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Abstract
In this note, we give an elaboration of a basic problem on convergence theorem of
(p,q)-analogue of Bernstein-type operators. By some classical analysis techniques, we
derive an exact class of (pn,qn)-integer satisfying limn→∞[n]pn ,qn =∞ with
limn→∞ pn = 1 and limn→∞ qn = 1 under 0 < qn < pn ≤ 1. Our results provide an
erratum to corresponding results on (p,q)-analogue of Bernstein-type operators that
appeared in recent literature.
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1 Introduction
During the last decades, the applications of q-calculus emerged as a new area in the field
of approximation theory. The rapid development of q-calculus has led to the discovery of
various generalizations of Bernstein polynomials involving q-integers. A detailed review of
the results on q-Bernstein polynomials along with an extensive bibliography is given in [].
The q-Bernstein polynomials are shown to be closely related to the q-deformed binomial
distribution []. It plays an important role in the q-boson theory giving a q-deformation
of the quantum harmonic formalism []. The q-analogue of the boson operator calculus
has proved to be a powerful tool in theoretical physics. It provides explicit expressions for
the representations of the quantum group SUq() []. Meanwhile, the (p, q)-integers were
introduced in order to generalize or unify several forms of q-oscillator algebras well known
in the earlier physics literature related to the representation theory of single parameter
quantum algebras [].

Recently, (p, q)-integers have been introduced into classical linear positive operators
to construct new approximation processes. A sequence of (p, q)-analogue of Bernstein
operators was first introduced by Mursaleen [, ]. Besides, (p, q)-analogues of Szász-
Mirakyan [], Baskakov Kantorovich [], Bleimann-Butzer-Hahn [] and Kantorovich-
type Bernstein-Stancu-Schurer [] operators were also considered, see [–]. For fur-
ther developments, one can also refer to [, –]. These operators are double parameters
corresponding to p and q versus single parameter q-Bernstein-type operators [, , ].
The aim of these generalizations is to provide appropriate and powerful tools to applica-
tion areas such as numerical analysis, computer-aided geometric design and solutions of
differential equations (see, e.g., []).
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For example, consider the (p, q)-analogue of the Bernstein operators proposed in [].
Given f ∈ C[, ] and  < q < p ≤ , operators Bn,p,q are defined as follows:

Bn,p,q(f ; x)

:=


p
n(n–)



n∑

k=

[
n
k

]

p,q

p
k(k–)

 xk
n–k–∏

s=

(
ps – qsx

)
f
(

[k]p,q

pk–n[n]p,q

)
, n = , , . . . , (.)

where, for any nonnegative integer k and  < q < p ≤ , the (p, q)-integer [k]p,q is defined
by

[k]p,q := pk– + pk–q + · · · + qk– =
pk – qk

p – q
(k = , , , . . .), []p,q := ,

and the (p, q)-factorial [k]p,q! is defined by

[k]p,q! := []p,q[]p,q · · · [k]p,q (k = , , . . .), []p,q! := .

For integers k, n with  ≤ k ≤ n, the (p, q)-binomial coefficient is defined by
[

n
k

]

p,q

:=
[n]p,q!

[k]p,q![n – k]p,q!
.

In general, we expect Bn,p,q(f ; x) to converge to f (x) as n → ∞. But we see that, for fixed
value of p and q with q ∈ (, ) and p ∈ (q, ],

[n]p,q →  or /( – q) as n → ∞.

To obtain a sequence of generalized (p, q)-analogue Bernstein polynomials which con-
verge, we let qn ∈ (, ) and pn ∈ (qn, ] depend on n. We then choose a sequence (pn, qn)
such that [n]pn ,qn → ∞ as n → ∞, to ensure that Bn,p,q(f ; x) converge to f (x).

The convergence theorems for (p, q)-analogue Bernstein-type operators were estab-
lished in some recent papers (see [], Theorem . (Remark .), [], Theorem , and fur-
ther reading [], Theorem ., [], Theorem ., [], Theorem , and [], Remark .,
see also [, ]). For example, Mursaleen [] gives the following.

Theorem . Let  < qn < pn ≤  such that limn→∞ pn =  and limn→∞ qn = . Then, for
each f ∈ C[, ], Bn,pn ,qn (f ; x) converge uniformly to f on [, ].

All linear positive operators mentioned in the articles cited above require that
limn→∞[n]pn ,qn = ∞; otherwise, these operators do not define approximation processes.
However, the claim that both limn→∞ pn =  and limn→∞ qn =  with  < qn < pn ≤  imply
that limn→∞[n]pn ,qn = ∞, in general, is not true. A counterexample is presented below.

Example . Let pn =  – /
√

n, then [n]pn ,qn →  for any sequence {qn} satisfying  <
qn < pn. Indeed,

 ≤ [n]pn ,qn = pn–
n + pn–

n qn + · · · + pnqn–
n + qn–

n

≤ npn–
n = n( – /

√
n)n– ∼ ne–

√
n → , n → ∞. (.)
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Later, the author [] presented a more accurate assertion: Let qn, pn such that  < qn <
pn ≤  and qn → , pn → , qn

n → a, pn
n → b (a < b) as n → ∞, then limn→∞[n]pn ,qn → ∞.

It is natural to ask: What is the class of sequences (pn, qn) satisfying limn→∞[n]pn ,qn = ∞
when limn→∞ pn =  and limn→∞ qn =  under  < qn < pn ≤ ? Undoubtedly, this is an
important problem. In this note, we will solve this problem in Section .

2 Main results
For  < qn < pn ≤ , set qn :=  – αn, pn :=  – βn such that  ≤ βn < αn < , αn → , βn → 
as n → ∞. In the sequel, we use notation an ∼ bn (an, bn > ) ⇔ limn→∞ bn

an
= .

First, let us present the following auxiliary proposition.

Lemma . Let n ∈N, then as n → ∞ we have

[n]pn ,qn → ∞ ⇒ enβn /n → . (.)

On the other hand,

enαn /n →  ⇒ [n]pn ,qn → ∞. (.)

Proof We note that

[n]pn ,qn = qn–
n + pnqn–

n + · · · + pn–
n qn + pn–

n = qn–
n

(
 + pn/qn + · · · + (pn/qn)n–)

> nqn–
n = n( – αn)(–/αn)(n–)(–αn) ∼ n/enαn , n → ∞. (.)

Similarly, we have

[n]pn ,qn = qn–
n + pnqn–

n + · · · + pn–
n qn + pn–

n = pn–
n

(
 + qn/pn + · · · + (qn/pn)n–)

< npn–
n = n( – βn)(–/βn)(n–)(–βn) ∼ n/enβn , n → ∞. (.)

Therefore, from (.) and (.), for sufficiently large n, there exist two positive real num-
bers C and C satisfying

C · n/enαn < [n]pn ,qn < C · n/enβn . (.)

This yields the proof. �

The main result of this work is expressed by the next assertion.
Theorem . The following statements are true:

(A) If limn→∞ en(βn–αn) =  and enβn /n → , then [n]pn ,qn → ∞.
(B) If limn→∞ en(βn–αn) <  and enβn (αn – βn) → , then [n]pn ,qn → ∞.
(C) If limn→∞ en(βn–αn) < , limn→∞ en(βn–αn) =  and max{enβn /n, enβn (αn – βn)} → , then

[n]pn ,qn → ∞.

Conversely,

(B′) If limn→∞ en(βn–αn) <  and [n]pn ,qn → ∞, then enβn (αn – βn) → .
(C ′) If limn→∞ en(βn–αn) < , limn→∞ en(βn–αn) =  and [n]pn ,qn → ∞, then max{enβn /n,

enβn (αn – βn)} → .
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Proof Case (A):
If limn→∞ en(βn–αn) = , since limn→∞ enαn /n = limn→∞ enβn /n/en(βn–αn) →  and com-

bined with (.) imply [n]pn ,qn → ∞ (see Remark .).
Case (B) and Case (B′):
If limn→∞ en(βn–αn) < . Note that, for sufficiently large n,

[n]pn ,qn = pn–
n

 – (qn/pn)n

 – qn/pn
∼ 

enβn

 – ( – (αn – βn)/( – βn))n

(αn – βn)/( – βn)
. (.)

Since

αn – βn

 – βn
→ , (.)

it is not difficult to obtain from (.) and limn→∞ en(βn–αn) <  that, for sufficiently large n,
there exists c ∈ (, ) such that

(
 –

αn – βn

 – βn

)n

∼ en(βn–αn) < c. (.)

Set dn :=  – ( – αn–βn
–βn

)n, then for sufficiently large n, dn >  – c. Thus, from (.), (.) and
(.), we have

[n]pn ,qn ∼ 
enβn

· dn

αn – βn
, (.)

which entails that

[n]pn ,qn → ∞ ⇔ enβn (αn – βn) → . (.)

This yields the proof of Case (B) and Case (B′).
Case (C) and Case (C ′):
If limn→∞ en(βn–αn) < , limn→∞ en(βn–αn) = . Since the sequence  < xn := en(βn–αn) < 

is bounded, set E := {x|x is a limit point of {xn}, n ≥ }, then sup E =  from
limn→∞ en(βn–αn) = . Now, we are going to extract a subsequence {xnk } of {xn} such that

(a) limk→∞ xnk = , and
(b) E := {x|x is a limit point of {xn} \ {xnk }}, with sup E < .
We verify that it is possible to extract such a subsequence {xnk }. Since  is a limit point

of A := {xn, n ≥ }, take a subsequence {xn()
k

} of A such that limk→∞ xn()
k

= , set A() :=

{xn()
k

, k ≥ } and let A := A\A(). If  is also a limit point of A, take a subsequence {xn()
k

} of

A such that limk→∞ xn()
k

= , set A() := {xn()
k

, k ≥ } and let A := A \A(). Continuing this

process, we obtain a series of sequences, i.e., A(), A(), . . . , set Af := A \ ⋃
s∈I⊆N

A(s). Since
A is a countable set, this process will stop until  is not a limit point of Af after finite or
countable steps; otherwise, we will see that  is the only limit point of A, which contradicts
to the assumptions of Case (C). Then we can take the subsequence {xnk } =

⋃
s∈N A(s) which

satisfies (a) and (b).
Set {xn′

k
} := {xn} \ {xnk }, it is obvious that {nk , k ≥ } ∪ {n′

k , k ≥ } = N. Then from
(A) and (a), we have seen that [n]pnk ,qnk

→ ∞ ⇔ enkβnk /nk →  as k → ∞. And since
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limn→∞ xn′
k

<  from (b), we also have seen from (B) that [n]pn′
k

,qn′
k

→ ∞ ⇔
e

n′
kβn′

k (αn′
k

– βn′
k
) →  as k → ∞. In summary,

(i) limn→∞[n]pn ,qn = ∞ ⇔ for any subsequence {Nk} of a natural number set such that
limk→∞ Nk = ∞, we have limk→∞[n]pNk ,qNk

= ∞.
(ii) Since {nk}k≥ and {n′

k}k≥ are two subsequences of a natural number set such that
limk→∞ nk = ∞ and limk→∞ n′

k = ∞, thus as k → ∞

lim
n→∞[n]pn ,qn = ∞ ⇒

⎧
⎨

⎩
[n]pnk ,qnk

→ ∞ ⇔ enkβnk /nk → ,

[n]pn′
k

,qn′
k

→ ∞ ⇔ e
n′

kβn′
k (αn′

k
– βn′

k
) → .

We assert that the inverse proposition of (ii) also holds. Indeed, for each sufficiently large
N > , there exists a positive integer K such that for every natural number k > K, we have
[n]pnk ,qnk

> N ; meanwhile, for the previous N > , there exists a positive integer K such
that for every natural number k > K, we have [n]pn′

k
,qn′

k
> N ; take n = max{nK , n′

K
}, for

every natural number n > n, we have [n]pn ,qn > N , i.e., limn→∞[n]pn ,qn = ∞. Now we have
proved that as k → ∞

lim
n→∞[n]pn ,qn = ∞ ⇔ � :=

⎧
⎨

⎩
enkβnk /nk → , (c)

e
n′

kβn′
k (αn′

k
– βn′

k
) → . (d)

(.)

Next, we infer that as k → ∞

� ⇔ lim
n→∞ max

{
enβn /n, enβn (αn – βn)

}
= . (.)

‘⇐’ of (.) is straightforward. Now we show ‘⇒’. On the one hand, by Remark (.),
we know from (d) of � that e

n′
kβn′

k /n′
k → , and combined with (c) enkβnk /nk → , we can

show enβn /n →  by using a similar method as in the previous paragraph. On the other
hand, enkβnk (αnk – βnk ) →  is straightforward (since limk→∞ xnk = limk→∞ enk (βnk –αnk ) = ,

and note (c) in �), and combined with e
n′

kβn′
k (αn′

k
– βn′

k
) → , we can also deduce that

enβn (αn – βn) → . This yields the proof of ‘⇒’ in (.).
Therefore, (C) and (C ′) follow from (.) and (.). �

Remark . In general, from (.) we have only [n]pn ,qn → ∞ ⇒ enβn /n → . However, if
limn→∞ en(βn–αn) =  holds, then we have the equivalent relation enβn /n →  ⇔ [n]pn ,qn →
∞ from (A). Thus, we have:

(A) If limn→∞ en(βn–αn) = , then enβn /n →  ⇔ [n]pn ,qn → ∞.

Similarly, from (B) and (B′), (C) and (C ′) we have

(B) If limn→∞ en(βn–αn) < , then enβn (αn – βn) →  ⇔ [n]pn ,qn → ∞.
(C) If limn→∞ en(βn–αn) < , limn→∞ en(βn–αn) = , then max{enβn /n, enβn (αn – βn)} →  ⇔

[n]pn ,qn → ∞.

Remark . In Case (B), we can also deduce directly from limn→∞ en(βn–αn) <  and
enβn (αn – βn) →  that enβn /n →  as n → ∞. Indeed, since limn→∞ en(βn–αn) < , and com-
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bined with the classical inequality on upper (lower) limit

lim
n→∞

en(αn–βn) · lim
n→∞ en(βn–αn) ≥ lim

n→∞

(
en(αn–βn) · en(βn–αn)) = ,

we have limn→∞ en(αn–βn) > . Thus, for sufficiently large n, there exists c >  such that
en(αn–βn) > c. This means that  < (log c)enβn /n < enβn /n · (n(αn – βn)) → , and we have
seen that enβn /n → .

Remark . Now we utilize Theorem . (Remark .) to elaborate Example . again. In
the example, βn = /

√
n, while enβn /n = e

√
n/n �  as n → ∞, thus [n]pn ,qn �∞.

For pn = , βn = , qn =  – αn, then enβn /n = /n →  and enβn (αn – βn) = αn → . Thus
any case of (A)-(C) is straightforward. In this case, (pn, qn)-integer reduces to qn-integer,
and it is known that [n]qn → ∞ ⇔ qn →  as n → ∞. See [], Theorem , and [],
formula (.).

3 Conclusion
In this note, we mainly obtain the sufficient and necessary conditions for (p, q)-integer
[n]p,q tending to infinity as n → ∞. The conclusion guarantees the (p, q)-analogue of
Bernstein-type operators to be approximation processes as n → ∞.
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