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Abstract
Variable stepsize methods are effective for various modified CQ algorithms to solve
the split feasibility problem (SFP). The purpose of this paper is first to introduce two
new simpler variable stepsizes of the CQ algorithm. Then two new generalized
variable stepsizes which can cover the former ones are also proposed in real Hilbert
spaces. And then, two more general KM (Krasnosel’skii-Mann)-CQ algorithms are also
presented. Several weak and strong convergence properties are established.
Moreover, some numerical experiments have been taken to illustrate the
performance of the proposed stepsizes and algorithms.

MSC: 46E20; 46H35; 47H14; 47L30

Keywords: split feasibility problem; CQ algorithm; variable stepsize; generalized
variable stepsize

1 Introduction
Since the CQ algorithm for solving the split feasibility problem (SFP) was proposed []
in order to get better convergence speed, much attention has been paid to improve the
variable stepsize of CQ algorithm.

Let H and H be real Hilbert spaces, C and Q be nonempty closed convex subsets of
H and H, respectively, and A : H → H be a bounded linear operator. In this setting, the
SFP [] is formulated as finding a point x̂ with the requirement

x̂ ∈ C and Ax̂ ∈ Q. (.)

Denote the set of solutions for the SFP by � = C ∩ A–(Q), and define f : H → R by

f (x) =


∥
∥(I – PQ)Ax

∥
∥

,

we see the function f (x) is convex and continuously differentiable.
In [, ], Byrne proposed his CQ algorithm; it generates a sequence {xn} via the recursion

xn+ = PC
(

I – τnA∗(I – PQ)Axn
)

, n ≥ , (.)
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where initial x ∈ H and τn ∈ (, /‖A‖), PC and PQ are the orthogonal projections onto
C and Q, respectively.

Considering that the projection onto the nonempty closed convex sets C and Q might
be hard to be implemented, Yang [] and Xu [] showed that if C and Q are level sets of
convex functions, it just needs to project onto half-spaces Cn and Qn, thus the so-called
relaxed CQ algorithm is reduced to the following formula:

xn+ = PCn

(

I – τnA∗(I – PQn )Axn
)

, n ≥ . (.)

In (.), the projections PCn and PQn have closed-form expressions, thus they are easily to
be computed. Define fn : H → R by

fn(x) =


∥
∥(I – PQn )Ax

∥
∥

,

then the convex objective fn is also differentiable and has a Lipschitz gradient given by

∇fn(x) = A∗(I – PQn )Ax.

Noting that when applying (.) and (.) to solve the practical problems such as signal
processing and image reconstruction, which can be covered by the SFP, it is hard to avoid
that a fixed stepsize related to the norm of A sometimes affects convergence of the algo-
rithms. Therefore, in order not to compute the matrix inverse and the largest eigenvalue of
the matrix AT A and have a sufficient decrease of the objective function at each iteration,
people have invented various algorithms with a variable or self-adaptive stepsize. Since Qu
[] presented a searching method by adopting Armijo-like search, many similar methods
have been proposed, such as [–] etc. However, through these methods, self-adaptive
stepsize at each iteration can be achieved, most formats of them are becoming more com-
plex, it is difficult to apply them to some practical problems, and this needs considerable
time complexity, especially for the large-scale setting and sparse problem.

On the other hand, another way to construct the variable stepsize without calculating
matrix norm was proposed by Yang in [], that is,

τn :=
ρn

‖∇f (xn)‖ , (.)

where {ρn} is a sequence of positive real numbers such that

∞
∑

n=

ρn = ∞,
∞

∑

n=

ρ
n < ∞.

at the same time, the additional conditions that Q is a bounded subset and A is a full col-
umn rank matrix are required. Wang et al. [] applied (.) to solve the SFP. Afterwards,
in order to remove the two additional conditions, López et al. [] introduced another
choice of the stepsize sequence {τn} as follows:

τn :=
ρnfn(xn)

‖∇fn(xn)‖ , (.)
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where {ρn} is chosen in the interval (, ). Furthermore, in paper [] we were aware that
if ∇fn(xn) =  in (.) for some n ≥ , the corresponding algorithms in [] have to be
terminated. In this case, xn may not be in C and is not necessarily a solution of SFP (.).
With this observation, we have introduced a stepsize sequence {τn} as follows:

τn :=
ρnfn(xn)

(‖∇fn(xn)‖ + ωn) , (.)

where {ρn} is also chosen in the interval (, ) and {ωn} is a sequence of positive num-
bers in (, ). This choice of the stepsize sequence makes the associated algorithms never
terminate unless the solution of SFP has been found. However, there exists inconvenience
dealing with the choice of the parameter ωn. Only when it is a small number, a similar con-
vergence speed as adopting (.) can be guaranteed. After observing many experiments,
the order of magnitude for ωn usually about less than – can satisfy that, it closely relates
with the bit of computer and the float precision of the calculation software.

In order to improve these and avoid the calculations of fn(x) or ∇fn(xn), in this paper, we
firstly propose two simpler choices of a stepsize as follows:

τn :=
ρn‖xn – x̄n‖

‖Axn – Ax̄n‖ (.)

and

τn :=
ρn‖x̄n‖

‖Ax̄n‖ , (.)

where {ρn} is chosen in the interval (, ), xn 
= x̄n, and x̄n 
= . The advantages of our
choices (.) and (.) lie in facts that they not only possess simpler formats easily to be cal-
culated and implemented in practice, but also have significantly faster convergence speed,
especially in a large-scale setting and sparse problem. Secondly, we present two general-
ized variable stepsizes as follows:

τn :=
ρn‖r(xn)‖

‖Ar(xn)‖ (.)

or

τn :=
ρn‖p(xn)‖

‖AT p(xn)‖ , (.)

where {ρn} is chosen in the interval (, ), and r(xn) 
=  and p(xn) 
= . Consequently, step-
sizes (.)-(.) are the special cases of (.) or (.), and many similar stepsize formats
can be obtained from them.

Recently, Yao et al. [] have applied (.) to an improved CQ algorithm with a gen-
eralized Halpern iteration. In paper [], we have modified the relative parameters with
satisfactory conditions. Then, in this paper, we combine the iterations in [, ] with the
KM-CQ iterations in [, ]. We propose two more general KM-CQ algorithms with the
generalized variable stepsize (.) or (.), and they can be used to approach the minimum
norm solution of the SFP that solves special variational inequalities.
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The rest of this paper is organized as follows. Section  reviews some propositions and
known lemmas. Section  gives two modified CQ algorithms with simpler variable step-
sizes and shows the weak convergence. Section  presents two general KM-CQ algorithms
with the generalized variable stepsizes and proves the strong convergence. In Section , we
include numerical experiments to testify the better performance of the proposed stepsizes
and algorithms with typical problems of signal processing and image restoration. Finally,
Section  gives some conclusions and further research aim.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H . We will use the following notations:

• ‘→’ stands for strong convergence;
• ‘⇀’ stands for weak convergence;
• I stands for the identity mapping on H .
Recall that a mapping T : C → H is nonexpansive iff ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
A mapping ψ : C → H is said to be δ-contractive iff there exists a constant δ ∈ [, ) such

that

∥
∥ψ(x) – ψ(y)

∥
∥ ≤ δ‖x – y‖

for all x, y ∈ C.
Recall also that the nearest point projection from H onto C, denoted by PC , assigns to

each x ∈ H the unique point PCx ∈ C with the property ‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C. We
collect the basic properties of PC as follows.

Proposition . ([, ])

(p) 〈x – PCx, y – PCx〉 ≤  for all x ∈ H , y ∈ C;
(p) ‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉 for every x, y ∈ H ;
(p) ‖PCx – PCy‖ ≤ ‖x – y‖ – ‖(I – PC)x – (I – PC)y‖ for all x, y ∈ H ;
(p) 〈(I – PC)x – (I – PC)y, x – y〉 ≥ ‖(I – PC)x – (I – PC)y‖ for all x, y ∈ H ;
(p) ‖PCx – z‖ ≤ ‖x – z‖ – ‖PCx – x‖ for all x ∈ H , z ∈ C.

In a Hilbert space H , the next following facts are well known.

Proposition . ∀x, y ∈ H , ∀t ∈ R,
(i) ‖x ± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖;

(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖.
For the SFP, we assume that the following conditions are satisfied in a Hilbert space []:
(i) The solution set of the SFP is nonempty.
(ii) The set C is given by

C =
{

x ∈ H|c(x) ≤ 
}

,

where c : H → R is a convex function and C is nonempty.
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The set Q is given by

Q =
{

y ∈ H|q(y) ≤ 
}

,

where q : H → R is a convex function and Q is nonempty.
(iii) Assume that both c and q are subdifferentiable on H and H, respectively. The sub-

differentials are defined as follows:

∂c(x) =
{

ξ ∈ H|c(z) ≥ c(x) + 〈ξ , z – x〉 for all z ∈ H
} 
= ∅,

for all x ∈ C, and

∂q(y) =
{

η ∈ H|q(u) ≥ q(y) + 〈η, u – y〉 for all u ∈ H
} 
= ∅,

for all y ∈ Q.
(iv) We also assume that ∂c and ∂q are bounded on bounded sets. The set Cn is given by

Cn =
{

x ∈ H|c(xn) + 〈ξn, x – xn〉 ≤ 
}

,

where ξn ∈ ∂c(xn). The set Qn is constructed by

Qn =
{

y ∈ H|q(Axn) + 〈ηn, y – Axn〉 ≤ 
}

,

where ηn ∈ ∂q(Axn).

It is easily seen that C ⊆ Cn and Q ⊆ Qn for all n.
The relaxed CQ algorithm [] can be seen as a special case of the classical gradient

projection method (GPM). To see this, we can consider the following convex minimization
problem:

min
x∈Cn

fn(x). (.)

It is well known that x̂ ∈ Cn is a solution of problem (.) if and only if

〈∇fn(x̂), x – x̂
〉 ≥ , ∀x ∈ Cn. (.)

Also, we know that (.) holds true if and only if

x̂ = PCn (I – τ∇fn)x̂, ∀τ > .

Therefore, we use the GPM to solve the SFP, for any x ∈ H,

xn+ = PCn

[

xn – τn∇fn(xn)
]

, n ≥ , (.)

where τn ∈ (, /L), while L is the Lipschitz constant of ∇fn. Noting that L = ‖A‖, we see
that (.) is exactly the relaxed CQ algorithm (.) .
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Proposition . (see []) Let {αn} be a sequence of nonnegative real numbers such that

αn+ ≤ ( – tn)αn + tnbn, n ≥ ,

where {tn} is a sequence in (, ) and bn ∈R such that
(i)

∑∞
n= tn = ∞;

(ii) limnbn ≤  or
∑∞

n= |tnbn| < ∞.
Then αn → .

Proposition . ([, ]) For some countable index set , we denote by �p = �p(),  ≤
p ≤ ∞. Soft-thresholding leads to the unique minimizer of a functional combining � and
l-norms,

Sμ(a) = arg min
x∈�()

(‖x – a‖ + μ‖x‖
)

, (.)

where μ is a certain positive number and Sμ is the soft-thresholding operation defined by
Sμ(a)i = Sμ(ai), i ∈ , with

Sμ(z) =

⎧

⎪⎪⎨

⎪⎪⎩

z – μ, z > μ,

, |z| ≤ μ,

z + μ, z < –μ.

For the �-ball BR = {x ∈ � : ‖x‖ ≤ R} with R := ‖x∗‖, where x∗ ∈ � is the solution of
problem (.), we replace the thresholding with the projection PBR , and with a slight abuse
of notation, we denote PBR by PR; then we introduce two properties of �-projections onto
�-balls [].

Lemma . For any a ∈ � and for μ > , ‖Sμ(a)‖ is a piecewise linear, continuous,
decreasing function of μ; moreover, if a ∈ �, then ‖S(a)‖ = ‖a‖ and ‖Sμ(a)‖ =  for
μ ≥ maxi |ai|.

Lemma . If ‖a‖ > R, then the � projection of a on the �-ball with radius R is given by
PR(a) = Sμ(a), where μ (depending on a and R) is chosen such that ‖Sμ(a)‖ = R. If ‖a‖ ≤ R,
then PR(a) = S(a) = a.

Next, we discuss a method to compute μ.

Proposition . ([]) For any a ∈ � ⊆ �, dim(�) = n, sort the absolute values of the
components of a by descending order, obtaining the rearranged sequence (a∗

i )i=,...,n. Then
we perform a search to find k such that

∥
∥Sa∗

k
(a)

∥
∥

 =
k–
∑

i=

(

a∗
i – a∗

k
) ≤ R <

k
∑

i=

(

a∗
i – a∗

k+
)

=
∥
∥Sa∗

k+
(a)

∥
∥



or equivalently,

∥
∥Sa∗

k
(a)

∥
∥

 =
k–
∑

i=

i
(

a∗
i – a∗

i+
) ≤ R <

k
∑

i=

i
(

a∗
i – a∗

i+
)

=
∥
∥Sa∗

k+
(a)

∥
∥

.
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Set ν := k–(R – ‖Sa∗
k
(a)‖), and μ := a∗

k + ν , then

∥
∥Sμ(a)

∥
∥

 =
∑

i∈�

max
(|ai| – μ, 

)

=
k

∑

i=

(

a∗
i – μ

)

=
k–
∑

i=

(

a∗
i – a∗

k
)

+ kν =
∥
∥Sa∗

k
(a)

∥
∥

 + kν = R.

3 CQ algorithms with two simpler variable stepsizes
In this section, two simpler variable stepsizes are proposed below. The advantages of the
two stepsizes, comparing with (.) and (.), are that neither prior information about the
matrix norm A nor any other conditions on Q and A are required.

3.1 A simpler variable stepsize for CQ algorithm
We propose a new and simpler variable stepsize method for solving the feasibility problem.
The algorithm is presented as follows.

Algorithm . For any initial data x ∈ H, u ∈ H and u 
= , assume that the nth iterate
xn has been constructed; then we compute the (n + )th iterate xn+ via the formula

x̄n = PCn

(

tnu + ( – tn)xn
)

, (.)

xn+ = PCn

(

xn – τn∇fn(xn)
)

, (.)

where

τn :=
ρn‖xn – x̄n‖

‖Axn – Ax̄n‖ , (.)

with {ρn} ⊂ (, ) and {tn} ⊂ (, ). If xn+ = xn or Axn = Ax̄n for some n ≥ , then xn is a
solution of SFP (.) and the iteration stops; otherwise, we set n := n +  and go to (.) to
compute the next iterate xn+.

Remark . We can easily approximate the upper bound λ of the eigenvalue interval to
the symmetric matrix AT A from [, ], thus for any xn≥, we can obtain τn ∈ (, /λ) ⊂
(, /L), where L is the largest eigenvalue of AT A.

Now we prove the convergence property of Algorithm ..

Theorem . If � 
= ∅ and limnτn( – λτn) ≥ σ > , the sequence {xn} generated by Algo-
rithm . converges weakly to a solution of SFP (.).

Proof Let x∗ be a solution of SFP, since C ⊆ Cn, Q ⊆ Qn, thus x∗ = PC(x∗) = PCn (x∗) and
Ax∗ = PQ(Ax∗) = PQn (Ax∗). It shows that x∗ ∈ Cn and ∇fn(x∗) =  for all n = , , . . . , using
(.) and (p), we have

∥
∥xn+ – x∗∥∥ =

∥
∥PCn

(

xn – τn∇fn(xn)
)

– x∗∥∥

≤ ∥
∥
(

xn – x∗) – τn∇fn(xn)
∥
∥
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=
∥
∥xn – x∗∥∥ + τ 

n
∥
∥∇fn(xn)

∥
∥

 – τn
〈

xn – x∗,∇fn(xn)
〉

=
∥
∥xn – x∗∥∥ + τ 

n
∥
∥∇fn(xn)

∥
∥



– τn
〈

xn – x∗,∇fn(xn) – ∇fn
(

x∗)〉

≤ ∥
∥xn – x∗∥∥ + τ 

n L
∥
∥(I – PQn )Axn

∥
∥



– τn
〈

Axn – Ax∗, (I – PQn )Axn – (I – PQn )Ax∗〉

≤ ∥
∥xn – x∗∥∥ + τ 

n L
∥
∥(I – PQn )Axn

∥
∥



– τn
∥
∥(I – PQn )Axn – (I – PQn )Ax∗∥∥

=
∥
∥xn – x∗∥∥ +

(

τ 
n L – τn

)∥
∥(I – PQn )Axn

∥
∥

. (.)

Combining with Remark ., we know τ 
n L – τn < , thus it implies that the sequence

{‖xn – x∗‖} is monotonically decreasing and hence {xn} is bounded. Consequently, from
(.) we get

lim
n→∞

∥
∥(I – PQn )Axn

∥
∥

 = . (.)

Assume that x̄ is an accumulation point of {xn} and {xni} → x̄, {xni} is a subsequence of
{xn}. Then from (.) it follows

lim
ni→∞

∥
∥(I – PQni

)Axni

∥
∥

 = . (.)

Next we show x̄ ∈ �.
Firstly, we show x̄ ∈ C. We prove it from two cases.
Case . limni→∞ xni+ 
= x̄. Without loss of generality, we may assume limni→∞ xni+ =

x̃ 
= x̄. Set zni = xni – τni∇fni (xni ), so xni+ = PCni
(zni ) is the solution of the following pro-

gramming:

min


‖z – zni‖ s.t. c(xni ) + 〈ξni , z – xni〉 ≤ .

By the Kuhn-Tucker condition, there exists a nonnegative number νni such that

xni+ – zni + νniξni = , (.)

νni

(

c(xni ) + 〈ξni , xni+ – xni〉
)

= . (.)

If there exist infinite ni such that νni =  or ξni = , from (.) and (.) it leads to x̃ = x̄,
so the contradiction happens. Therefore, νni >  and ξni 
=  for sufficiently large ni. We go
on to divide the discussion into two cases.

() If inf{‖ξni‖} > , we may assume ξni → ξ̄ 
= . Then ξ̄ ∈ ∂c(x̄) by the lower semicon-
tinuity of ∂c(x). From (.) we have νni → 〈ξ̄ , x̃ – x̄〉/‖ξ̄‖ �= ν̄ . Thus we obtain from (.)
and (.)

x̃ – x̄ + ν̄ξ̄ = , (.)

ν̄
(

c(x̄) + 〈ξ̄ , x̃ – x̄〉) = . (.)

They mean that x̃ = PC(x̄)(x̄).
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Therefore, x̄ 
= PC(x̄)(x̄) by assumption. From (p) we have

∥
∥x̃ – x∗∥∥ ≤ ∥

∥x̄ – x∗∥∥ – ‖x̄ – x̃‖ <
∥
∥x̄ – x∗∥∥.

Since {‖xn – x∗‖} is decreasing, both x̄ and x̃ are the accumulation points of {xn}, then
‖x̃ – x∗‖ = ‖x̄ – x∗‖. It is a contradiction, so this case will not occur.

() If inf{‖ξni‖} = , then we get the lower semicontinuity of ∂c(x). Since c(x) is convex,
then x̄ is a minimizer of c(x) over H. Since c(x∗) ≤ , then c(x̄) ≤ c(x∗) ≤ . So x̄ ∈ C.

Case . limni→∞ xni+ = x̄. As in Case , one has (.) and (.) by the Kuhn-Tucker
condition. If there exist infinite ni s.t. νni =  or ξni = , then we have PCni

(zni ) = zni , so
c(xni ) + 〈ξni , zni – xni〉 ≤ . Since

lim
ni→∞(zni – xni ) = lim

ni→∞ τni A
T (PQni

– I)Axni = ,

then c(x̄) ≤ . Therefore, we have x̄ ∈ C.
Assume νni >  and ξni 
=  for sufficiently large ni. If inf{‖ξni‖} = , such as above, it

follows x̄ ∈ C. If inf{‖ξni‖} > , similar to Case (), it leads to x̄ = PC(x̄)(x̄), which implies
c(x̄) + 〈ξ̄ , x̄ – x̄〉 ≤ . So x̄ ∈ C.

In summary, we can conclude x̄ ∈ C.
Secondly, we need to show Ax̄ ∈ Q. From (.) we have

lim
ni→∞

∥
∥(I – PQni

)Axni

∥
∥

 = . (.)

Since PQni
(Axni ) ∈ Qni , we have

q(Axni ) +
〈

ηni , PQni
(Axni ) – Axni

〉 ≤ .

Moreover, limiting the inequality and taking account of (.), we obtain that

q(Ax̄) ≤ ,

that is, Ax̄ ∈ Q.
Therefore x̄ is a solution of SFP. Thus we may replace x∗ in (.) with x̄, and get {‖xn – x̄‖}

is convergent. Because there exists a subsequence {‖xni – x̄‖} convergent to , then xn → x̄
as n → ∞. �

3.2 The other simpler variable stepsize for CQ algorithm
In this part, we introduce the other simpler choice of the stepsize τn, which also is a variable
stepsize to CQ algorithm. Either combining with the relaxed CQ algorithm [], we have
the next algorithm.

Algorithm . Choose the initial data ∀x ∈ H, for u ∈ H and u 
= . Assume that the nth
iterate xn has been constructed; then we compute the (n + )th iterate xn+ via the formula

x̄n = PCn

(

tnu + ( – tn)xn
)

, (.)

xn+ = PCn

(

xn – τn∇fn(xn)
)

, (.)
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where

τn :=
ρn‖x̄n‖

‖Ax̄n‖ , (.)

with {ρn} ⊂ (, ) and {tn} ⊂ (, ). If xn+ = xn, then stop and xn is a solution of SFP (.);
otherwise, back to (.) and continue to compute xn+.

Obviously, (.) is also consistent with Remark .. Thus, similar to the proof of Theo-
rem ., we can deduce that Algorithm . converges weakly to a solution of SFP (.).

4 Two general KM-CQ algorithms with generalized variable stepsize
In this section, we integrate the variable stepsizes from (.) to (.) and obtain a variable
stepsize that can cover them. After that, we apply it to improve the algorithms presented
in [] and [] and construct two algorithms for approximating some solution of (.).

Let ψ : C → H be a δ-contraction with δ ∈ (, ), let r : H → H\� and q : H → H\�
be nonzero operators, where � denotes the zero point.

4.1 A generalized variable stepsize for a general KM-CQ algorithm
The next recursion not only possesses a more generalized adaptive descent step, but it also
can be implemented easily by the relaxed method.

Algorithm . Choose the initial data x ∈ H arbitrarily. Assume that the nth iterate xn

has been constructed; then we compute the (n + )th iterate xn+ via the formula

xn+ = ( – βn)xn + βnPCn

[

αnψ(xn) + ( – αn)Unxn
]

, (.)

where Unxn = (I – τnAT (I – PQn )A)xn, τn := ρn‖r(xn)‖

‖Ar(xn)‖ or τn := ρn‖p(xn)‖

‖AT p(xn)‖ , {ρn} ⊂ (, ), {tn} ⊂
(, ), {αn} and {βn} are two real sequences in [, ]. If xn+ = xn for some n ≥ , then xn is a
solution of SFP (.) and the iteration stops; otherwise, continue to compute xn+.

Theorem . Suppose that the SFP is consistent, that is, � = C ∩ A–(Q) 
= ∅, limnτn( –
λτn) ≥ σ > . Assume that the sequences {αn} and {βn} satisfy the following conditions:

(C) limn→∞ αn =  and
∑∞

n= αn = ∞;
(C)  < limnβn.

Then {xn} defined by (.) converges strongly to x∗ = P�ψx∗, which solves the following vari-
ational inequality:

〈

(ψ – I)x∗, y – x∗〉 ≤ , ∀y ∈ �. (.)

Proof Since P� : H → � ⊂ C is nonexpansive and ψ : C → H is δ-contractive, therefore,
we have P�ψ : C → C is a contraction with δ ∈ (, ). By the Banach contractive mapping
principle, there exists a unique x∗ ∈ C such that x∗ = P�ψx∗. By virtue of (p), we see that
(.) holds true.
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By virtue of x∗ being a solution of the SFP, x∗ ∈ C ∩ A–(Q), and C ⊆ Cn, Q ⊆ Qn, then
x∗ = PC(x∗) = PCn (x∗) and Ax∗ = PQ(Ax∗) = PQn (Ax∗). From (p) we have

∥
∥Unxn – x∗∥∥ =

∥
∥xn – τn∇fn(xn) – x∗∥∥

=
∥
∥xn – x∗∥∥ +

∥
∥τn∇fn(xn)

∥
∥

 – τn
〈

xn – x∗,∇fn(xn)
〉

=
∥
∥xn – x∗∥∥ + τ 

n
∥
∥∇fn(xn)

∥
∥



– τn
〈

Axn – Ax∗, (I – PQn )Axn – (I – PQn )Ax∗〉

≤ ∥
∥xn – x∗∥∥ + τ 

n L
∥
∥(I – PQn )Axn

∥
∥



– τn
∥
∥(I – PQn )Axn

∥
∥



=
∥
∥xn – x∗∥∥ +

(

τ 
n L – τn

)∥
∥(I – PQn )Axn

∥
∥

. (.)

Obviously, τn ∈ (, /L) from Remark ., then τ 
n L – τn < , in particular, we obtain

∥
∥Unxn – x∗∥∥ ≤ ∥

∥xn – x∗∥∥. (.)

At this point, we can establish the boundedness of {xn}. To see this, using (.) we have

∥
∥xn+ – x∗∥∥

=
∥
∥( – βn)xn + βnPCn

[

αnψ(xn) + ( – αn)Unxn
]

– x∗∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥ + βn

∥
∥PCn

[

αnψ(xn) + ( – αn)Unxn
]

– x∗∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥ + βn

∥
∥αnψ(xn) + ( – αn)Unxn – x∗∥∥

= ( – βn)
∥
∥xn – x∗∥∥

+ βn
∥
∥αn

(

ψ(xn) – ψ
(

x∗)) + ( – αn)
(

Unxn – x∗) + αnψ
(

x∗) – αnx∗∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥ + αnβn

∥
∥ψ(xn) – ψ

(

x∗)∥∥ + ( – αn)βn
∥
∥Unxn – x∗∥∥

+ αnβn
∥
∥ψ

(

x∗) – x∗∥∥

≤ (

 – ( – δ)αnβn
)∥
∥xn – x∗∥∥ + αnβn

∥
∥ψ

(

x∗) – x∗∥∥

=
(

 – ( – δ)αnβn
)∥
∥xn – x∗∥∥ + ( – δ)αnβn

‖ψ(x∗) – x∗‖
 – δ

≤ max

{
∥
∥x – x∗∥∥,

‖ψ(x∗) – x∗‖
 – δ

}

= M,

for all n ≥ , which indicates {xn} is bounded. Set zn = PCn [αnψ(xn) + ( – αn)Unxn], thus
{zn} is also bounded.

Next, we prove xn → x∗ (n → ∞). By virtue of (.), Proposition .(p) and (.), we
have

∥
∥xn+ – x∗∥∥

=
∥
∥( – βn)xn + βnPCn

[

αnψ(xn) + ( – αn)Unxn
]

– x∗∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥ + βn

∥
∥PCn

[

αnψ(xn) + ( – αn)Unxn
]

– x∗∥∥, (.)



Wang et al. Journal of Inequalities and Applications  (2017) 2017:135 Page 12 of 18

where we set

∥
∥PCn

[

αnψ(xn) + ( – αn)Unxn
]

– x∗∥∥

=
∥
∥PCn [wn] – x∗∥∥

=
〈

PCn [wn] – x∗, PCn [wn] – x∗〉

=
〈

PCn [wn] – wn, PCn [wn] – x∗〉 +
〈

wn – x∗, PCn [wn] – x∗〉,

since 〈PCn [wn] – wn, PCn [wn] – x∗〉 ≤ , we have

∥
∥PCn [wn] – x∗∥∥

≤ 〈

wn – x∗, PCn [wn] – x∗〉

=
〈

αnψ(xn) + ( – αn)Unxn – x∗, PCn [wn] – x∗〉

=
〈

αn
(

ψ(xn) – ψ
(

x∗)) + ( – αn)
(

Unxn – x∗) + αn
(

ψ
(

x∗) – x∗), PCn [wn] – x∗〉

≤ (

αn
∥
∥ψ(xn) – ψ

(

x∗)∥∥ + ( – αn)
∥
∥Unxn – x∗∥∥)∥

∥PCn [wn] – x∗∥∥

+ αn
〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉

≤ (

 – ( – δ)αn
)∥
∥xn – x∗∥∥∥

∥PCn [wn] – x∗∥∥ + αn
〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉

≤  – ( – δ)αn


∥
∥xn – x∗∥∥ +



∥
∥PCn [wn] – x∗∥∥

+ αn
〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉.

Therefore,

∥
∥PCn [wn] – x∗∥∥ ≤ (

 – ( – δ)αn
)∥
∥xn – x∗∥∥ + αn

〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉. (.)

Substituting (.) into (.) can yield

∥
∥xn+ – x∗∥∥

≤ ( – βn)
∥
∥xn – x∗∥∥

+
(

 – ( – δ)αn
)

βn
∥
∥xn – x∗∥∥ + αnβn

〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉

≤ (

 – ( – δ)αnβn
)∥
∥xn – x∗∥∥ + ( – δ)αnβn


 – δ

〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉. (.)

Since x∗ ∈ C ⊆ Cn, PCn : H → C ⊆ Cn and ψ : C ⊆ Cn → H, then PCnψ : Cn → Cn, x∗ =
PCnψx∗.

Due to the property of the projection (p) in Proposition .,

lim sup
n→∞

〈

ψ
(

x∗) – x∗, PCn [wn] – x∗〉

= max
PCn [wn]∈Cn

〈

ψ
(

x∗) – PCnψ
(

x∗), PCn [wn] – PCnψ
(

x∗)〉 ≤ . (.)

Applying (.) and Proposition . to (.), we deduce that xn → x∗.
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Assume that x̂ is an accumulation point of {xn} and xni → x̂, where {xni}∞i= is a subse-
quence of {xn}. Next we will prove that x̂ is a solution of SFP.

As xn → x∗, we know xn ⇀ x∗, that is,

lim
n→∞‖xn+ – xn‖ = . (.)

Therefore, limit (.), we can obtain

lim
n→∞

∥
∥Un(xn) – x∗∥∥ = .

Then, limit (.), we get

lim
n→∞

∥
∥(I – PQn )Axn

∥
∥ = . (.)

On the one hand, we show x̂ ∈ C.
Notice that xni → x̂ and xni+ – xni →  (i → ∞). Since xni+ ∈ Cni , then by virtue of the

definition of Cni , we have

c(xni ) + 〈ξni , xni+ – xni〉 ≤ , ∀i = , , . . . ,

taking the limit and using (.), we obtain that

c(x̂) ≤ .

Hence, we get x̂ ∈ C.
On the other hand, we need to show Ax̂ ∈ Q.
Since PQni

(Axni ) ∈ Qni , we have

q(Axni ) +
〈

ηni , PQni
(Axni ) – Axni

〉 ≤ ,

taking ni → ∞, by virtue of (.), we deduce that

q(Ax̂) ≤ ,

that is, Ax̂ ∈ Q.
Therefore, x̂ is a solution of SFP.
Thus we may replace x∗ in (.) with x̂ and get {‖xn – x̂‖} is convergent. Because there

exists a subsequence {‖xni – x̂‖} convergent to , then xn → x̂ as n → ∞. �

4.2 The other extended algorithm
Let h : C → H be a κ-contraction. Let B : H → H be a self-adjoint strongly positive
bounded linear operator with coefficient λ ∈ (, ), for ∀x ∈ H, there exists 〈Bx, x〉 ≥
λ‖x‖. Take a constant σ such that  < σκ < λ.
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As B is self-adjoint, we have‖B‖ = sup‖x‖=〈Bx, x〉. I – B is also self-adjoint, then

‖I – B‖ = sup
‖x‖=

〈

(I – B)x, x
〉

= sup
‖x‖=

{‖x‖ – 〈Bx, x〉}

≤ sup
‖x‖=

{

( – λ)‖x‖} ≤  – λ.

In (.), we set ψ(x) = σh(x) + (I – B)Unx, thus

∥
∥ψ(x) – ψ(y)

∥
∥ ≤ σκ‖x – y‖ + ‖I – B‖‖x – y‖

≤ (σκ +  – λ)‖x – y‖,

for ∀x, y ∈ H, we know that σκ +  – λ ∈ (, ), ψ : C → H is still a contraction. Accord-
ingly, we have the following extended algorithm that is a special case of Algorithm ..

Algorithm . Choose the initial data x ∈ H arbitrarily. Assume that the nth iterate xn

has been constructed; then we compute the (n + )th iterate xn+ via the formula

xn+ = ( – βn)xn + βnPCn

[

αnσh(xn) + (I – αnB)Unxn
]

, (.)

where Unxn = (I – τnAT (I – PQn )A)xn, τn := ρn‖r(xn)‖

‖Ar(xn)‖ or τn := ρn‖p(xn)‖

‖AT p(xn)‖ , τn ∈ (, /L), {ρn} ⊂
(, ), {tn} ⊂ (, ), {αn} and {βn} are two real sequences in [, ]. If xn+ = xn, then stop and
xn is a solution of SFP (.); otherwise, continue to compute xn+.

Theorem . Suppose that the SFP is consistent, that is, � = C ∩ A–(Q) 
= ∅, limnτn( –
λτn) ≥ σ > , assume that the sequences {αn} and {βn} satisfy the following conditions:

(C) limn→∞ αn =  and
∑∞

n= αn = ∞;
(C)  < limnβn.

Then {xn} defined by (.) converges strongly to x∗ = P�[σh(x∗) + (I – B)Unx∗], which solves
the following variational inequality:

〈

σh
(

x∗) – B
(

x∗), y – x∗〉 ≤ , ∀y ∈ �.

5 Numerical experiments and results
This section considers two numerical experiments to illustrate the performance of the
above proposed variable stepsizes in CQ algorithm. Firstly, we see that a great amount of
problems in signal and image processing can be seen as estimating x ∈ RN from the linear
observation model

y = Ax + ε, (.)

where y ∈ RM is the observed or measured data with noisy ε. A : RN → RM denotes the
bounded linear observation or measurement operator. Sometimes, the range of A may not
be closed in most inverse problems, therefore, if A is ill-conditioned, the problem will be
ill-posed.
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If x is a sparse expansion, finding the solutions of (.) can be seen as finding a solution
to the least-square problem

min
x∈RN



‖y – Ax‖ subject to ‖x‖ < t (.)

for any real number t > .
Problem (.) is a particular case of SFP (.) where C = {x ∈ RN : ‖x‖ ≤ t} and Q = {y},

i.e., find ‖x‖ ≤ t such that Ax = y. Therefore, CQ algorithm can be applied to solve (.).
From Propositions . and . the projection onto C can be easily computed [], while
Lemmas . and . show the special situation of Proposition ..

Next, following the experiments in [, ], we choose two particular problems, i.e.,
the compressed sensing and the image deconvolution, which are covered by (.). The
experiments compare the performances of the proposed stepsizes of the CQ algorithm in
this paper with the stepsizes in [] and [].

5.1 Compressed sensing
We consider a typical compressed sensing model, where a sparse signal recovery problem
with a signal x ∈ RN , and N = . This original signal x contains only m =  spikes with
amplitude ±, and the spikes are located at random, see the top of Figure . x is being
reconstructed from M =  measurements, thus A is a M × N matrix randomly obtained
with independent samples of a orthonormalized standard Gaussian distribution, and the
noisy ε is with variance σ 

ε = –. To (.), we also set t=.
For stepsizes (.) and (.) in [] and [], respectively, we still consider the stepsize

with constant ρ = , ωn = (n + )–, while for stepsizes (.) and (.), we set ρ = . For
(.) and (.), we set t = . and u = rand(N , ) ∈ (, ). For (.) we use (.) and (.),
and set αn = (n + )–, βn =  – (n + )– and ψ ≡  as its special case. All the processes are
started with the initial signal x =  and finished with the stop rule

‖xn+ – xn‖/‖xn‖ < –.

We also calculated the mean squared error (MSE) for the results

MSE = (/N)
∥
∥x∗ – x

∥
∥,

where x∗ is an estimated signal of x.
The simulated results of different algorithms with different steps can be seen in Figure 

and Table . Algorithms . and . have less iteration steps and smaller MSE, especially for
Algorithm .. Thus, we see that stepsizes (.) and (.) not only have simper formats
than before, but also can make CQ algorithms have faster iteration and better restored
precision.

5.2 Image deconvolution
In this subsection, we apply the CQ algorithms in the paper to image deconvolution. The
observation model can also be described as (.), we wish to estimate an original image
x from an observation y, while matrix A represents the observation operator, and ε is a
sample of a zero-mean white Gaussian field of variance σ . For the D image deconvolution
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Figure 1 Compressed sensing problem, from top to bottom: original signal, results of CQ algorithm
with stepsizes (1.5), (1.6), (3.3) and (3.14), the last is KM-CQ algorithm with stepsize (3.3).

Table 1 Results of different stepsizes and algorithms for Figure 1

Algorithms MSE n CPU time (s)

CQ with (1.5) 2.8021e–005 66 0.8504
CQ with (1.6) 2.844e–005 66 0.8579
3.1 5.1714e–006 25 0.6858
3.2 1.5253e–006 64 1.5685

problem, A is a block-circulant matrix with circulant blocks []. We stress that the goal
of these experiments is not to assess the restored precision of the algorithms, but to apply
the algorithms in paper to solve this particular SFP, then compare the iterative speed and
restored precision of the proposed stepsizes against the CQ algorithms.

According to papers [, ], we also take the well-known Cameraman image. In the ex-
periments, we employ Haar wavelets, and the blur point spread functions are uniform blur
with size  × , hij = ( + i + j)–, for i, j = –, . . . ,  and for i, j = –, . . . , . The noise vari-
ance is σ  = .,  and , respectively. We have N = M = , then the block-circulant
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Table 2 Results for the restorations of different stepsizes and algorithms

Blur kernel σ 2 Algorithms SNR (dB) n CPU time (s)

9× 9 uniform 0.308 CQ with (1.5) 16.1802 52 3.3883
CQ with (1.6) 16.1722 48 3.1636
3.1 14.5266 19 1.3847
3.2 14.5265 19 1.3199
4.1 with (3.3) 14.2464 34 2.4280

hij = (1 + i2 + j2)–1 for i, j = –4, . . . , 4 2 CQ with (1.6) 22.6184 19 1.3007
CQ with (1.5) 22.4329 17 1.1718
3.1 19.8401 14 1.0746
3.2 19.8401 14 1.0266
4.1 with (3.3) 19.4912 33 2.3306

hij = (1 + i2 + j2)–1 for i, j = –7, . . . , 7 8 CQ with (1.6) 12.7305 39 2.6739
CQ with (1.5) 14.6363 42 2.8604
3.1 19.3561 18 1.3390
3.2 19.3560 18 1.3057
4.1 with (3.3) 18.6140 33 2.3628

matrix A can be constructed by the blur point spread functions, and A may be very ill-
conditioned. Set all the threshold values μ = ., t is the sum of all the pixel values in the
original image. Moreover, we use y = IFFT(FFT(A). ∗ FFT(x)) + ε to obtain the observa-
tion, where FFT is the fast Fourier transform, IFFT is the inverse fast Fourier transform.
Other settings in the above stepsizes and algorithms are the same as in .. We set the
initial image x =  and also follow the stop rule ‖xn+ – xn‖/‖xn‖ < –.

The results of iteration steps, CPU time and the SNR improvements are presented in
Table . It also testifies that the proposed stepsizes and algorithms in this paper can give
better performance.

6 Conclusions and discussion
In this paper, we have proposed two simpler variable stepsizes for the CQ algorithm. Com-
pared with the other related variable stepsizes, they also need not to compute the largest
eigenvalue of A and can be calculated easily. Furthermore, we also presented a more gen-
eral KM-CQ algorithm with generalized variable stepsizes. As a special case, we deduced
another general format. Obviously, both the general algorithms with the generalized vari-
able stepsizes can solve the SFP and some special variational inequality problem better.
The corresponding weak and strong convergence properties have also been established.
In the experiments, through the compressed sensing and image deconvolution models,
we compare the proposed stepsizes with the former ones, the results obtained from the
proposed stepsizes and algorithms appear to be significantly better.

We should notice that the values of parameter ρn are fixed in the above experiments.
Actually, a different value of ρn can also affect the convergence speed of the algorithms.
Therefore, our future work is to find the method to choose a self-adaptive sequence {ρn}.
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