
Shen et al. Journal of Inequalities and Applications  (2017) 2017:147 
DOI 10.1186/s13660-017-1420-1

R E S E A R C H Open Access

Solving a class of generalized fractional
programming problems using the feasibility
of linear programs
Peiping Shen*, Tongli Zhang and Chunfeng Wang

*Correspondence: shenpp@htu.cn
College of Mathematics and
Information Science, Henan Normal
University, Xinxiang, 453007,
P.R. China

Abstract
This article presents a new approximation algorithm for globally solving a class of
generalized fractional programming problems (P) whose objective functions are
defined as an appropriate composition of ratios of affine functions. To solve this
problem, the algorithm solves an equivalent optimization problem (Q) via an
exploration of a suitably defined nonuniform grid. The main work of the algorithm
involves checking the feasibility of linear programs associated with the interesting
grid points. It is proved that the proposed algorithm is a fully polynomial time
approximation scheme as the ratio terms are fixed in the objective function to
problem (P), based on the computational complexity result. In contrast to existing
results in literature, the algorithm does not require the assumptions on
quasi-concavity or low-rank of the objective function to problem (P). Numerical
results are given to illustrate the feasibility and effectiveness of the proposed
algorithm.
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1 Introduction
In a variety of applications, we encounter a class of nonconvex optimization problems as
follows:

(P) :

⎧
⎨

⎩

min f (x) = G( c� x+c
d�

 x+d
, c� x+c

d�
 x+d

, . . . , c�p x+cp
d�

p x+dp
)

s.t. x ∈ � = {x ∈R
n : Ax ≤ b, x ≥ },

where ci, di ∈ R
n, ci, di ∈ R, A ∈ R

m×n, b ∈ R
m, c�

i x + ci > , d�
i x + di >  over a

nonempty, compact set � for each i = , . . . , p, and G : Rp
+ →R+ is a continuous function.

Problem (P) is worth studying because some important special optimization problems
that have been studied in literature fall into the category of (P), such as multiplicative
programs, sum-of-ratios optimization, fractional polynomial optimization, namely:

(a) Multiplicative programs (MP): In this case, the objective function G, with the form
G(y, . . . , yp) =

∏p
i= yi with yi = c�i x+ci

d�
i x+di

, is quasi-concave, and its minimum is
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attained at some extreme point of the polytope []. Multiplicative objective
functions arise in a variety of practical applications, such as economic analysis [],
robust optimization [], VLSI chip design [], combination optimization [], etc.

(b) Sum-of-ratios (SOR) optimization: SOR functions have the form
G(y, . . . , yp) =

∑p
i= yi with yi = c�i x+ci

d�
i x+di

. Matsui [] points out that it is NP-hard to
minimize SOR functions over a polytope. For many applications of this form, we
can see the survey paper by Schaible and Shi [] and the references therein.
Specially, a kind of SOR optimization problems with the form
G(y, . . . , yp) =

∑p
i= |yi|q, where q ≥  and yi = c�i x+ci

d�
i x+di

, are considered by Kuno and
Masaki [] as well, and they often occur in a computer version.

(c) Fractional polynomial optimization: Polynomial functions with positive coefficients
have the form G(y, . . . , yp) =

∑m
j= cj

∏p
i= yγij

i , where yi = c�i x+ci
d�

i x+di
, cj ≥  and γij is a

positive integer. Problems of this form have many applications [], including
production planning, engineering design, etc. In addition, from research point of
view, these problems pose significant theoretical and computational challenges
because they possess multiple local optima that are not globally optima.

During the past years, many solution methods have been developed for globally solving
special cases of problem (P). These methods can be classified into outer-approximation
[], branch-and-bound [–], mixed branch-and-bound and outer-approximation [],
cutting plane [], parameter-based [], vertex enumeration [], heuristic methods [],
etc. However, most of these methods lack theoretical analysis of the running time of the
algorithms, or performance guarantee of the solutions obtained. To our knowledge, lit-
tle work has been done about the solution of ε-approximation problems of (P) without
the quasi-concavity and low-rank assumptions; although Locatelli [] has developed an
approximation algorithm for a general class of global optimization problems. Next, we
immediately introduce the definition of the ε-approximation problem related to global
optimization as follows.

Definition  Given ε > , letting f∗ = minx∈� f (x), a point x̄ ∈ � is said to be an ε-
approximation solution for minx∈� f (x) if

f (x̄) ≤ f∗ + ε|f∗|.

This article focuses on presenting a fully polynomial time approximation scheme (FP-
TAS) for solving problem (P). An FPTAS for a minimization problem is an approximation
algorithm, that is, for any given ε > , it can find an ε-approximation solution for the prob-
lem, and its running time is polynomial in the input size of the problem and /ε. As shown
by Mittal and Schulz [], the optimum value of problem (P) cannot be approximated to
within any factor unless NP = P. Therefore, in order to obtain an FPTAS for solving prob-
lem (P), some extra assumptions of the function G will be required (see Section ) in this
article.

For the special cases of problem (P), many solution algorithms have been developed
about the solution of ε-approximation problems. Depetrini and Locatelli [] presented an
approximation algorithm for linear fractional-multiplicative problems, and they pointed
out that the algorithm is an FPTAS as the number p of ratio terms is fixed. This result has
been extended to a wider class of optimization problems by Locatelli []. Also, Goyal and
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Ravi [] exploited the fact that the minimum of a quasi-concave function is attained at an
extreme point of the polytope and proposed an FPTAS for minimizing a class of low-rank
quasi-concave functions over a convex set. Mittal and Schulz [] developed an FPTAS
for optimizing a class of low-rank nonconvex functions without quasi-concavity over a
polytope. In addition, Depetrini et al. [] and Goyal et al. [] respectively gave an FPTAS
for a class of optimization problems where the objective functions are products of two
linear functions. Shen and Wang [] presented a linear decomposition approximation
algorithm for a class of nonconvex programming problems by dividing the input space into
polynomially many grids. Nevertheless, these solution methods [, , –] cannot be
directly applied to the case (i.e., problem (P)) considered in this paper, where the objective
function is a composition of some ratios of affine functions without quasi-concavity or
low-rank.

The aim of this article is to present a solution approach for a class of fractional pro-
gramming problems (P). By introducing some variables, the original problem (P) is first
converted to a p-dimensional equivalent problem (Q). Through the establishment of a
nonuniform grid, on the basis of problem (Q), the solving process of the original prob-
lem (P) is then transformed into checking the feasibility of a series of linear programming
problems. Thus, a new approximation algorithm is presented for globally solving problem
(P) based on the exploration technique of a nonuniform grid over a box. The algorithm
does not require quasi-concavity or low-rank of the function G to problem (P), and it is
proved that this is an FPTAS as the term p is fixed in G. We emphasize here that the explo-
ration technique used in this article is different from the ones given in [, ]. The reason
is that we utilize a different strategy from that given in [, ] to update the incumbent
best value of the objective function g(t) to problem (Q), and that requires fewer interesting
grid points restored and considered in our algorithm, compared with Refs. [, ]. Also,
we notice that the main computational cost of the proposed algorithm is checking the fea-
sibility of linear problems at the interesting grid points. This means that it requires less
computational cost and so is more easily implementable. Finally, problem (P) generalizes
the one investigated in [], and the proposed algorithm can be directly applied to solve
the problem in [] by replacing the convex feasibility with the linear one. Numerical re-
sults show that the proposed algorithm requires much less computational time to obtain
an approximation optimized solution of problem (P) with the same approximation error
than the approaches (given by [, ]) do.

The paper is structured as follows. In Section , we discuss the reformulation of problem
(P) as a p-dimensional one. Section  presents an approximation algorithm to obtain an ε-
approximation solution for problem (P) which is FPTAS by its computational complexity.
Some numerical results are reported in Section . Finally, the conclusions are presented
in Section .

2 Parametric reformulation of the problem
For solving problem (P), throughout this paper, we assume that G satisfies:

• G(y) ≤ G(y′) for all y, y′ ∈R
p
+ with yi ≤ y′

i, i = , . . . , p, and
• δkG(y) ≤ G(δy) for all y ∈R

p
+, ∀δ ∈ (, ), and some constant k.

There are a number of functions G which satisfy the above conditions, such as the prod-
uct of a constant number (say p) of linear functions (with k = p), the sum of linear ratio
functions (with k = ), etc. This paper will present an approximation algorithm for solving
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problem (P) under the above assumptions. For this purpose, let us introduce p variables
yi, i = , . . . , p, thus, problem (P) can be equivalent to the form:

(P) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min G(y)

s.t. c�i x+ci
d�

i x+di
≤ yi, i = , . . . , p,

x ∈ �.

Theorem  x∗ is a global optimal solution for problem (P) if and only if (x∗, y∗) is a global
optimal solution for problem (P) with y∗

i = c�i x∗+ci
d�

i x∗+di
for each i = , . . . , p. The minimal ob-

jective function values of problems (P) and (P) are equal, i.e., f (x∗) = G(y∗).

Proof Let (x∗, y∗) be a global optimal solution for problem (P). We suppose that x∗ is not
a global optimal solution for problem (P), then there exists x̄ ∈ � such that

f (x̄) < f
(
x∗). (.)

Let ȳi = c�i x̄+ci
d�

i x̄+di
, i = , . . . , p. Then (x̄, ȳ) is a feasible solution of problem (P). We can have,

from (.), that

G(ȳ) = f (x̄) < f
(
x∗). (.)

On the other hand, since (x∗, y∗) is a feasible solution of problem (P), this implies that
c�i x∗+ci
d�

i x∗+di
≤ y∗

i , i = , . . . , p. Therefore, from the assumptions of G, it holds that

f
(
x∗) = G

(
c�

 x∗ + c

d�
 x∗ + d

,
c�

 x∗ + c

d�
 x∗ + d

, . . . ,
c�

p x∗ + cp

d�
p x∗ + dp

)

≤ G
(
y∗). (.)

Combining (.) with (.), we can obtain G(ȳ) < G(y∗). Since (x̄, ȳ) is a feasible solution
of problem (P), this contradicts the optimality of (x∗, y∗) for problem (P). Therefore, the
supposition that x∗ is not a global optimal solution for problem (P) must be false.

Next, we will show the converse case. Let x∗ be a global optimal solution of problem
(P), and let y∗

i = c�i x∗+ci
d�

i x∗+di
, i = , . . . , p. Then (x∗, y∗) is a feasible solution of problem (P).

Suppose that there exists some feasible solution (x̄, ȳ) for problem (P) such that

G(ȳ) < G
(
y∗) = f

(
x∗). (.)

Then, from c�i x̄+ci
d�

i x̄+di
≤ ȳi, i = , . . . , p, it follows that

f (x̄) = G
(

c�
 x̄ + c

d�
 x̄ + d

,
c�

 x̄ + c

d�
 x̄ + d

, . . . ,
c�

p x̄ + cp

d�
p x̄ + dp

)

≤ G(ȳ). (.)

By using (.)-(.), we have f (x̄) < G(y∗) = f (x∗). Since x̄ ∈ �, this contradicts that x∗ is
an optimal solution of problem (P). Hence, (x∗, y∗) must be the optimal solution to (P).
Based on the above result, obviously, from the assumptions of G, we have f (x∗) = G(y∗). �
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Based on the above theorem, for solving problem (P), we may solve problem (P) instead.
Additionally, it is known that each single ratio c�i x+ci

d�
i x+di

is both quasi-concave and quasi-
convex, and its minimum and maximum must be attained respectively at some vertex of
� (see, e.g., []). To this end, let us denote

li = min
x∈�

c�
i x + ci

d�
i x + di

, ui = max
x∈�

c�
i x + ci

d�
i x + di

, i = , . . . , p. (.)

And let

H =
{

y ∈R
p : li ≤ yi ≤ ui, i = , . . . , p

}
.

Now, let us define a p-dimensional set for each t ∈ H as follows:

S(t) =
{

x ∈ � : c�
i x + ci ≤ ti

(
d�

i x + di
)
, i = , . . . , p

}
,

and the corresponding function g(t) is given by

g(t) =

⎧
⎨

⎩

G(t), if S(t) 
= ∅,

+∞, otherwise.

Clearly, we can know whether S(t) is a null set or not by checking the feasibility of a linear
program for given t ∈ H , which can be solved in polynomial time. Based on the above
result, it turns out that problem (P) is equivalent to the following p-dimensional problem:

(Q) : min
t∈H

g(t).

According to the definition of g(t), we have the following conclusion.

Theorem  Given ε > , let δ = ( 
+ε

)/k , for each t̄ ∈ H , it holds that

g(t̄) ≤ ( + ε)g(t), ∀t ∈ [δt̄, t̄].

Proof From the definition of S(t) and δ = ( 
+ε

)/k ∈ (, ), we have S(δt̄) ⊆ S(t̄) for each
t̄ ∈ H . When S(δt̄) 
= ∅, it implies that S(t) 
= ∅ for each t ∈ [δt̄, t̄]. This means that g(t) = G(t)
for each t ∈ [δt̄, t̄]. With the assumptions of G(t), it holds that

( + ε)g(t) = ( + ε)G(t) ≥ ( + ε)G(δt̄) ≥ ( + ε)δkG(t̄) = G(t̄) = g(t̄), ∀t ∈ [δt̄, t̄].

When S(δt̄) = ∅ and S(t̄) 
= ∅, similarly, we have that

( + ε)g(t) ≥ ( + ε)G(t) ≥ ( + ε)G(δt̄) ≥ ( + ε)δkG(t̄) = G(t̄) = g(t̄), ∀t ∈ [δt̄, t̄].

When S(t̄) = ∅, it implies that S(t) = ∅ for any t ∈ [δt̄, t̄], and so the conclusion holds. �
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3 The approximation algorithm
3.1 The algorithm and its convergence
In this subsection, by using Theorem  above, we present an approximation algorithm for
solving problem (P), and prove that the algorithm can find an ε-approximation solution
for problem (P).

The proposed algorithm adopts an exploration technique of a suitably defined nonuni-
form grid over H . In the algorithm, let T be the set of all restored interesting grid points
which will be further analyzed. W is a set of the grid points already discarded, and X
is a set of the remaining grid points at each iteration. Moreover, U represents the best
value of the function g(t) obtained so far, and denote t∗ such that U = g(t∗). The algo-
rithm starts with t∗ = (u, . . . , up) and U = g(t∗). In each iteration, we select a point t̄ ∈ T
and calculate ā = min{a ∈ N : S(δat̄) = ∅}, where N represents the set of the natural num-
bers. If ā = , we newly select a point t̄ from T . Otherwise, we have S(δā– t̄) 
= ∅, and so
S(t) 
= ∅ for each t ∈ [δā– t̄, t̄]. This implies that g(t) = G(t) for each t ∈ [δā– t̄, t̄]. By using
the nondecreasing G, it holds that g(δā– t̄) = mint∈[δā– t̄,t̄] g(t). In addition, for any t ∈ {t :
δāt̄i < ti ≤ t̄i, i = , . . . , p} � (δāt̄, t̄], there exists an integer vector τ = (τ, . . . , τp) such that
ti ∈ (δτi+ t̄i, δτi t̄i] satisfying τi ∈ {, , . . . , ā – } for each i, thus, we have ( + ε)g(t) ≥ g(δτ t̄)
for any t ∈ (δτ+ t̄, δτ t̄] from Theorem . We see that all points δτ t̄ = (δτ t̄, . . . , δτp t̄p) with
τi ∈ {, , . . . , ā – } belong to [δā– t̄, t̄], hence,

( + ε)g(t) ≥ min
τi∈{,,...,ā–},∀i

g
(
δτ t̄, . . . , δτp t̄p

)
= g

(
δā– t̄

)

≥ min
{

U , g
(
δā– t̄

)}
, ∀t ∈ (δāt̄, t̄].

And so, it is reasonable to update U = min{U , g(δā– t̄)} and t∗ such that g(t∗) = U . Next, we
consider p new points (ξ t̄, . . . , ξpt̄p) with ξi ∈ {δā, } for all i, discard all points which sat-
isfy ξiui < li for some i, and add the remaining points to X , then update T = (T ∪X )\W .
This process is repeated until T = ∅. At termination, each point x∗ ∈ S(t∗) is an approxi-
mation solution of problem (P). The detailed algorithm is summarized as Algorithm .

Theorem  The proposed algorithm can find an ε-approximation solution for problem (P).

Proof Note that the algorithm evaluates the function g(t) values at the following points:

(
δs u, . . . , δsp up

)
,

where si ∈ N, and satisfies

 ≤ si ≤ s̄i � max
{

s : δsui ≥ li
}

, i = , . . . , p. (.)

For any t ∈ H , there is an integer vector (s, . . . , sp) with  ≤ si ≤ s̄i, i = , . . . , p, such that
t ∈ ∏p

i=[δsi+ui, δsi ui]. Thus, in view of Theorem  and the definition of δ, it holds that
g(δs u, . . . , δsp up) ≤ ( + ε)g(t) for each t ∈ ∏p

i=[δsi+ui, δsi ui]. Hence, we have

min
si∈{,,...,s̄i},∀i

g
(
δs u, . . . , δsp up

) ≤ ( + ε) min
t∈H

g(t).
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Algorithm  Approximation algorithm statement
Initialization
Given ε > , let δ = ( 

+ε
)/k , t∗ = (u, . . . , up), U = g(t∗), T = {t∗}, W = ∅, X = ∅.

Iteration steps

(k) Select a point t̄ ∈ T , and set W = W ∪ {t̄}. Calculate

ā = min
{

a ∈N : S
(
δat̄

)
= ∅}

.

If ā > , set W = W ∪ {δāt̄}, and go to (k). Otherwise, return to (k).
(k) Consider the p points (ξ t̄, . . . , ξpt̄p) with ξi ∈ {δā, } for all i. Move into W all points

satisfying ξit̄i < li for some i, and the remaining points are added to X .
(k) Update U = min{U , g(δā– t̄)} and t∗ such that g(t∗) = U .
(k) Set T = (T ∪X )\W , and X = ∅.
(k) If T = ∅, then STOP: each point x∗ ∈ S(t∗) is an ε-approximation solution to problem

(P). Otherwise, return to (k).

On the other hand, let us denote t∗ = (δs∗ u, . . . , δs∗p up) such that

g
(
t∗) = min

si∈{,,...,s̄i},∀i
g
(
δs u, . . . , δsp up

)
.

From Step (k) of the algorithm, we know S(t∗) 
= ∅. By using the definition of S(t), there
exists a point x∗ satisfying x∗ ∈ S(t∗). Now, let us denote t̃i = c�i x∗+ci

d�
i x∗+di

, i = , . . . , p, then we

have x∗ ∈ S(t̃) and t̃i ≤ t∗
i . Combining the definition of g(t), we see that g(t̃) ≤ g(t∗). Thus,

we conclude that

( + ε) min
x∈�

f (x) = ( + ε) min
t∈H

g(t) ≥ min
si∈{,,...,s̄i},∀i

g
(
δs u, . . . , δsp up

)
= g

(
t∗) ≥ g(t̃) = f

(
x∗).

Therefore, the point x∗ is an ε-approximation solution of problem (P) by Definition . �

3.2 The complexity of the algorithm
In this subsection, the computational complexity of the algorithm will be presented in
order to show that the approximation algorithm is an FPTAS for fixed p. For this purpose,
we need to use the following lemma from Ref []. Let � = {x ∈ R

n : Ax ≤ b, x ≥ } be a
polyhedron with A ∈ R

m×n, b ∈R
m, and denote

λ̄ = max
{

, |Aij|, |bi| : i = , . . . , m, j = , . . . , n
}

.

Then we have the following lemma.

Lemma  ([]) Let x be a vertex of �, then, for each j = , . . . , n, it holds that

x
j = pj/q,

where pj ∈R, q ∈R with

 ≤ pj ≤ (nλ̄)n,  < q ≤ (nλ̄)n. (.)
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Lemma  Given ε > , let δ = ( 
+ε

)/k . The number of the points (δs u, . . . , δsp up) satisfy-
ing (.), at which the feasibility of the corresponding linear programs are checked by the
proposed algorithm, is not more than

p∏

i=

[

 +
k
ε

ln

(
ui

li

)]

.

Proof Note that δ = ( 
+ε

)/k ∈ (, ) is fixed if ε >  is given. Since the points (δs u, . . . ,
δsp up) belonging to the nonuniform grid over H satisfy (.), the number of these grid
points is equal to

∏p
i=(s̄i + ). Moreover, by the proposed algorithm, the number of the

points (δs u, . . . , δsp up) at which the feasibility of linear programs should be checked is
not larger than

∏p
i=(s̄i + ). In view of the definition of s̄i and δ, we can have that

s̄i ≤ ln(li/ui)/(ln δ) =
[
k ln(li/ui)

]
/ ln( + ε), i = , . . . , p.

Since ln( + ε) ≈ ε for sufficiently small ε > , we see that the number of points where the
feasibility of linear programs should be checked is not larger than

∏p
i=[ + k

ε
ln( ui

li
)]. �

By the proposed algorithm, to find an ε-approximation solution for problem (P), the
computational cost includes the cost of the computation of the box H and the calculation
of ā at Step (k) of the algorithm for each iteration. It is known that each li and ui must
be attained at some vertex of � respectively (see, e.g., []), and that can be computed
in polynomial time, thus H can be determined in polynomial time. On the other hand,
we notice that the main work is the calculation of ā at each iteration in the algorithm
(see Step (k)). This is because the calculation of ā at each iteration requires checking the
feasibility of some linear problems with m + p constraints and n variables. In other words,
the computational cost of the algorithm is to check the feasibility of linear problems at
interesting grid points. Let us denote T(m + p, n) as the cost of checking the feasibility of
a linear programming problem with m + p constraints and n variables.

In order to give the computational cost of the proposed algorithm, without loss of gen-
erality, we can assume that

c�
i x + ci ≥ , d�

i x + di ≥ , ∀x ∈ �. (.)

This is because

c�
i x + ci

d�
i x + di

=
Mi(c�

i x + ci)
Mi(d�

i x + di)
, i = , . . . , p,

by choosing sufficiently large Mi ∈ R such that Mi(c�
i x + ci) ≥ , Mi(d�

i x + di) ≥  for
any x ∈ �. Based on the above discussion, combining Lemmas  and  finally leads to the
following theorem.

Theorem  As p is a fixed positive integer, the number of operations required by the pro-
posed algorithm to obtain an ε-approximate solution for problem (P) is not larger than

O
([

k(n + ) ln(nλ)
ε

]p

T(m + p, n)
)

,

where λ = max{λ̄, |cij|, |dij|, |ci|, |di| : i = , . . . , p, j = , . . . , n}.
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Proof Let xli , xui be vertices of � with li = c�i xli +ci
d�

i xli +di
, ui = c�i xui +ci

d�
i xui +di

, i = , , . . . , p. Thus, it
follows from Lemma  that

xli
j = pli

j /qli , xui
j = pui

j /qui , j = , . . . , n, i = , . . . , p,

where pli
j , qli , pui

j , qui satisfy (.). Let ρ = max{, /qli , /qui : i = , . . . , p}. Combining
Lemma  and the definition of λ leads to

d�
i xli + di =

n∑

j=

dijp
li
j /qli + di ≤ ρ

n∑

j=

dijp
li
j + λ ≤ ρnn+λn+ + λ ≤ ρnn+λn+.

Thus, with (.), it holds that

li =
(
c�

i xli + ci
)
/
(
d�

i xli + di
) ≥ /

(
ρnn+λn+).

Similarly, we can obtain that ui ≤ ρnn+λn+. And so

ln(ui/li) ≤ ln
(
ρnn+λn+) =  ln(ρ) + (n + ) ln(nλ).

Since for each interesting grid point we require the solution of a linear feasibility problem
with m + p constraints and n variables, by Lemma , for given p, we can claim that the
number of operations required by the proposed algorithm is not larger than

[

 +
k ln(ρ) + k(n + ) ln(nλ)

ε

]p

T(m + p, n)

= O
([

k(n + ) ln(nλ)
ε

]p

T(m + p, n)
)

. �

Remark  From Theorem , we can conclude that the proposed algorithm is an FPTAS
for problem (P) for fixed p. On the other hand, we know that the computational time of
the proposed algorithm is an exponential increase with p increasing. These conclusions
can be observed also in the numerical results of the next section.

Remark  Notice that the detailed complexity analysis of the proposed algorithm can be
used as an indicator of the difficulty of some optimization problems, such as multiplicative
programs, sum-of-ratios optimization, etc. Thus, in order to solve efficiently these prob-
lems, we should expect to design a more sophisticated approach where its performance is
at least as good.

4 Numerical examples
Based on Theorem , although the computational complexity results of the algorithms
([, ] and ours) are similar, we should notice that it is the worst case time complexity
which is one of the most often used criteria of evaluating algorithms in optimization. In
fact, these complexity results ([, ] and ours) are only the upper bounds of the com-
putational cost of the algorithms for solving optimization problems under the worst case,
i.e., all the grid points are considered. Hence, to further verify the performance of the pro-
posed algorithm in this article, in this section we compare the proposed algorithm with the
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Table 1 Computational results of Examples 1-5

Algorithm ε Solution Optimum Iter Nodes CPU(s)

1 [21] 0.2 (0, 0.2816) 1.6232 5,122 862 185.2
[19] 0.2 (0, 0.2816) 1.6232 1,122 327 84.9
Our 0.2 (0, 0.2816) 1.6232 17 5 0.46

2 [21] 0.2 (5.382× 10–16, 5.536× 10–16) 0.5333 631 217 10.4
[19] 0.2 (5.382× 10–16, 5.536× 10–16) 0.5333 362 122 5.63
Our 0.2 (5.382× 10–16, 5.536× 10–16) 0.5333 55 13 1.83

3 [21] 0.15 (0, 0, 1.6886, 4.3466, 4.3007, 4.0334,
0, 1.4324, 0.7765, 4.1967, 0, 4.1385)

0.05115 24,569 3,727 355.2

[19] 0.15 (0, 0, 1.6886, 4.3466, 4.3007, 4.0334,
0, 1.4324, 0.7765, 4.1967, 0, 4.1385)

0.05115 14,669 3,215 215.2

Our 0.15 (0, 0, 1.6886, 4.3466, 4.3007, 4.0334,
0, 1.4324, 0.7765, 4.1967, 0, 4.1385)

0.05115 70 21 5.66

4 [19] 0.1 (1.7177, 2.0155) 32.39 1,998 487 118.8
Our 0.1 (1.7177, 2.0155) 32.39 41 15 32.39

5 [19] 0.05 (2.0814, 2.9963) 7,709.8 4,383 1,327 256.9
Our 0.05 (2.0814, 2.9963) 7,709.8 924 385 56.2

ones in [, ] by numerical examples. Because it is an approximation algorithm for solv-
ing general fractional programming problem (P), we do not attempt comparisons with the
solution methods for solving special cases of (P) (e.g., branch-and-bound [, ], outer-
approximation [], cutting plane [], etc.), and the approximation algorithms in [, ],
which are restricted to solving problems under the quasi-concavity or low-rank assump-
tions in the objective functions. Additionally, the algorithms ([, ] and ours) are based
on the exploration of a suitably defined nonuniform grid over a rectangle, but we exploit
different exploration strategies to minimize the objective function over the feasible set,
and use different methods to update the incumbent best value of the objective function
obtained at each iteration, compared with [, ].

We implemented the three algorithms ([, ] and ours) in MATLAB b with some
test experiments. Tests are run on a PC with dual processor CPU (. Hz), Intel(R), and
Core(TM) i. Notice that these algorithms use different approaches for computing the
lower bound li and the upper bound ui of each ratio term in the objective functions. Hence,
for comparison, each li, ui in the three algorithms is given by taking the same way (i.e.,
using (.)) in our computation.

Some notations in Tables , ,  have been used for column headers: Solution: the ap-
proximate optimal solution; Optimum: the approximate optimal value; Iter: the number
of the algorithm iterations; CPU(s): the execution time in seconds; Nodes: the maximal
number of the interesting grid points restored; Avg: average performance by the algorithm;
Std: standard deviation of performances by the algorithm.

We first solve several sample examples, where Examples - and Examples - come
from Ref. [] and Ref. [], respectively. The corresponding computational results are
summarized in Table .

Example 

min
–x + x + 
x – x + 

+
x – x + 
–x + x + 

s.t. x + x ≤ ., x ≤ x,  ≤ x ≤ ,  ≤ x ≤ .
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Example 

min
–x + x + 
x – x + 

× x – x + 
–x + x + 

s.t. x + x ≤ ., x ≤ x,  ≤ x ≤ ,  ≤ x ≤ .

Example 

min
∏

i=

〈ci, x〉 + ri

〈di, x〉 + si

s.t. Ax ≤ b, x ≥ ,

where

c = (–., –., –., ., ., ., ., –., –., ., ., .), r = ,

d = (., ., –., ., ., ., –., –., ., ., ., –.), s = .,

c = (–., ., –., –., –., ., ., ., ., –., –., .), r = .,

d = (–., –., –., ., ., –., –., ., ., ., ., –.), s = ,

c = (., ., –., ., ., ., –., ., ., ., –., –.), r = .,

d = (., ., ., ., ., ., ., ., –., –., ., –.), s = .,

c = (., ., ., –., ., ., ., ., –., ., ., .), r = –.,

d = (–., ., ., –., –., ., ., –., ., –., ., –.), s = .,

c = (–., –., ., ., ., –., ., ., ., ., ., –.), r = ,

d = (., ., ., ., –., –., ., –., –., –., –., .), s = .,

c = (., –., ., ., –., –., ., –., ., –., ., –.), r = .,

d = (., ., ., ., ., –., ., –., ., –., ., .), s = .,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . –. –. . . –. . . –. –. –.
. . –. –. . –. . . –. . – .
. . . . –. . . –. . –. –. .

–. . . –. –. . . –. –. –. . .
. –. . . . . . –. –. . . –.

–. . –. –. –. . –. . –. . . .
. . . –. . –. . –. –. . –. –.

–. –. . –. . . –. . –. . . –.
. . . –. –. . –. . –. –. . .
. –. –. . –. . . . –. –. . .
–. –. . . . . –. –. . –. . –.
. . . –. –. . –. . –. –. . .
. –. –. –. . –. –. . –. . –. .

–. . –. –. –. –. . –. . . . –.
–. . –. . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b = (–., –., ., ., ., ., –,

., ., ., ., ., ., –., .)�.
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Example 

min
∏

i=

fi(x)

s.t. x + x ≤ ,  ≤ x ≤ ,  ≤ x ≤ ,

where

f(x) = (x – ) + (x – ) + ,

f(x) = (x – ) + (x – ) + ,

f(x) = (x – ) + (x – ) + .

Example 

min
∏

i=

fi(x)

s.t. (x – ) + (x – ) ≤ ,  ≤ x ≤ ,  ≤ x ≤ ,

where

f(x) = x
 + x

,

f(x) = (x – ) + (x – ),

f(x) = (x – ) + (x – ).

Note that for solving Examples  and  we chose (l, l, l) = (, , ), (u, u, u) =
(, , ) and (l, l, l) = (, , ), (u, u, u) = (, , ) which come from Ref. [],
respectively. In addition, we notice that the algorithm in [] cannot be reasonable to solve
Examples  and , and so we do not use it for solving them.

From Table , it can be seen easily that the proposed algorithm requires less compu-
tational time for solving Examples - compared with the ones in [, ] with the same
ε >  value. This is because the number of iterations and the maximal number of the in-
teresting grid points restored are less than the ones in [, ] from Table , which means
that the total number of the interesting grid points considered by the proposed algorithm
is less than the one of the algorithms in [, ]. Also, in the three algorithms ([, ] and
ours), notice that the main computational time is to check feasibility of linear programs at
interesting grid points. Hence, the more interesting grid points are considered, the more
computational time will be required.

Next, we apply the three algorithms ([, ] and our own) to randomly generated ex-
amples as follows.

min
p∏

i=

c�
i x

s.t. x ∈ X =
{

x ∈R
n : Ax ≥ b, L ≤ x ≤ V

}
,
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Table 2 Computational results of randomly generated test problems with (m, n) = (50, 50)

p Algorithm CPU(s) Iter Nodes

Avg Std Avg Std Avg Std

2 [21] 46.5 24.1 1,369.4 75.3 362.6 35.9
[19] 39.6 15.5 1,225.2 62.8 302.0 23.4
Our 1.2 0.5 7.8 1.6 2.2 0.5

4 [21] 5,862.1 903.8 16,973.0 994.8 3,612.5 917.2
[19] 4,590.7 802.5 17,888.1 913.8 3,294 534.1
Our 206.2 70.8 3,144.4 172.1 912.8 111.8

5 [21] 7,102.2 913.8 29,121.3 904.8 9,612.5 982.5
[19] 5,062.4 893.1 19,373.4 924.1 6,613.9 861.4
Our 813.6 113.4 5,082.9 823.7 1,403.6 813.9

6 [21] - - - - - -
[19] 6,384.7 895.2 38,359.4 921.7 11,869.8 938.2
Our 1,455.7 201.2 9,830.4 485.7 2,769.3 216.6

7 [21] - - - - - -
[19] - - - - - -
Our 2,754.3 430.7 12,054.4 523.5 3,257.9 433.7

8 [21] - - - - - -
[19] - - - - - -
Our 4,175.6 603.2 19,853.4 873.3 5,107.7 513.2

9 [21] - - - - - -
[19] - - - - - -
Our 6,175.1 837.9 28,251.5 869.2 8,632.2 752.3

10 [21] - - - - - -
[19] - - - - - -
Our 7,075.9 997.8 33,215.7 963.8 9,897.4 924.3

where all elements of ci ∈R
n and L ∈ R

n are random numbers generated from the interval
[, ]; b ∈ R

m, V ∈ R
n are randomly generated vectors with all components belonging to

(, ); and each element of A ∈ R
m×n is randomly generated in [–, ]. Nineteen examples

for selected combinations of m (number of constraints), n (number of variables), and p
(number of linear functions in the objective function), altogether  randomly generated
test instances are solved. The approximation error is fixed at ε = ., and the average
computational results (standard deviation) are obtained by running the algorithms ([,
] and ours) for  times. Table  shows the numerical results for solving instances when
(m, n) = (, ), p changed in {, , , , , , , }. Similarly, as p =  and (m, n) is changed,
the computational results are listed in Table . In Tables  and , ‘-’ means the problem
cannot be solved within two hours.

It can be seen from Tables  and  that the proposed algorithm needs fewer iterations
and interesting grid points, and so requires less computational time for solving this kind
of random problems, compared with the algorithms given by [, ]. Also, it is shown by
Tables  and  that the performance of the algorithms is strongly affected by changes in n
and p, specially, when p increases. The reason is that the number of operations required by
the algorithms ([, ] and ours) is an exponential increase with p increasing according
to the corresponding computational complexity results.

It is worth mentioning from Tables  and  that the computational time of the pro-
posed algorithm increases with n and p increasing, but not as sharply as the algorithms
in [, ]. For example, in Table , the instances cannot be solved by the algorithms in
[, ] within two hours when p ≥  and p ≥ , respectively, while the presented algo-
rithm can solve all instances with p increasing  to  in less than two hours. This is due
to the fact that the main computational cost of the algorithms ([, ] and ours) is the
solution of linear feasibility problems at the interesting grid points. That is to say, the
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Table 3 Computational results of randomly generated test problems with p = 4

[m, n] Algorithm CPU(s) Iter Nodes

Avg Std Avg Std Avg Std

[70, 70] [21] 6,518.2 869.2 19,358.8 926.4 9,586.3 749.3
[19] 5,208.1 903.4 18,308.8 908.7 6,762.1 794.8
Our 362.3 44.9 4,588.5 303.4 1,092.9 209.6

[70, 100] [21] - - - - - -
[19] 6,691.2 923.6 23,650.8 936.2 9,834.3 792.8
Our 528.3 65.6 5,186.3 291.5 1,394.1 287.1

[70, 150] [21] - - - - - -
[19] - - - - - -
Our 1,028.9 635.6 7,616.4 189.6 1,691.6 272.4

[100, 150] [21] - - - - - -
[19] - - - - - -
Our 1,124.4 603.8 7,096.3 193.1 1,702.2 243.4

[150, 150] [21] - - - - - -
[19] - - - - - -
Our 1,149.2 678.5 8,076.4 201.3 2,001.8 292.7

[150, 200] [21] - - - - - -
[19] - - - - - -
Our 2,048.5 728.9 9,806.7 416.8 2,671.9 397.5

[150, 300] [21] - - - - - -
[19] - - - - - -
Our 3,892.7 969.4 10,903.5 971.5 3,402.6 873.4

[200, 300] [21] - - - - - -
[19] - - - - - -
Our 3,912.8 917.2 9,938.3 911.7 3,521.5 816.3

[300, 300] [21] - - - - - -
[19] - - - - - -
Our 4,025.1 909.5 1,109.3 891.5 3,612.3 834.7

[300, 400] [21] - - - - - -
[19] - - - - - -
Our 4,875.5 962.5 14,946.1 938.6 5,827.5 972.8

[300, 500] [21] - - - - - -
[19] - - - - - -
Our 5,962.6 978.6 16,592.7 995.7 6,987.2 957.4

computational time for solving this kind of problems is directly affected by the number
of interesting grid points. We notice that for the algorithms in [, ], the number of
iterations and interesting grid points checked at each iteration increases with p increas-
ing. However, for the proposed algorithm, p is related to the number of iterations (see
Step (k) in the proposed algorithm) and independent of the number of interesting grid
points checked at each iteration (see Step (k) in the proposed algorithm). This means
that the proposed algorithm requires fewer interesting grid points considered and less
computational time than the ones of the algorithms in [, ] for solving this kind of
random problems. Moreover, from Table , notice that the algorithms in [, ] can-
not solve the instances within two hours when n ≥  and p = , but all instances se-
lected can be solved by the proposed algorithm within no more than two hours. This is
mainly because the more interesting grid points are considered, the more the feasibil-
ity of linear programs with n variables should be checked. On the other hand, note that
the interesting grid points considered by the proposed algorithm are much fewer than
the ones considered by the algorithms [, ]. And so the increase of the computational
time of the proposed algorithm is not as sharp as the algorithms [, ] with n increas-
ing.
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A comparison of the performance of the algorithms ([, ] and our own), the numerical
results in Tables - show that the proposed algorithm is effective and the computational
results can be obtained within a reasonable time.

5 Results and discussion
In this work, a new solution algorithm for globally solving a class of generalized fractional
programming problems is presented. As further work, we think the ideas can be extended
to more general type optimization problems, in which each c�

i x + ci, d�
i x + di in the

objective function to problem (P) is replaced with a convex function, respectively.

6 Conclusion
This article proposes a new approximation algorithm for solving a class of fractional pro-
gramming problems (P) without the assumptions on quasi-concavity or low-rank. In or-
der to solve this problem, the original problem (P) is first converted into a p-dimensional
equivalent one with a box constrained set, we then give a new approximation algorithm
which can be more easily implemented compared with the ones given in [, ]. More-
over, the computational complexity of such an algorithm can be derived to show that it
is an FPTAS when p is fixed, and that its computational time is an exponential increase
with p increasing. Also, the complexity results can be used as an indicator of the difficulty
of some optimization problems falling into the category of (P), and so we should expect
to design a more sophisticated approach where its performance is at least as good. Addi-
tionally, this article not only gives a provable bound on the running time of the proposed
algorithm, but also guarantees the quality of the solution obtained to problem (P).
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