (2), we have

-1 _ q-1
)L()yg = Z a,-l...ipm‘“jqxil .. -xipyjz . 'y]‘q + (lh...hgh...hxﬁyh

551"'iph/2"'iq =0

-1 -1
> Z Aiyovipgin-jgVg  + Bhohgh--hYp
é =0

iy iphja-jq
_ h -1 -1
= cg(A)yg + Apecighe Y s

ie.,

()»0 - CE(A)))/?I > ah..,hgh...hyﬁ,’l. (10)

Moreover, from the ith equality in (2), we can get

)\.Oyf,l_l = Z ail...iphjz...,-qx,-l . ~x,-py,2 . 'J’jq Z Ch(A)yé_l (11)

il,‘.‘,ip,jz,.‘.,quN

Multiplying (10) by (11) and noting that y;'y;" > 0, we have

(ho— Cg(A))?»o > ap...ngh--nCr(A),

which gives
)»0 > %{CS(A) + [(CE(.A))2 + 4ah...hgh...hCh(A)] % }
1. . . 1
> min_~{d(A) + [((A)” + 4.5, C(A)]?}
ieSjesS 2

> L[5(A).
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(ii) If yg > y3,, then yj, = min;en{w;}. Similarly, we can get

[EA) + [(EA) + g g Ce(A)] )

Ao >

ST

> min %{cé(./l) +[(UA)” +4a5..5.,C(A)]

ieSjeS

> I5(A).

}

Case III: Suppose that ws = x5, wg = yp,, then y; > x,x, > yp. If y, > x5, then %, =
min;cn {w;}. Similar to the proof of (8) and (11), we have

and

Aoyt = Cu(A)t
Furthermore, we have

(ho = 7(A)) Ao = agpecn.n Cn(A)

and

ST

Ao > %{V?(A) + [(rsh(.A))z + 4ashmhh.“hCh(A)]

J

> min_ %{ri(A) + [(/;(A))2 +4a;..;Ci(A)]

ieSjeS

[T

}

And if x; > yy,, then yj, = min;en{w;}. Similarly, we have

S

[ (A) + [((A))? + 4. s Ry (A)]

Ao >

}

> lmin l{CIL(.A) + [(CIZ(A))Z + 4ﬂjmﬁjijj(A)]

[T

J

Case IV: Suppose that wg = y,, wg = %, then x, > yg,9; > %;. If x; > y,, then y, =
min;cn {w;}. Similar to the proof of (10) and (9), we have

()\,() - C;(A))y‘lg_l > dt...tgt“.txi_l
and

)vox?l > Rt(-A)yi;l .
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Furthermore, we have
()\0 — Cg(A)))\.o > at---tgt---th(A)

and

[

{C;(.A) + [(cfg(.A))2 + 4at4..tgt...th(A)]

}

> min ~{d(A) + [(AA) + day i R(A] ) = I5(A).

ieSjesS 24

N =

Ao >

And if y; > x;, then x; = min;en {w;}. Similarly, we have

D=

[F(A) + [(F(A))” + 4. g0 Co(A)]

Ao >

.1 i 1 e
> min {r(4) + [(7(A)* +4a; ;. ;CA)]? ) = 5(A).
Assume that A is a nonnegative rectangular tensor, then by Lemma 3 of [2] and similar

to the proof of Theorem 2 of [2], we can prove that the first inequality in (7) holds. The
conclusion follows from what we have proved. 0

Next, a comparison theorem for these bounds in Theorem 2 and Theorem 4 of [2] is

given.

Theorem 3 Let A = (a;,...;,,) € R4S be a nonempty proper subset of N. Then the
bounds in Theorem 2 are better than those in Theorem 4 of [2], that is,

min {Ri(A), G(A)} < L(A) < US(A) < max {Ri(A), Gi(A)}.
<ij<n <ij<n

Proof Here, only L5(A) = min{L5(A), L5(A), L5(A), L5 (A)} > minj;j<,{Ri(A), Ci(A)} is
proved. Similarly, we can also prove that U5(A) < max;<;j<.{R;(A), C;(A)}. Without loss
of generality, assume that L5(A) = L5(A), that is, there are two indexes i € S, j € S such that

1, - 1
L3(A) = {ri(A) + [(7(A))® + 4y ;min{R;(A), C;(A)}]? )
(we can prove it similarly if L5(A) = L5(A),I5(A),L5(A), respectively). Now, we divide the

proof into two cases as follows.
Case [: Assume that

ST

L5(A) = %{r{(A) + [((A) + day ;R (] ).
LA = S + [()° + 4(R,() - A)R(A]

}

S

= 1) + [(2RA) - 0)’]
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= 1) + 28,4 — ()
= Ri(A)

> min R;(A)
jes

= min {Ri(A), G(A)}.
And when R;(A) - r'f(.A) <0,ie, r{:(A) > Rj(A), we have
L) = 31 + [(UAY ] = ) = R = mink,(4)
je

> min {R;(A), G(A)}.
<ij<n

(ii) If R;(A) < R;(A), then

NI

L) = 3 (A + [(HA) + 4 RAA

J

= %{ri(A) + [(fjl(.A))z + 4'61,']'...]‘]'...]'(7{:(./4) + (l,’j.“]‘j.../')]% }

}

= %{l’i(A) + [(7’1(./4) + 261#...]'1'“.1')2]

S

= R;(A)

> min R;(A)
ieS

> min {R,(A), Gi(A)}.
<ij<n

Case II: Assume that

D=

S(A) - %{/g(A) + [(AA) +4a.5.,G(A)]

).

Similar to the proof of Case I, we have L5(A) > min;<;j<,{R;(A), Cj(A)}. The conclusion
follows from what we have proved. O

3 Numerical examples

In the following, two numerical examples are given to verify the theoretical results.

Example 1 Let A € RI2%33] with entries defined as follows:

0 0 O 0O 0 O
AG,,1,1)=111 0 0], AG52,1)=14 6 3],
0 0 O 10 0 3
0 0 O 0 0 O
AG:3,1D) 11 1 2, AG51,2)=10 1 0],
7 2 2 1 0 O
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Figure 1

01 0 0 0
AG52,2)=10 2 1|, A-»3,2)=[2 2 2],
0 2 3] 6 2 1]
0 0 0] i 0]
AG5L3) =12 1 2|, AG»23)=|2 3 1],
0 0 0] i 3
2 1 1
AG:53,3)13 2 3
2 1 1

By computation, we get that all different singular values of A are —4.9395,-0.5833,
-0.4341,-0.1977,0,0.0094,0.0907,1.0825,1.2405,1.5334, 1.8418,2.3125,5.8540, 6.1494,
6.6525,8.0225 and 31.1680.

(i) An S-type singular value inclusion set.

Let S = {1}. Obviously, S = {2, 3}. By Theorem 1, the S-type singular inclusion set is

T3(A) = {z€ C: 2] <49.9629}.

The singular value inclusion set Y5(A) and the exact singular values are drawn in Figure 1,
where Y5(A) is represented by black solid boundary and the exact singular values are
plotted by red ‘+’ It is easy to see that T5(A) can capture all singular values of A from
Figure 1.

(ii) The bounds of the largest singular value.

By Theorem 4 of [2], we have

5< Xy <57.
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ok

Figure 2 The singular value inclusion set Y5(.A) and the exact singular values.

Let S = {1}, S = {2,3}. By Theorem 2, we have
9.0711 < Ao < 49.9629.

In fact, Ao = 31.1680. This example shows that the bounds in Theorem 2 are better than
those in Theorem 4 of [2].

Example 2 Let A € R2%22] with entries defined as follows:

ann = diz = g2 = di12 = dio1 = ool = 1,

other a;; = 0. By computation, we get that all different singular values of A are 0,0.8226,
1,3.
(i) An S-type singular value inclusion set.

Let S = {1}. Obviously, S = {2, 3}. By Theorem 1, the S-type singular inclusion set is
T5(A) = {zeC:lz] <3}.

The singular value inclusion set T5(.A) and the exact singular values are drawn in Figure 2,
where Y5(A) is represented by black solid boundary and the exact singular values are
plotted by red ‘+’ It is easy to see that T5(A) captures exactly all singular values of A from
Figure 2.

(ii) The bounds of the largest singular value.

By Theorem 2, we have

3<Ai0=<3.

In fact, Ao = 3. This example shows that the bounds in Theorem 2 are sharp.
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4 Conclusions

In this paper, we give an S-type singular value inclusion set Y5(A) for rectangular tensors.
As an application of this set, an S-type upper bound U/5(.A) and an S-type lower bound
L5(A) for the largest singular value A¢ of a nonnegative rectangular tensor A are obtained
and proved to be sharper than those in [2]. Then, an interesting problem is how to pick §
to make Y5(A) as tight as possible. But it is difficult when the dimension of the tensor A
is large. We will continue to study this problem in the future.
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