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1 Introduction
Assuming that p > , 

p + 
q = , f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+), ‖f ‖p =

(
∫ ∞

 f p(x) dx)

p > , ‖g‖q > , we have the following Hardy-Hilbert integral inequality (cf.

[]):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

where the constant factor π
sin(π/p) is the best possible. If am, bn ≥ , a = {am}∞m= ∈ lp, b =

{bn}∞n= ∈ lq, ‖a‖p = (
∑∞

m= ap
m)


p > , ‖b‖q > , then we have the following Hardy-Hilbert

inequality with the same best possible constant factor π
sin(π/p) (cf. []):

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Inequalities () and () are important in analysis and its applications (cf. [–]).
Suppose that μi,νj >  (i, j ∈ N = {, , . . .}),

Um :=
m∑

i=

μi, Vn :=
n∑

j=

νj (m, n ∈ N). ()
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We have the following Hardy-Hilbert-type inequality (cf. Theorem  of [], replacing
μ

/q
m am and ν

/p
n bn by am and bn):

∞∑

m=

∞∑

n=

ambn

Um + Vn
<

π

sin( π
p )

( ∞∑

m=

ap
m

μ
p–
m

) 
p
( ∞∑

n=

bq
n

ν
q–
n

) 
q

. ()

For μi = νj =  (i, j ∈ N), () reduces to ().
In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension

of () with the kernel 
(x+y)λ for p = q = . Recently, Yang [] gave some extensions of ()

and () as follows: If λ,λ ∈ R, λ + λ = λ, kλ(x, y) is a non-negative homogeneous func-
tion of degree –λ, with k(λ) =

∫ ∞
 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) = xq(–λ)–,

f (x), g(y) ≥ ,

f ∈ Lp,φ(R+) =
{

f ;‖f ‖p,φ :=
(∫ ∞


φ(x)

∣
∣f (x)

∣
∣p dx

) 
p

< ∞
}

,

g ∈ Lq,ψ (R+), ‖f ‖p,φ ,‖g‖q,ψ > , then we have

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is the best possible. Moreover, if kλ(x, y) keeps a finite
value and kλ(x, y)xλ–(kλ(x, y)yλ–) is decreasing with respect to x >  (y > ), then, for
am,bn ≥ ,

a ∈ lp,φ =

{

a;‖a‖p,φ :=

( ∞∑

n=

φ(n)|an|p
) 

p

< ∞
}

,

b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we have the following inequality with the same best
possible constant factor k(λ):

∞∑

m=

∞∑

n=

kλ(m, n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ . ()

In , Yang [] gave an extension of () for the kernel kλ(m, n) = 
(m+n)λ and () as

follows:

∞∑

m=

∞∑

n=

ambn

(Um + Vn)λ

< B(λ,λ)

[ ∞∑

m=

Up(–λ)–
m ap

m

μ
p–
m

] 
p
[ ∞∑

n=

V q(–λ)–
n bq

n

ν
q–
n

] 
q

, ()

where the constant B(λ,λ) is the best possible, and B(u, v) (u, v > ) is the beta function.
Some other results including multidimensional Hilbert-type inequalities are provided by
[–].

About half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy
et al. provided a few results in Theorem  of []. Yang [] gave an inequality with the
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kernel 
(+nx)λ by introducing an interval variable and proved that the constant factor is the

best possible. Zhong et al. [–] investigated a few half-discrete Hilbert-type inequali-
ties with the particular kernels. Applying the weight functions, a half-discrete Hilbert-type
inequality with a general homogeneous kernel of degree –λ ∈ R and a best constant factor
k(λ) is proved as follows (cf. []):

∫ ∞


f (x)

∞∑

n=

kλ(x, n)an dx < k(λ)‖f ‖p,φ‖a‖q,ψ . ()

A half-discrete Hilbert-type inequality with a general non-homogeneous kernel and a best
constant factor is given by Yang [].

In this paper, by means of the weight functions, the technique of real analysis and
Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type in-
equality related to the kernel of logarithmic function and a best possible constant factor
is given, which is an extension of () in a particular kernel of degree  similar to (). The
equivalent forms, the operator expressions, the equivalent reverses and some particular
cases are also considered.

2 Some lemmas
In the following, we agree that νj >  (j ∈ N), Vn :=

∑n
j= νj, μ(t) is a positive continuous

function in R+ = (,∞),

U(x) :=
∫ x


μ(t) dt < ∞ (

x ∈ [,∞)
)
,

 ≤ ν̃n ≤ νn
 , Ṽn = Vn – ν̃n, ν(t) := νn, t ∈ (n – 

 , n + 
 ] (n ∈ N), and

V (y) :=
∫ y




ν(t) dt
(

y ∈
[




,∞
))

,

p �= , , 
p + 

q = ,  < σ < γ , σ ≤ , δ ∈ {–, }, f (x), an ≥  (x ∈ R+, n ∈ N), ‖f ‖p,
δ
=

(
∫ ∞

 
δ(x)f p(x) dx)

p , ‖a‖q,�̃ = (

∑∞
n= �̃(n)bq

n)

q , where


δ(x) :=
Up(–δσ )–(x)

μp–(x)
, �̃(n) :=

Ṽ q(–σ )–
n

ν
q–
n

(x ∈ R+, n ∈ N).

Example  For ρ > , we set

h(t) := ln

(

 +
ρ

tγ

)

(t ∈ R+).

(i) Setting u = ρt–γ , we find

k(σ ) :=
∫ ∞


tσ– ln

(

 +
ρ

tγ

)

dt

=
ρσ /γ

γ

∫ ∞


u

–σ
γ – ln( + u) du =

–ρσ /γ

σ

∫ ∞


ln( + u) du

–σ
γ
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= –
ρσ /γ

σ

[

u
–σ
γ ln( + u)|∞ –

∫ ∞



u
–σ
γ

 + u
du

]

=
ρσ /γ

σ

∫ ∞



u– σ
γ

 + u
du =

ρσ /γ π

σ sinπ ( – σ
γ

)
=

ρσ /γ π

σ sin( πσ
γ

)
. ()

(ii) We obtain, for t > , h(t) = ln( + ρ

tγ ) > ,

d
dt

h(t) =
–ργ

(tγ + ρ)t
< ,

d

dt h(t) > .

It is evident that, for σ ≤ , tσ–h(t) > , we have

d
dt

(
tσ–h(t)

)
< ,

d

dt

(
tσ–h(t)

)
> .

(iii) Since for n ∈ N, V (y) > , V ′(y) = νn > , V ′′(y) =  (y ∈ (n – 
 , n + 

 )), then, for c > ,
we have

h
(
cV (y)

)
V σ–(y) > ,

d
dy

(
h
(
cV (y)

)
V σ–(y)

)
< ,

d

dy

(
h
(
cV (y)

)
V σ–(y)

)
> 

(

y ∈
(

n –



, n +



))

.

Lemma  If g(t) > , g ′(t) < , g ′′(t) >  (t ∈ ( 
 ,∞)), satisfying

∫ ∞



g(t) dt ∈ R+, then we
have

∫ ∞


g(t) dt <

∞∑

n=

g(n) <
∫ ∞




g(t) dt. ()

Proof For n ∈ N\{}, by the assumptions and Hermite-Hadamard’s inequality (cf. []),
we have

∫ n+

n
g(t) dt < g(n) <

∫ n+ 


n– 


g(t) dt (n = , . . . , n). ()

It follows that

 <
∫ n+


g(t) dt <

n∑

n=

g(n) <
n∑

n=

∫ n+ 


n– 


g(t) dt =
∫ n+ 






g(t) dt < ∞.

In the same way, we still have

 <
∫ ∞

n+
g(t) dt ≤

∞∑

n=n+

g(n) ≤
∫ ∞

n+ 


g(t) dt < ∞.

Hence, adding the above two inequalities, we have (). The lemma is proved. �
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Lemma  Assuming that ρ > , we define the following weight functions:

ωδ(σ , x) :=
∞∑

n=

Uδσ (x)νn

Ṽ –σ
n

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

, x ∈ R+, ()

�δ(σ , n) :=
∫ ∞



Ṽ σ
n μ(x)

U–δσ (x)
ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

dx, n ∈ N. ()

Then we have the following inequalities:

ωδ(σ , x) < k(σ ) (x ∈ R+), ()

�δ(σ , n) ≤ k(σ ) (n ∈ N), ()

where k(σ ) is determined by ().

Proof Since

V (n) =
∫ n+ 






ν(t) dt –
νn


= Vn –

νn



≤ Ṽn ≤ Vn = V
(

n +



)

, ()

and for t ∈ (n – 
 , n + 

 ), V ′(t) = νn, by Examples (ii)-(iii), (), () and (), we have

Uδσ (x)νn

Ṽ –σ
n

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

≤ Uδσ (x)νn

V –σ (n)
ln

[

 +
ρ

(Uδ(x)V (n))γ

]

<
∫ n+ 



n– 


Uδσ (x)V ′(t)
V –σ (t)

ln

[

 +
ρ

(Uδ(x)V (t))γ

]

dt (n ∈ N),

ωδ(σ , x) <
∞∑

n=

∫ n+ 


n– 


Uδσ (x)V ′(t)
V –σ (t)

ln

[

 +
ρ

(Uδ(x)V (t))γ

]

dt

=
∫ ∞




Uδσ (x)V ′(t)
V –σ (t)

ln

[

 +
ρ

(Uδ(x)V (t))γ

]

dt.

Setting u = Uδ(x)V (t) in the above, by (), we find

ωδ(σ , x) <
∫ Uδ (x)V (∞)


ln

(

 +
ρ

uγ

)
Uδσ (x)U–δ(x)
(uU–δ(x))–σ

du

≤
∫ ∞


uσ– ln

(

 +
ρ

uγ

)

du = k(σ ).

Hence, () follows.
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Setting u = ṼnUδ(x) in (), we find du = δṼnUδ–(x)μ(x) dx and

�δ(σ , n) =

δ

∫ ṼnUδ (∞)

ṼnUδ ()

Ṽ σ
n Ṽ –

n (Ṽ –
n u) 

δ
–

(Ṽ –
n u)


δ

–σ
ln

(

 +
ρ

uγ

)

du

=

δ

∫ ṼnUδ (∞)

ṼnUδ ()
uσ– ln

(

 +
ρ

uγ

)

du.

If δ = , then

�(σ , n) =
∫ ṼnU(∞)


uσ– ln

(

 +
ρ

uγ

)

du ≤
∫ ∞


uσ– ln

(

 +
ρ

uγ

)

du;

if δ = –, then

�–(σ , n) = –
∫ Ṽn/U(∞)

∞
uσ– ln

(

 +
ρ

uγ

)

du ≤
∫ ∞


uσ– ln

(

 +
ρ

uγ

)

du.

Then by (), we have (). The lemma is proved. �

Note If U(∞) = ∞, then () keeps the form of an equality.

Lemma  If ρ > , there exists a n ∈ N, such that νn ≥ νn+ (n ∈ {n, n + , . . .}), and
V∞ = ∞, then: (i) for x ∈ R+, we have

k(σ )
(
 – θδ(σ , x)

)
< ωδ(σ , x), ()

where

θδ(σ , x) :=


k(σ )

∫ Uδ (x)Vn


uσ– ln

(

 +
ρ

uγ

)

du

= O
((

U(x)
) δσ


) ∈ (, ); ()

(ii) for any b > , we have

∞∑

n=

νn

Ṽ +b
n

=

b

(


V b
n

+ bO()
)

. ()

Proof (i) Since for t ∈ (n, n + ) (n ≥ n), νn ≥ νn+ = V ′(t + 
 ), by Examples (iii) and (),

we have

ωδ(σ , x) ≥
∞∑

n=n

ln

[

 +
ρ

(Uδ(x)Vn)γ

]
Uδσ (x)νn

V –σ
n

=
∞∑

n=n

ln

[

 +
ρ

(Uδ(x)V (n + 
 ))γ

]
Uδσ (x)νn

V –σ (n + 
 )

>
∞∑

n=n

∫ n+

n
ln

[

 +
ρ

(Uδ(x)V (t + 
 ))γ

]Uδσ (x)V ′(t + 
 ) dt

V –σ (t + 
 )

=
∫ ∞

n

ln

[

 +
ρ

(Uδ(x)V (t + 
 ))γ

]Uδσ (x)V ′(t + 
 ) dt

V –σ (t + 
 )

.
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Setting u = Uδ(x)V (t + 
 ) in the above, in view of V∞ = ∞, by (), we find

ωδ(σ , x) >
∫ ∞

Uδ (x)V (n+ 
 )

uσ– ln

(

 +
ρ

uγ

)

du

= k(σ ) –
∫ Uδ (x)Vn


uσ– ln

(

 +
ρ

uγ

)

du

= k(σ )
(
 – θδ(σ , x)

)
,

θδ(σ , x) =


k(σ )

∫ Uδ (x)Vn


uσ– ln

(

 +
ρ

uγ

)

du ∈ (, ).

Since F(u) = u σ
 ln( + ρ

uγ ) is continuous in (,∞) satisfying F(u) →  (u → + or u →
∞), there exists a constant L > , such that F(u) ≤ L, namely,

ln

(

 +
ρ

uγ

)

≤ Lu
–σ


(
u ∈ (,∞)

)
.

Hence we find

 < θδ(σ , x) ≤ L
k(σ )

∫ Uδ (x)Vn


u

σ
 – du =

L(Uδ(x)Vn )σ /

k(σ )σ
,

and then () follows.
(ii) For b > , by (), we find

∞∑

n=

νn

Ṽ +b
n

≤
n∑

n=

νn

Ṽ +b
n

+
∞∑

n=n+

νn

V +b(n)

≤
n∑

n=

νn

Ṽ +b
n

+
∞∑

n=n+

∫ n+ 


n– 


V ′(t)
V +b(t)

dt

=
n∑

n=

νn

Ṽ +b
n

+
∫ ∞

n+ 


dV (t)
V +b(t)

=

b

(


V b
n

+ b
n∑

n=

νn

Ṽ +b
n

)

;

∞∑

n=

νn

Ṽ +b
n

≥
∞∑

n=n

νn+

V +b(n + 
 )

≥
∞∑

n=n

∫ n+

n

V ′(t + 
 )

V +b(t + 
 )

dt

=
∫ ∞

n

dV (t + 
 )

V +b(t + 
 )

=


bV b(n + 
 )

=


bV b
n

.

Hence we have (). The lemma is proved. �

Note For example, νn = 
nβ (n ∈ N;  ≤ β ≤ ) satisfies the conditions of Lemma  (for

n = ).
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3 Main results and operator expressions
Theorem  If ρ > , k(σ ) is determined by (), then, for p > ,  < ‖f ‖p,
δ

, ‖a‖q,�̃ < ∞, we
have the following equivalent inequalities:

I :=
∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

anf (x) dx < k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ()

J :=

{ ∞∑

n=

νn

Ṽ –pσ
n

[∫ ∞


ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

f (x) dx
]p

} 
p

< k(σ )‖f ‖p,
δ
, ()

J :=

{∫ ∞



μ(x)
U–qδσ (x)

[ ∞∑

n=

ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

an

]q

dx

} 
q

< k(σ )‖a‖q,�̃ . ()

Proof By Hölder’s inequality with weight (cf. []), we have

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}p

=
{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

][
U

–δσ
q (x)f (x)

Ṽ
–σ

p
n μ


q (x)

][
Ṽ

–σ
p

n μ

q (x)

U
–δσ

q (x)

]

dx
}p

≤
∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

][
U

p(–δσ )
q (x)f p(x)

Ṽ –σ
n μ

p
q (x)

]

dx

×
{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)

dx
}p–

=
(�δ(σ , n))p–

Ṽ pσ–
n νn

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx. ()

In view of () and Lebesgue term by term integration theorem (cf. []), we find

J ≤ (
k(σ )

) 
q

{ ∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx

} 
p

=
(
k(σ )

) 
q

{∫ ∞



∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx

} 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
. ()

Then by (), we have (). By Hölder’s inequality (cf. []), we have

I =
∞∑

n=

{
ν


p

n

Ṽ

p –σ

n

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}(

Ṽ

p –σ

n an

ν

p

n

)

≤ J‖a‖q,�̃ . ()
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In view of (), we have (). On the other hand, assuming that () is valid, we set

an :=
νn

Ṽ –pσ
n

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}p–

, n ∈ N.

Then we find Jp
 = ‖a‖q

q,�̃ . If J = , then () is trivially valid; if J = ∞, then () remains
impossible. Suppose that  < J < ∞. By (), we have

‖a‖q
q,�̃ = Jp

 = I < k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ‖a‖q–

q,�̃ = J < k(σ )‖f ‖p,
δ
,

and then () follows, which is equivalent to ().
Still by Hölder’s inequality with weight (cf. []), we have

{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}q

=

{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

](
U

–δσ
q (x)ν


p

n

Ṽ
–σ

p
n

)(
Ṽ

–σ
p

n an

U
–δσ

q (x)ν

p

n

)}q

≤
{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n

}q–

×
∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ

q(–σ )
p

n

U–δσ (x)νq–
n

aq
n

=
(ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n. ()

Then by () and Lebesgue term by term integration theorem (cf. []), it follows that

J <
(
k(σ )

) 
p

{∫ ∞



∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n dx

} 
q

=
(
k(σ )

) 
p

{ ∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n dx

} 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
Ṽ q(–σ )–

n

ν
q–
n

aq
n

] 
q

. ()

In view of (), we have (). By Hölder’s inequality (cf. []), we have

I =
∫ ∞



(
U


q –δσ (x)

μ

q (x)

f (x)
){

μ

q (x)

U

q –δσ (x)

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}

dx

≤ ‖f ‖p,
δ
J. ()
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Then by (), we have (). On the other hand, assuming that () is valid, we set

f (x) :=
μ(x)

U–qδσ (x)

{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}q–

, x ∈ R+.

Then we find Jq
 = ‖f ‖p

p,
δ
. If J = , then () is trivially valid; if J = ∞, then () keeps

impossible. Suppose that  < J < ∞. By (), we have

‖f ‖p
p,
δ

= Jq
 = I < k(σ )‖f ‖p,
δ

‖a‖q,�̃ , ‖f ‖p–
p,
δ

= J < k(σ )‖a‖q,�̃ ,

and then () follows, which is equivalent to ().
Therefore, inequalities (), () and () are equivalent. The theorem is proved. �

Theorem  As regards the assumptions of Theorem , if there exists a n ∈ N, such that
νn ≥ νn+ (n ∈ {n, n + , . . .}), and U(∞) = V∞ = ∞, then the constant factor k(σ ) in (),
() and () is the best possible.

Proof For ε ∈ (, qσ ), we set σ̃ = σ – ε
q (< min{,γ }), and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

⎧
⎨

⎩

Uδ(̃σ+ε)–(x)μ(x),  < xδ ≤ ,

, xδ > ,
()

ãn = Ṽ σ̃–
n νn = Ṽ

σ– ε
q –

n νn, n ∈ N. ()

Then, for δ = ±, since U(∞) = ∞, we obtain

∫

{x>;<xδ≤}
μ(x)

U–δε(x)
dx =


ε

Uδε(). ()

By (), () and (), we find

‖̃f ‖p,
δ
‖̃a‖q,�̃ =

(∫

{x>;<xδ≤}
μ(x) dx
U–δε(x)

) 
p
( ∞∑

n=

νn

Ṽ +ε
n

) 
q

=

ε

U
δε
p ()

(


Ṽ ε
n

+ εO()
) 

q
, ()

Ĩ :=
∫ ∞



∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

ãñf (x) dx

=
∫

{x>;<xδ≤}

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ σ̃–

n νnμ(x)
U–δ(̃σ+ε)(x)

dx

=
∫

{x>;<xδ≤}
ωδ (̃σ , x)

μ(x)
U–δε(x)

dx

≥ k(̃σ )
∫

{x>;<xδ≤}

(
 – θδ (̃σ , x)

) μ(x)
U–δε(x)

dx

= k(̃σ )
∫

{x>;<xδ≤}

(
 – O

((
U(x)

)δ( σ
 – ε

q ))) μ(x)
U–δε(x)

dx
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= k(̃σ )
[∫

{x>;<xδ≤}
μ(x)

U–δε(x)
dx

–
∫

{x>;<xδ≤}
O

(
μ(x)

U–δ( σ
 + ε

p + ε
q )(x)

)

dx
]

=

ε

k
(

σ –
ε

q

)
(
Uδε() – εO()

)
.

If there exists a positive constant K ≤ k(σ ), such that () is valid when replacing
k(σ ) to K , then in particular, by Lebesgue term by term integration theorem, we have
ε̃I < εK ‖̃f ‖p,
δ

‖̃a‖q,�̃ , namely,

k
(

σ –
ε

q

)
(
Uδε() – εO()

)
< K · U

δε
p ()

(


Ṽ ε
n

+ εO()
) 

q
.

It follows that k(σ ) ≤ K (ε → +). Hence, K = k(σ ) is the best possible constant factor of
().

The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we would
reach a contradiction by () (()) that the constant factor in () is not the best possible.
The theorem is proved. �

For p > , we find �̃–p(n) = νn
Ṽ –pσ

n
(n ∈ N), 


–q
δ (x) = μ(x)

U–qδσ (x) (x ∈ R+), and define the
following real normed spaces:

Lp,
δ
(R+) =

{
f ; f = f (x), x ∈ R+,‖f ‖p,
δ

< ∞}
,

lq,�̃ =
{

a; a = {an}∞n=,‖a‖q,�̃ < ∞}
,

Lq,
–q
δ

(R+) =
{

h; h = h(x), x ∈ R+,‖h‖q,
–q
δ

< ∞}
,

lp,�̃–p =
{

c; c = {cn}∞n=,‖c‖p,�̃–p < ∞}
.

Assuming that f ∈ Lp,
δ
(R+), setting

c = {cn}∞n=, cn :=
∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx, n ∈ N,

we can rewrite () as ‖c‖p,�̃–p < k(σ )‖f ‖p,
δ
< ∞, namely, c ∈ lp,�̃–p .

Definition  Define a half-discrete Hardy-Hilbert-type operator T : Lp,
δ
(R+) → lp,�̃–p

as follows: For any f ∈ Lp,
δ
(R+), there exists a unique representation Tf = c ∈ lp,�̃–p .

Define the formal inner product of Tf and a = {an}∞n= ∈ lq,�̃ as follows:

(Tf , a) :=
∞∑

n=

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}

an. ()

Then we can rewrite () and () as follows:

(Tf , a) < k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ()

‖Tf ‖p,�̃–p < k(σ )‖f ‖p,
δ
. ()
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Define the norm of operator T as follows:

‖T‖ := sup
f ( �=θ )∈Lp,
δ

(R+)

‖Tf ‖p,�̃–p

‖f ‖p,
δ

.

Then by (), it follows that ‖T‖ ≤ k(σ ). Since by Theorem , the constant factor in ()
is the best possible, we have

‖T‖ = k(σ ) =
ρσ /γ π

σ sin( πσ
γ

)
. ()

Assuming that a = {an}∞n= ∈ lq,�̃ , setting

h(x) :=
∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an, x ∈ R+,

we can rewrite () as ‖h‖q,
–q
δ

< k(σ )‖a‖q,�̃ < ∞, namely, h ∈ Lq,
–q
δ

(R+).

Definition  Define a half-discrete Hardy-Hilbert-type operator T : lq,�̃ → Lq,
–q
δ

(R+)
as follows: For any a = {an}∞n= ∈ lq,�̃ , there exists a unique representation Ta = h ∈
Lq,
–q

δ

(R+). Define the formal inner product of Ta and f ∈ Lp,
δ
(R+) as follows:

(Ta, f ) :=
∫ ∞



{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}

f (x) dx. ()

Then we can rewrite () and () as follows:

(Ta, f ) < k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ()

‖Ta‖q,
–q
δ

< k(σ )‖a‖q,�̃ . ()

Define the norm of operator T as follows:

‖T‖ := sup
a( �=θ )∈lq,�̃

‖Ta‖q,
–q
δ

‖a‖q,�̃
.

Then by (), we find ‖T‖ ≤ k(σ ). Since, by Theorem , the constant factor in () is the
best possible, we have

‖T‖ = k(σ ) =
ρσ /γ π

σ sin( πσ
γ

)
= ‖T‖. ()

4 Some equivalent reverses
In the following, we also set


̃δ(x) :=
(
 – θδ(σ , x)

)Up(–δσ )–(x)
μp–(x)

(x ∈ R+),

�(n) :=
V q(–σ )–

n

ν
q–
n

(n ∈ N).

For  < p <  or p < , we still use the formal symbols ‖f ‖p,
δ
, ‖f ‖p,
̃δ

and ‖a‖q,�̃ .
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Theorem  If ρ > , k(σ ) is determined by (), there exists a n ∈ N, such that νn ≥ νn+

(n ∈ {n, n + , . . .}), and U(∞) = V∞ = ∞, then, for p < ,  < ‖f ‖p,
δ
,‖a‖q,�̃ < ∞, we have

the following equivalent inequalities with the best possible constant factor k(σ ):

I =
∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

anf (x) dx > k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ()

J =

{ ∞∑

n=

νn

Ṽ –pσ
n

[∫ ∞


ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

f (x) dx
]p

} 
p

> k(σ )‖f ‖p,
δ
, ()

J =

{∫ ∞



μ(x)
U–qδσ (x)

[ ∞∑

n=

ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

an

]q

dx

} 
q

> k(σ )‖a‖q,�̃ . ()

Proof By the reverse Hölder inequality with weight (cf. []), since p < , in a similar way
to obtaining () and (), we have

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}p

≤ (�δ(σ , n))p–

Ṽ pσ–
n νn

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx.

Then by the note of Lemma  and the Lebesgue term by term integration theorem, it
follows that

J ≥ (
k(σ )

) 
q

{ ∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx

} 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
.

In view of (), we have (). By the reverse Hölder inequality (cf. []), we have

I =
∞∑

n=

{
ν


p

n

Ṽ

p –σ

n

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}(

Ṽ

p –σ

n an

ν

p

n

)

≥ J‖a‖q,�̃ . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set an as in
Theorem . Then we find Jp

 = ‖a‖q
q,�̃ . If J = ∞, then () is trivially valid; if J = , then

() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖a‖q
q,�̃ = Jp

 = I > k(σ )‖f ‖p,
δ
‖a‖q,�̃ , ‖a‖q–

q,�̃ = J > k(σ )‖f ‖p,
δ
,

and then () follows, which is equivalent to ().
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Still by the reverse Hölder inequality with weight (cf. []), since  < q < , in a similar
way to obtaining () and (), we have

{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}q

≥ (ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n.

Then by () and the Lebesgue term by term integration theorem (cf. []), it follows that

J >
(
k(σ )

) 
p

{∫ ∞



∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n dx

} 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
Ṽ q(–σ )–

n

ν
q–
n

aq
n

] 
q

.

In view of the note of Lemma , we have (). By the reverse Hölder inequality, we have

I =
∫ ∞



U

q –δσ (x)

μ

q (x)

f (x)

{
μ


q (x)

U

q –δσ (x)

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}

dx

≥ ‖f ‖p,
δ
J. ()

Then by (), we have (). On the other hand, assuming that () is valid, we set f (x) as
in Theorem . Then we find Jq

 = ‖f ‖p
p,
δ

. If J = ∞, then () is trivially valid; if J = , then
() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖f ‖p
p,
δ

= Jq
 = I > k(σ )‖f ‖p,
δ

‖a‖q,�̃ , ‖f ‖p–
p,
δ

= J > k(σ )‖a‖q,�̃ ,

and then () follows, which is equivalent to ().
Therefore, inequalities (), () and () are equivalent.
For ε ∈ (, qσ ), we set σ̃ = σ – ε

q , and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

⎧
⎨

⎩

Uδ(̃σ+ε)–(x)μ(x),  < xδ ≤ ,

, xδ > ,

ãn = Ṽ σ̃–
n νn = Ṽ

σ– ε
q –

n νn, n ∈ N.

By (), () and (), we obtain

‖̃f ‖p,
δ
‖̃a‖q,�̃ =


ε

U
δε
p ()

(


Ṽ ε
n

+ εO()
) 

q
,
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Ĩ =
∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

ãñf (x) dx

=
∫

{x>;<xδ≤}
ωδ (̃σ , x)

μ(x)
U–δε(x)

dx

≤ k(̃σ )
∫

{x>;<xδ≤}
μ(x)

U–δε(x)
dx =


ε

k
(

σ –
ε

q

)

Uδε().

If there exists a positive constant K ≥ k(σ ), such that () is valid when replacing k(σ )
to K , then in particular, we have ε̃I > εK ‖̃f ‖p,
δ

‖̃a‖q,�̃ , namely,

k
(

σ –
ε

q

)

Uδε() > K · U
δε
p ()

(


Ṽ ε
n

+ εO()
) 

q
.

It follows that k(σ ) ≥ K (ε → +). Hence, K = k(σ ) is the best possible constant factor
of (). The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we
would reach the contradiction by () (()) that the constant factor in () is not the best
possible. The theorem is proved. �

Theorem  As regards the assumptions of Theorem , if  < p < ,  < ‖f ‖p,
δ
, ‖a‖q,�̃ < ∞,

then we have the following equivalent inequalities with the best possible constant factor
k(σ ):

I =
∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

anf (x) dx > k(σ )‖f ‖p,
̃δ
‖a‖q,�̃ , ()

J =

{ ∞∑

n=

νn

Ṽ –pσ
n

[∫ ∞


ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

f (x) dx
]p

} 
p

> k(σ )‖f ‖p,
̃δ
, ()

J :=

{∫ ∞



Uqδσ–(x)μ(x)
( – θδ(σ , x))q–

[ ∞∑

n=

ln

(

 +
ρ

(Uδ(x)Ṽn)γ

)

an

]q

dx

} 
q

> k(σ )‖a‖q,�̃ . ()

Proof By the reverse Hölder inequality with weight (cf. []), since  < p < , in a similar
way to obtaining () and (), we have

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}p

≥ (�δ(σ , n))p–

Ṽ pσ–
n νn

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx.

In view of the note of Lemma  and the Lebesgue term by term integration theorem (cf.
[]), we find

J ≥ (
k(σ )

) 
q

{ ∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
U (–δσ )(p–)(x)νn

Ṽ –σ
n μp–(x)

f p(x) dx

} 
p

=
(
k(σ )

) 
q

[∫ ∞


ωδ(σ , x)

Up(–δσ )–(x)
μp–(x)

f p(x) dx
] 

p
.
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Then by (), we have (). By the reverse Hölder inequality, we have

I =
∞∑

n=

{
ν


p

n

Ṽ

p –σ

n

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

f (x) dx
}(

Ṽ

p –σ

n an

ν

p

n

)

≥ J‖a‖q,�̃ . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set an as
in Theorem . Then we find Jp

 = ‖a‖q
q,�̃ . If J = ∞, then () is trivially valid; if J = , then

() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖a‖q
q,�̃ = Jp

 = I > k(σ )‖f ‖p,
̃δ
‖a‖q,�̃ , ‖a‖q–

q,�̃ = J > k(σ )‖f ‖p,
̃δ
,

and then () follows, which is equivalent to ().
Still by the reverse Hölder inequality with weight (cf. []), since q < , we have

{ ∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}q

≤ (ωδ(σ , x))q–

Uqδσ–(x)μ(x)

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n.

Then by () and the Lebesgue term by term integration theorem, it follows that

J >
(
k(σ )

) 
p

{∫ ∞



∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ (–σ )(q–)

n μ(x)
U–δσ (x)νq–

n
aq

n dx

} 
q

=
(
k(σ )

) 
p

[ ∞∑

n=

�δ(σ , n)
Ṽ q(–σ )–

n

ν
q–
n

aq
n

] 
q

.

Then by the note of Lemma , we have (). By the reverse Hölder inequality (cf. []), we
have

I =
∫ ∞



[
(
 – θδ(σ , x)

) 
p U


q –δσ (x)

μ

q (x)

f (x)
]

×
{

Uδσ– 
q (x)μ


q (x)

( – θδ(σ , x))

p

∞∑

n=

ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

an

}

dx ≥ ‖f ‖p,
̃δ
J . ()

Then by (), we have (). On the other hand, assuming that () is valid, we set f (x) as
in Theorem . Then we find Jq = ‖f ‖p

p,
̃δ
. If J = ∞, then () is trivially valid; if J = , then

() remains impossible. Suppose that  < J < ∞. By (), it follows that

‖f ‖p
p,
̃δ

= Jq = I > k(σ )‖f ‖p,
̃δ
‖a‖q,�̃ , ‖f ‖p–

p,
̃δ
= J > k(σ )‖a‖q,�̃ ,

and then () follows, which is equivalent to ().
Therefore, inequalities (), () and () are equivalent.
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For ε ∈ (, pσ ), we set σ̃ = σ + ε
p , and f̃ = f̃ (x), x ∈ R+, ã = {̃an}∞n=,

f̃ (x) =

⎧
⎨

⎩

Uδσ̃–(x)μ(x),  < xδ ≤ ,

, xδ > ,

ãn = Ṽ σ̃–ε–
n νn = Ṽ

σ– ε
q –

n νn, n ∈ N.

By (), () and the note of Lemma , we obtain

‖̃f ‖p,
̃δ
‖̃a‖q,�̃ =

[∫

{x>;<xδ≤}

(
 – O

((
U(x)

) δσ


)) μ(x) dx
U–δε(x)

] 
p

×
( ∞∑

n=

νn

Ṽ +ε
n

) 
q

=

ε

(
Uδε() – εO()

) 
p

(


Ṽ ε
n

+ εO()
) 

q
,

Ĩ =
∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]

ãñf (x) dx

=
∞∑

n=

{∫

{x>;<xδ≤}
ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ σ̃

n μ(x)
U–δσ̃ (x)

dx
}

νn

Ṽ +ε
n

≤
∞∑

n=

{∫ ∞


ln

[

 +
ρ

(Uδ(x)Ṽn)γ

]
Ṽ σ̃

n μ(x)
U–δσ̃ (x)

dx
}

νn

Ṽ +ε
n

=
∞∑

n=

�δ (̃σ , n)
νn

Ṽ +ε
n

= k(̃σ )
∞∑

n=

νn

Ṽ +ε
n

=

ε

k
(

σ +
ε

p

)(


Ṽ ε
n

+ εO()
)

.

If there exists a positive constant K ≥ k(σ ), such that () is valid when replacing k(σ )
to K , then in particular we have ε̃I > εK ‖̃f ‖p,
̃δ

‖̃a‖q,�̃ , namely,

k
(

σ +
ε

p

)(


Ṽ ε
n

+ εO()
)

> K
(
Uδε() – εO()

) 
p

(


Ṽ ε
n

+ εO()
) 

q
.

It follows that k(σ ) ≥ K (ε → +). Hence, K = k(σ ) is the best possible constant factor
of (). The constant factor k(σ ) in () (()) is still the best possible. Otherwise, we
would reach the contradiction by () (()) that the constant factor in () is not the best
possible. The theorem is proved. �

Remark (i) For δ = – in (), we obtain the following inequality with the homogeneous
kernel of degree :

∞∑

n=

∫ ∞


ln

[

 + ρ

(
U(x)
Ṽn

)γ ]

anf (x) dx <
ρσ /γ π

σ sin( πσ
γ

)
‖f ‖p,
–‖a‖q,�̃ . ()
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(ii) For δ =  in (), we obtain the following inequality with the non-homogeneous ker-
nel:

∞∑

n=

∫ ∞


ln

[

 +
ρ

(U(x)Ṽn)γ

]

anf (x) dx <
ρσ /γ π

σ sin( πσ
γ

)
‖f ‖p,
‖a‖q,�̃ . ()

(iii) For μ̃n =  (n ∈ N) in (), we have the following inequality:

∞∑

n=

∫ ∞


ln

[

 +
ρ

(Uδ(x)Vn)γ

]

anf (x) dx <
ρσ /γ π

σ sin( πσ
γ

)
‖f ‖p,
δ

‖a‖q,� , ()

where the constant factor ρσ /γ π

σ sin( πσ
γ ) is still the best possible. Hence, inequality () is a more

accurate form of () (for  < μ̃n ≤ μn
 , n ∈ N).

(iv) For μ(x) = μn =  (x ∈ R+, n ∈ N), δ = – in (), we have the following inequality:

∞∑

n=

an

∫ ∞


ln

[

 + ρ

(
x
n

)γ ]

f (x) dx

=
∫ ∞


f (x)

∞∑

n=

ln

[

 + ρ

(
x
n

)γ ]

an dx

<
ρσ /γ π

σ sin( πσ
γ

)

[∫ ∞


xp(+σ )–f p(x) dx

] 
p
[ ∞∑

n=

nq(–σ )–bq
n

] 
q

, ()

which is a particular case of () for λ = , λ = –σ , λ = σ and kλ(x, n) = ln[ + ρ( x
n )γ ].

We still can obtain some inequalities with the best possible constant factors in Theo-
rems -, by using some particular parameters.

5 Conclusions
In this paper, by means of the weight functions, the technique of real analysis and Hermite-
Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality re-
lated to the kernel of logarithmic function and a best possible constant factor is given by
Theorems -. Moreover, the equivalent forms and the operator expressions are consid-
ered. We also obtain the reverses and some particular cases in Theorems -. The method
of weight functions is very important, which is the key to help us proving the main inequal-
ities with the best possible constant factor. The lemmas and theorems provide an extensive
account of this type of inequalities.
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