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Abstract
This paper introduces a symmetric version of the generalized alternating direction
method of multipliers for two-block separable convex programming with linear
equality constraints, which inherits the superiorities of the classical alternating
direction method of multipliers (ADMM), and which extends the feasible set of the
relaxation factor α of the generalized ADMM to the infinite interval [1, +∞). Under the
conditions that the objective function is convex and the solution set is nonempty, we
establish the convergence results of the proposed method, including the global
convergence, the worst-caseO(1/k) convergence rate in both the ergodic and the
non-ergodic senses, where k denotes the iteration counter. Numerical experiments to
decode a sparse signal arising in compressed sensing are included to illustrate the
efficiency of the new method.
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1 Introduction
We consider the two-block separable convex programming with linear equality con-
straints, where the objective function is the sum of two individual functions with decou-
pled variables:

min
{
θ(x) + θ(x)|Ax + Ax = b, x ∈X, x ∈X

}
, ()

where θi : Rni → R (i = , ) are closed proper convex functions; Ai ∈ Rl×ni (i = , ) and
b ∈ Rl , and Xi ⊆ Rni (i = , ) are given nonempty closed convex sets. The linear con-
strained convex problem () is a unified framework of many problems arising in real world,
including compressed sensing, image restoration, and statistical learning, and so forth
(see, for example, [–]). An important special case of () is the following linear inverse
problem:

min
x∈Rn

μ‖x‖ +


‖Ax – y‖, ()
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where A ∈ Rm×n and y ∈ Rm are given matrix and vector, μ >  is a regularization pa-
rameter and ‖x‖ is the �-norm of a vector x defined as ‖x‖ =

∑n
i= |xi|. Then setting

x := Ax – y, x := x, () can be converted into the following two-block separable convex
programming:

min


‖x‖ + μ‖x‖

s.t. –x + Ax = y,

x ∈Rm, x ∈Rn,

()

which is a special case of problem () with the following specifications:

θ(x) :=


‖x‖, θ(x) := μ‖x‖, A := –Im, A := A, b := y.

1.1 Existing algorithms
In their seminal work, Glowinski et al. [] and Gabay et al. [] independently developed the
alternating direction method of multipliers (ADMM), which is an influential first-order
method for solving problem (). ADMM can be regarded as an application of the Douglas-
Rachford splitting method (DRSM) [] to the dual of (), or a special case of the proximal
point algorithm (PPA) [, ] in the cyclic sense. We refer to [] for a more detailed rela-
tionship. With any initial vectors x

 ∈X, λ ∈Rl , the iterative scheme of ADMM reads

⎧
⎪⎪⎨

⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – x�

 A�
 λk + β

 ‖Ax + Axk
 – b‖},

xk+
 ∈ argminx∈X{θ(x) – x�

 A�
 λk + β

 ‖Axk+
 + Ax – b‖},

λk+ = λk – β(Axk+
 + Axk+

 – b),

()

where λ ∈ Rl is the Lagrangian multiplier and β >  is a penalty parameter. The main
characteristics of ADMM are that it in full exploits the separable structure of problem
(), and that it updates the variables x, x, λ in an alternating order by solving a series of
low-dimensional sub-problems with only one unknown variable.

In the past few decades, ADMM has received a revived interest, and it has become
a research focus in optimization community, especially in the (non)convex optimiza-
tion. Many efficient ADMM-type methods have been developed, including the proxi-
mal ADMM [, ], the generalized ADMM [], the symmetric ADMM [], the inertial
ADMM [], and some proximal ADMM-type methods [–]. Specifically, the proximal
ADMM attaches some proximal terms to the sub-problems of ADMM (). The general-
ized ADMM updates the variables x and λ by including a relaxation factor α ∈ (, ), and
α ∈ (, ) is often advantageous to speed up its performance. The symmetric ADMM up-
dates the Lagrangian multiplier λ twice at each iteration and includes two relaxation fac-
tors α ∈ (, ), β ∈ (, ). Recent researches of the symmetric ADMM can be found in [,
, ]. The inertial ADMM unifies the basic ideas of the inertial PPA and ADMM, which
utilizes the latest two iterates to generate the new iterate, therefore it can be viewed as a
multistep method. For the proximal ADMM, the objective functions of its sub-problems
are often strongly convex, which are often easier to be solved than those of (). However,
a new challenge has arisen for the proximal ADMM-type methods. It is how to choose a
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proper proximal matrix. In fact, most proximal ADMM-type methods need to estimate
the matrix norm ‖A�

i Ai‖ (i = , ), which demands lots of calculations, especially for large
ni (i = , ). Quite recently, some customized Douglas-Rachford splitting algorithms [–
], and the proximal ADMM-type methods with indefinite proximal regularization are
developed [, ], which dissolve the above problem to some extent. All the above men-
tioned ADMM-type methods are generalizations of the classical ADMM, because they all
reduce to the iterative scheme () by choosing some special parameters. For more new
development of the ADMM-type methods, including the convergence rate, acceleration
techniques, its generalization for solving multi-block separable convex programming and
nonconvex, nonsmooth programming, we refer to [–].

1.2 Contributions and organization
We are going to further study the generalized ADMM. Note that the first sub-problem
in the generalized ADMM is irrelevant to the relaxation factor α. That is, the updating
formula for x does not incorporate the relaxation factor α explicitly. Furthermore, α ∈
(, ) is often advantageous for the generalized ADMM []. Therefore, in this paper, we
are going to propose a new generalized ADMM, whose both sub-problems incorporate
the relaxation factor α directly. The new method generalizes the method proposed in []
by relaxing the feasible set of α from the interval [, ) to the infinite interval [, +∞), and
can be viewed as a symmetric version of the generalized ADMM.

The rest of the paper is organized as follows. In Section , we summarize some necessary
preliminaries and characterize problem () by a mixed variational inequality problem. In
Section , we describe the new symmetric version of the generalized ADMM and establish
its convergence results in detail. In Section , some compressed sensing experiments are
given to illustrate the efficiency of the proposed method. Some conclusions are drawn in
Section .

2 Preliminaries
In this section, some necessary preliminaries which are useful for further discussions are
presented, and to make our analysis more succinct, some positive definite or positive semi-
definite block matrices are defined and their properties are investigated.

For two real matrices A ∈Rs×m, B ∈Rn×s, the Kronecker product of A and B is defined
as A⊗B = (aijB). Let ‖·‖p (p = , ) denote the standard definition of �p-norm; in particular,
‖ · ‖ = ‖ · ‖. For any two vectors x, y ∈ Rn, 〈x, y〉 or x�y denote their inner product, and
for any symmetric matrix G ∈ Rn×n, the symbol G �  (resp., G � ) denotes that G is
positive definite (resp., semi-definite). For any x ∈Rn and G � , the G-norm ‖x‖G of the
vector x is defined as

√
x�Gx. The effective domain of a closed proper function f : X →

(–∞, +∞] is defined as dom(f ) := {x ∈X |f (x) < +∞}, and the symbol ri(C) denotes the set
of all relative interior points of a given nonempty convex set C . Furthermore, we use the
following notations:

x = (x, x), w = (x,λ).

Definition . ([]) A function f : Rn →R is convex if and only if

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y), ∀x, y ∈Rn,α ∈ [, ].



Liu et al. Journal of Inequalities and Applications  (2017) 2017:129 Page 4 of 21

Then, for a convex function f : Rn →R, we have the following basic inequality:

f (x) ≥ f (y) + 〈ξ , x – y〉, ∀x, y ∈Rn, ξ ∈ ∂f (y), ()

where ∂f (y) = {ξ ∈Rn : f (ȳ) ≥ f (y) + 〈ξ , ȳ – y〉, for all ȳ ∈Rn} denotes the subdifferential of
f (·) at the point y.

Throughout the paper, we make the following standard assumptions for problem ().

Assumption . The functions θi(·) (i = , ) are convex.

Assumption . The matrices Ai (i = , ) are full-column rank.

Assumption . The generalized Slater condition holds, i.e., there is a point (x̂, x̂) ∈
ri(dom θ × dom θ) ∩ {x = (x, x) ∈X ×X|Ax + Ax = b}.

2.1 The mixed variational inequality problem
Under Assumption ., it follows from Theorem . and Theorem . of [] that x∗ =
(x∗

 , x∗
) ∈ Rn+n is an optimal solution to problem () if and only if there exists a vector

λ∗ ∈Rl such that (x∗
 , x∗

,λ∗) is a solution of the following KKT system:
⎧
⎨

⎩
 ∈ ∂θi(x∗

i ) – A�
i λ∗ + NXi (x∗

i ), i = , ,

Ax∗
 + Ax∗

 = b,
()

where NXi (x∗
i ) is the normal cone of the convex set Xi at the point x∗

i , which is defined
as NXi (x∗

i ) = {z ∈Rni |〈z, xi – x∗
i 〉 ≤ ,∀xi ∈Xi}. Then, for the nonempty convex set Xi and

∀xi ∈ Xi, it follows from [] (Example .) that NXi (xi) = ∂δ(·|Xi)(xi), where δ(·|Xi)
is the indicator function of the set Xi, and ∂δ(·|Xi)(xi) is the subdifferential mappings of
δ(·|Xi) at the point xi ∈Xi.

Lemma . For any vector x∗
i ∈ Rni , λ∗ ∈ Rl , the relationship  ∈ ∂θi(x∗

i ) – A�
i λ∗ +

∂δ(·|Xi)(x∗
i ) is equivalent to x∗

i ∈Xi and the inequality

θi(xi) – θi
(
x∗

i
)

+
(
xi – x∗

i
)�(

–A�
i λ∗) ≥ , ∀xi ∈Xi.

Proof From  ∈ ∂θi(x∗
i ) – A�

i λ∗ + ∂δ(·|Xi)(x∗
i ), we have x∗

i ∈ Xi and there exists ηi ∈
∂δ(·|Xi)(x∗

i ) such that

A�
i λ∗ – ηi ∈ ∂θi

(
x∗

i
)
.

From the subgradient inequality (), one has

θi(xi) – θi
(
x∗

i
) ≥ (

xi – x∗
i
)�(

A�
i λ∗ – ηi

)
, ∀xi ∈Rni .

Thus,

θi(xi) – θi
(
x∗

i
)

–
(
xi – x∗

i
)�(

–A�
i λ∗) ≥ (

xi – x∗
i
)�(–ηi) ≥ , ∀xi ∈Xi,

where the second inequality comes from x∗
i ∈Xi and ηi ∈ ∂δ(·|Xi)(x∗

i ).
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Conversely, from θi(xi) – θi(x∗
i ) + (xi – x∗

i )�(–A�
i λ∗) ≥ , ∀xi ∈Xi, we have

θi(xi) + x�
i
(
–A�

i λ∗) ≥ θi
(
x∗

i
)

+
(
x∗

i
)�(

–A�
i λ∗), ∀xi ∈Xi,

which together with x∗
i ∈Xi implies that

x∗
i = argmin

xi∈Xi

{
θi(xi) + x�

i
(
–A�

i λ∗)}.

From this and Theorem . of [], we have  ∈ ∂θi(x∗
i ) – A�

i λ∗ + ∂δ(·|Xi)(x∗
i ). This com-

pletes the proof. �

Remark . Based on () and Lemma ., the vector x∗ = (x∗
 , x∗

) ∈ Rn+n is an optimal
solution to problem () if and only if there exists a vector λ∗ ∈Rl such that

⎧
⎪⎪⎨

⎪⎪⎩

(x∗
 , x∗

) ∈X ×X;

θi(xi) – θi(x∗
i ) + (xi – x∗

i )�(–A�
i λ∗) ≥ , ∀xi ∈Xi, i = , ;

Ax∗
 + Ax∗

 = b.

()

Moreover, any λ∗ ∈Rl satisfying () is an optimal solution to the dual of problem (). Ob-
viously, () can be written as the following mixed variational inequality problem, denoted
by VI(W , F , θ ): Find a vector w∗ ∈W such that

θ (x) – θ
(
x∗) +

(
w – w∗)�F

(
w∗) ≥ , ∀w ∈W , ()

where θ (x) = θ(x) + θ(x), W = X ×X ×Rl , and

F(w) :=

⎛

⎜
⎝

–A�
 λ

–A�
 λ

Ax + Ax – b

⎞

⎟
⎠ =

⎛

⎜
⎝

  –A�


  –A�


A A 

⎞

⎟
⎠

⎛

⎜
⎝

x

x

λ

⎞

⎟
⎠ –

⎛

⎜
⎝



b

⎞

⎟
⎠ . ()

The solution set of VI(W , F , θ ), denoted by W∗, is nonempty by Assumption . and Re-
mark .. It is easy to verify that the linear function F(·) is not only monotone but also
satisfies the following desired property:

(
w′ – w

)�(
F
(
w′) – F(w)

)
= , ∀w′, w ∈W .

2.2 Three matrices and their properties
To present our analysis in a compact way, now let us define some matrices. For any Ri ∈
Rni×ni (i = , ) � , set

M =

⎛

⎜
⎝

In  
 In 
 –βA Il

⎞

⎟
⎠ ()
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and for α ∈ [, +∞), set

Q =

⎛

⎜
⎝

R  
 R + (α – )βA�

 A
–α
α

A�


 –A


αβ
Il

⎞

⎟
⎠ ,

H =

⎛

⎜
⎝

R  
 R + α–α+

α
βA�

 A
–α
α

A�


 –α
α

A


αβ
Il

⎞

⎟
⎠ .

()

The above defined three matrices M, Q, H satisfy the following properties.

Lemma . If α ∈ R and Ri �  (i = , ), then the matrix H defined in () is positive
semi-definite.

Proof Set t = α – α + , which is positive for any α ∈R. By (), we have

H =

⎛

⎜
⎝

R  
 R 
  

⎞

⎟
⎠ +

⎛

⎜
⎝

  
 tβ

α
A�

 A
–α
α

A�


 –α
α

A


αβ
Il

⎞

⎟
⎠ .

Obviously, the first part is positive semi-definite, and we only need to prove the second
part is also positive semi-definite. In fact, it can written as


α

⎛

⎜
⎝

  


√
βA�

 
  √

β
Il

⎞

⎟
⎠

⎛

⎜
⎝

  
 tIl ( – α)Il

 ( – α)Il Il

⎞

⎟
⎠

⎛

⎜
⎝

  


√
βA 

  √
β

Il

⎞

⎟
⎠ .

The middle matrix in the above expression can be further written as

⎛

⎜
⎝

  
 t  – α

  – α 

⎞

⎟
⎠ ⊗ Il,

where ⊗ denotes the matrix Kronecker product. The matrix Kronecker product has a
nice property: for any two matrices X and Y , the eigenvalue of X ⊗ Y equals the product
of λ(X)λ(Y ), where λ(X) and λ(Y ) are the eigenvalues of X and Y , respectively. Therefore,
we only need to show the -by- matrix

(
t  – α

 – α 

)

is positive semi-definite. In fact,

t – ( – α) = α ≥ .

Therefore, the matrix H is positive semi-definite. The proof is then complete. �
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Lemma . If α ∈ [, +∞) and Ri �  (i = , ), then the matrices M, Q, H defined, respec-
tively, in (), () satisfy the following relationships:

HM = Q ()

and

Q� + Q – M�HM � α – 
α

M�HM. ()

Proof From () and (), we have

HM =

⎛

⎜
⎝

R  
 R + α–α+

α
βA�

 A
–α
α

A�


 –α
α

A


αβ
Il

⎞

⎟
⎠

⎛

⎜
⎝

In  
 In 
 –βA Il

⎞

⎟
⎠

=

⎛

⎜
⎝

R  
 R + (α – )βA�

 A
–α
α

A�


 –A


αβ
Il

⎞

⎟
⎠ = Q.

Then the first assertion is proved. For (), by some simple manipulations, we obtain

M�HM = M�Q

=

⎛

⎜
⎝

In  
 In –βA�



  Il

⎞

⎟
⎠

⎛

⎜
⎝

R  
 R + (α – )βA�

 A
–α
α

A�


 –A


αβ
Il

⎞

⎟
⎠

=

⎛

⎜
⎝

R  
 R + αβA�

 A –A�


 –A


αβ
Il

⎞

⎟
⎠ .

We now break up the proof into two cases. First, if α = , then

(
Q� + Q

)
– M�HM =

⎛

⎜
⎝

R  
 R 
  

β
Il

⎞

⎟
⎠ � .

Therefore, () holds. Second, if α ∈ (, +∞), then

(
Q� + Q

)
– M�HM

=

⎛

⎜
⎝

R  
 R + (α – )βA�

 A
–α
α

A�


 –α
α

A


αβ
Il

⎞

⎟
⎠

=

⎛

⎜
⎝

R  
 R 
  

⎞

⎟
⎠ + (α – )

⎛

⎜
⎝

  
 βA�

 A – 
α

A�


 – 
α

A


αβ(α–) Il

⎞

⎟
⎠ . ()
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Note that

α

(
βA�

 A – 
α

A�


– 
α

A


αβ(α–) Il

)

–

(
αβA�

 A –A�


–A


αβ
Il

)

=

(
αβA�

 A –A�


–A
α+

αβ(α–) Il

)

=

(√
βA�

 
 √

β
Il

)(
αIl –Il

–Il
α+

α(α–) Il

)(√
βA 
 √

β
Il

)

. ()

The middle matrix in the above expression can be further written as

(
α –
– α+

α(α–)

)

⊗ Il.

Since
(

α –
– α+

α(α–)

)

� , ∀α > ,

the right-hand side of () is also positive semi-definite. Thus, we have

(
βA�

 A – 
α

A�


– 
α

A


αβ(α–) Il

)

� 
α

(
αβA�

 A –A�


–A


αβ
Il

)

. ()

Substituting () into () and by the expression of M�HM, we obtain (). The lemma is
proved. �

3 Algorithm and convergence results
In this section, we first describe the symmetric version of the generalized alternating di-
rection method of multipliers (SGADMM) for VI(W , F , θ ) formally, and then we prove its
global convergence in a contraction perspective and establish its worst-case O(/k) con-
vergence rate in both the ergodic and the non-ergodic senses step by step, where k denotes
the iteration counter.

3.1 Algorithm
Algorithm . (SGADMM)

Step . Choose the parameters α ∈ [, +∞), β > , Ri ∈ Rni×ni �  (i = , ), the tolerance
ε >  and the initial iterate (x

 , x
,λ) ∈X ×X ×Rl . Set k := .

Step . Generate the new iterate wk+ = (xk+
 , xk+

 ,λk+) by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – x�

 A�
 λk + αβ

 ‖Ax + Axk
 – b‖

+ 
‖x – xk

‖
R

},
xk+

 ∈ argminx∈X{θ(x) – x�
 A�

 λk + (α–)β
 ‖Axk+

 + Ax – b‖

+ 
‖x – xk

‖
R

},
λk+ = λk – β[αAxk+

 – ( – α)(Axk
 – b) + Axk+

 – b].

()
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Step . If

max
{∥∥Rxk

 – Rxk+


∥∥,
∥∥Rxk

 – Rxk+


∥∥,
∥∥Axk

 – Axk+


∥∥,
∥∥λk –λk+∥∥}

< ε, ()

then stop and return an approximate solution (xk+
 , xk+

 ,λk+) of VI(W , F , θ ); else
set k := k + , and goto Step .

Remark . Obviously, the iterative scheme () reduces to the generalized ADMM when
α = , and further reduces to () when Ri =  (i = , ). That is to say, if the parameters
α =  and Ri =  (i = , ), then the classical ADMM is recovered. Since the convergence
results of the (proximal) ADMM have been established in the literature [, , ], in the
following, we only consider α ∈ (, +∞).

3.2 Global convergence
For further analysis, we need to define an auxiliary sequence {ŵk} as follows:

ŵk =

⎛

⎜
⎝

x̂k


x̂k


λ̂k

⎞

⎟
⎠ =

⎛

⎜
⎝

xk+


xk+


λk – αβ(Axk+
 + Axk

 – b)

⎞

⎟
⎠ . ()

Lemma . Let {λk+} and {λ̂k} be the two sequences generated by SGADMM. Then

λk+ = λ̂k – β
(
Ax̂k

 – Axk

)

()

and

λ̂k –
(


α

– 
)(

λ̂k – λk) = λk – (α – )β
(
Ax̂k

 + Axk
 – b

)
. ()

Proof From the definition of λk+, we get

λk+ = λk – β
[
αAx̂k

 – ( – α)
(
Axk

 – b
)

+ Ax̂k
 – b

]

= λk – β
[
α
(
Ax̂k

 + Axk
 – b

)
+

(
Ax̂k

 – Axk

)]

= λ̂k – β
(
Ax̂k

 – Axk

)
.

Then () is proved. For (), we have

λ̂k –
(


α

– 
)(

λ̂k – λk)

= λk – αβ
(
Ax̂k

 + Axk
 – b

)
+

(

α

– 
)

αβ
(
Ax̂k

 + Axk
 – b

)

= λk – (α – )β
(
Ax̂k

 + Axk
 – b

)
.

Therefore () is also right. This completes the proof. �
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Thus, based on () and (), the two sequences {wk} and {ŵk} satisfies the following
relationship:

wk+ = wk – M
(
wk – ŵk), ()

where M is defined in ().
The following lemma shows that the stopping criterion () of SGADMM is reasonable.

Lemma . If Rixk
i = Rixk+

i (i = , ), Axk
 = Axk+

 and λk = λk+, then the iterate ŵk =
(x̂k

 , x̂k
, λ̂k) produced by SGADMM is a solution of VI(W , F , θ ).

Proof By invoking the optimality condition of the three sub-problems in (), we have the
following mixed variational inequality problems: for any w = (x, x,λ) ∈W ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(x) – θ(x̂k
 ) + (x – x̂k

 )�{–A�
 [λk – αβ(Ax̂k

 + Axk
 – b)] + R(x̂k

 – xk
 )} ≥ ,

θ(x) – θ(x̂k
) + (x – x̂k

)�{–A�
 [λk – (α – )β(Ax̂k

 + Ax̂k
 – b)]}

+ R(x̂k
 – xk

) ≥ ,

(λ – λ̂k)�[αAx̂k
 – ( – α)(Axk

 – b) + Ax̂k
 – b – (λk – λk+)/β] ≥ .

Then, adding the above three inequalities and by (), (), we get

θ (x) – θ
(
x̂k) +

(
w – ŵk)�

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

–A�
 λ̂k

–A�
 λ̂k

Ax̂k
 + Ax̂k

 – b

⎞

⎟
⎠

+

⎛

⎜
⎝

R(x̂k
 – xk

 )
(α – )βA�

 (Ax̂k
 – Axk

) + ( – α)A�
 (λ̂k – λk)/α + R(x̂k

 – xk
)

( – α)(Ax̃k
 – Axk

)/α + (λk+ – λk)/(αβ)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
≥ .

Then by (), we obtain

θ (x) – θ
(
x̂k) +

(
w – ŵk)�

⎧
⎪⎨

⎪⎩
F
(
ŵk)

+

⎛

⎜
⎝

R(x̂k
 – xk

 )
(α – )βA�

 (Ax̃k
 – Axk

) + ( – α)A�
 (λ̂k – λk)/α + R(x̂k

 – xk
)

–(Ax̂k
 – Axk

) + (λ̂k – λk)/(αβ)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
≥ .

Then, by () (the definition of Q), the above inequality can be rewritten as

θ (x) – θ
(
x̂k) +

(
w – ŵk)�F

(
ŵk) ≥ (

w – ŵk)�Q
(
wk – ŵk), ()

for any w ∈ W . Therefore, if Rixk
i = Rixk+

i (i = , ), Axk
 = Axk+

 and λk = λk+, then by
(), we have λk+ = λ̂k . Then λ̂k = λk . Thus, we have

Q
(
wk – ŵk) = ,
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which together with () implies that

θ (x) – θ
(
x̂k) +

(
w – ŵk)�F

(
ŵk) ≥ , ∀w ∈W .

This indicates that the vector ŵk is a solution of VI(W , F , θ ). This completes the proof.
�

Lemma . Let {wk} and {ŵk} be two sequences generated by SGADMM. Then, for any
w ∈W , we have

(
w – ŵk)�Q

(
wk – ŵk) ≥ 


(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)
+

α – 
α

∥∥wk – wk+∥∥
H . ()

Proof Applying the identity

(a – b)�H(c – d) =


(‖a – d‖

H – ‖a – c‖
H
)

+


(‖c – b‖

H – ‖d – b‖
H
)
,

with

a = w, b = ŵk , c = wk , d = wk+,

we obtain

(
w – ŵk)�H

(
wk – wk+) =



(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)

+


(∥∥wk – ŵk∥∥

H –
∥∥wk+ – ŵk∥∥

H

)
.

This together with () and () implies that

(
w – ŵk)�Q

(
wk – ŵk) =



(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)

+


(∥∥wk – ŵk∥∥

H –
∥∥wk+ – ŵk∥∥

H

)
. ()

Now let us deal with the last term in (), which can be written as

∥∥wk – ŵk∥∥
H –

∥∥wk+ – ŵk∥∥
H

=
∥∥wk – ŵk∥∥

H –
∥∥(

wk – ŵk) –
(
wk – wk+)∥∥

H

=
∥∥wk – ŵk∥∥

H –
∥∥(

wk – ŵk) – M
(
wk – ŵk)∥∥

H (using ())

= 
(
wk – ŵk)�HM

(
wk – ŵk) –

(
wk – ŵk)�M�HM

(
wk – ŵk)

=
(
wk – ŵk)(Q� + Q – M�HM

)(
wk – ŵk)

≥ α – 
α

(
wk – ŵk)�M�HM

(
wk – ŵk) (using ())

=
α – 
α

∥∥wk – wk+∥∥
H (using ()).

Substituting the above inequality into (), the assertion of this lemma is proved. �
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Theorem . Let {wk} and {ŵk} be two sequences generated by SGADMM. Then, for any
w ∈W , we have

θ (x) – θ
(
x̂k) +

(
w – ŵk)�F(w)

≥ 

(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)
+

α – 
α

∥∥wk – wk+∥∥
H . ()

Proof First, combining () and (), we get

θ (x) – θ
(
x̂k) +

(
w – ŵk)�F

(
ŵk)

≥ 

(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)
+

α – 
α

∥∥wk – wk+∥∥
H .

From the monotonicity of F(·), we have

(
w – ŵk)�(

F(w) – F
(
ŵk)) ≥ .

Adding the above two inequalities, we obtain the assertion (). The proof is completed.
�

With the above theorem in hand, we are ready to establish the global convergence of
SGADMM for solving VI(W , F , θ ).

Theorem . Let {wk} be the sequence generated by SGADMM. If α > , Ri + βA�
i Ai � 

(i = , ), then the corresponding sequence {wk} converges to some w∞, which belongs to W∗.

Proof Setting w = w∗ in (), we have

∥∥wk – w∗∥∥
H –

α – 
α

∥∥wk – wk+∥∥
H

≥ 
{
θ
(
x̂k) – θ

(
x∗) +

(
ŵk – w∗)�F

(
w∗)} +

∥∥wk+ – w∗∥∥
H

≥ ∥∥wk+ – w∗∥∥
H ,

where the second inequality follows from w∗ ∈W∗. Thus, we have

∥∥wk+ – w∗∥∥
H ≤ ∥∥wk – w∗∥∥

H –
α – 

α

∥∥wk – wk+∥∥
H . ()

Summing over k = , , . . . ,∞, it yields

∞∑

k=

∥∥wk – wk+∥∥
H ≤ α

α – 
∥∥w – w∗∥∥

H .

By α >  and the positive semi-definite of H , the above inequality implies that

lim
k→∞

∥∥wk – wk+∥∥
H = .

Thus, by the definition of H , we have

lim
k→∞

∥∥xk
 – xk+


∥∥

R
= lim

k→∞
∥∥vk – vk+∥∥

H
= , ()
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where

H =

(
R + α–α+

α
βA�

 A
–α
α

A�


–α
α

A


αβ
Il

)

,

is positive definite by R + βA�
 A � . From () again, we have

∥∥wk+ – w∗∥∥
H ≤ ∥∥w – w∗∥∥

H ,

which indicates that the sequence {Hwk} is bounded. Thus, {Rxk
}∞k= and {Hvk}∞k= are

both bounded. Then {vk}∞k= is bounded. If R � , {xk
}∞k= is bounded; otherwise, A�

 A �
, that is, A is full-column rank, which together with Ax = (λk – λk+)/(αβ) + ( –
α)(Axk

 – b)/α – (Axk+
 – b)/α implies that {xk

}∞k= is bounded. In conclusion, {wk}∞k=
is bounded.

Then, from () and H � , the sequence {vk} is convergent. Suppose it converges to v∞.
Let w∞ = (x∞

 , v∞) be a cluster point of {wk} and {wkj} be the corresponding subsequence.
On the other hand, by () and (), we have

lim
k→∞

R
(
xk

 – x̂k

)

= , lim
k→∞

(
xk

 – x̂k

)

= 

and

lim
k→∞

(
λk – λ̂k) = lim

k→∞
(
λk – λk+ + β

(
Ax̂k

 – Axk

))

= .

Thus,

lim
k→∞

Q
(
wk – ŵk) = . ()

Then, taking the limit along the subsequence {wkj} in () and using (), for any w ∈W ,
we obtain

θ (x) – θ
(
x∞)

+
(
w – w∞)�F

(
w∞) ≥ ,

which indicates that w∞ is a solution of VI(W , F , θ ). Then, since w∗ in () is arbitrary,
we can set w∗ = w∞ and conclude that the whole generated sequence {wk} converges by
Ri + βA�

i Ai �  (i = , ). This completes the proof. �

3.3 Convergence rate
Now, we are going to prove the worst-case O(/t) convergence rate of SGADMM in both
the ergodic and the non-ergodic senses.

Theorem . Let {wk} and {ŵk} be the sequences generated by SGADMM, and set

w̄t =


t + 

t∑

k=

ŵk .
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Then, for any integer t ≥ , we have w̄t ∈W , and

θ (x̄t) – θ (x) + (w̄t – w)�F(w) ≤ 
(t + )

∥∥w – w∥∥
H , ∀w ∈W . ()

Proof From () and the convexity of the set W , we have w̄k ∈W . From (), we have

θ (x) – θ
(
x̂k) +

(
w – ŵk)�F(w) +



∥∥w – wk∥∥

H ≥ 

∥∥w – wk+∥∥

H , ∀w ∈W .

Summing the above inequality over k = , , . . . , t, we get

(t + )θ (x) –
t∑

k=

θ
(
x̂k) +

(

(t + )w –
t∑

k=

ŵk

)�
F(w) +



∥∥w – w∥∥

H ≥ , ∀w ∈W .

By the definition of w̄t and the convexity of θ (·), the assertion () follows immediately
from the above inequality. This completes the proof. �

The proof of the next two lemmas is referred to those of Lemmas . and . in []. For
completeness, we give the detail proof.

Lemma . Let {wk} be the sequence generated by SGADMM. Then we have

(
wk – wk+)�H

{(
wk – wk+) –

(
wk+ – wk+)}

≥ α – 
α

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H . ()

Proof Setting w = ŵk+ in (), we have

θ
(
x̂k+) – θ

(
x̂k) +

(
ŵk+ – ŵk)�F

(
ŵk) ≥ (

ŵk+ – ŵk)�Q
(
wk – ŵk).

Similarly setting w = ŵk in () for k := k + , we get

θ
(
x̂k) – θ

(
x̂k+) +

(
ŵk – ŵk+)�F

(
ŵk+) ≥ (

ŵk – ŵk+)�Q
(
wk+ – ŵk+).

Then, adding the above two inequalities and using the monotonicity of the mapping F(·),
we get

(
ŵk – ŵk+)�Q

{(
wk – ŵk) –

(
wk+ – ŵk+)} ≥ . ()

By (), we have

(
wk – wk+)�Q

{(
wk – ŵk) –

(
wk+ – ŵk+)}

=
{(

wk – ŵk) –
(
wk+ – ŵk+) +

(
ŵk – ŵk+)}�Q

{(
wk – ŵk) –

(
wk+ – ŵk+)}

=
∥∥(

wk – ŵk) –
(
wk+ – ŵk+)∥∥

Q +
(
ŵk – ŵk+)�Q

{(
wk – ŵk) –

(
wk+ – ŵk+)}

≥ ∥∥(
wk – ŵk) –

(
wk+ – ŵk+)∥∥

Q.
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Using (), () and Q = HM on both sides of the above inequality, we get

(
wk – wk+)�H

{(
wk – wk+) –

(
wk+ – wk+)}

=
(
wk – wk+)�QM–{(wk – wk+) –

(
wk+ – wk+)}

=
(
wk – wk+)�Q

{(
wk – ŵk) –

(
wk+ – ŵk+)}

≥ ∥∥(
wk – ŵk) –

(
wk+ – ŵk+)∥∥

Q

=
[(

wk – ŵk) –
(
wk+ – ŵk+)]�Q

[(
wk – ŵk) –

(
wk+ – ŵk+)]

=
[(

wk – wk+) –
(
wk+ – wk+)]�M–QM–[(wk – wk+) –

(
wk+ – wk+)]

≥ α – 
α

[(
wk – wk+) –

(
wk+ – wk+)]�

× M–MHMM–[(wk – wk+) –
(
wk+ – wk+)]

=
α – 

α

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H .

Then we get the assertion (). The proof is completed. �

Lemma . Let {wk} be the sequence generated by SGADMM. Then we have

∥∥wk+ – wk+∥∥
H ≤ ∥∥wk – wk+∥∥

H –
α – 
α

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H . ()

Proof Setting a := (wk – wk+) and b := (wk+ – wk+) in the identity

‖a‖
H – ‖b‖

H = a�H(a – b) – ‖a – b‖
H ,

we can derive

∥∥wk – wk+∥∥
H –

∥∥wk+ – wk+∥∥
H

= 
(
wk – wk+)�H

{(
wk – wk+) –

(
wk+ – wk+)} –

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H

≥ α – 
α

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H –
∥∥(

wk – wk+) –
(
wk+ – wk+)∥∥

H

=
α – 
α

∥∥(
wk – wk+) –

(
wk+ – wk+)∥∥

H ,

which completes the proof of the lemma. �

Based on Lemma ., now we establish the worst-case O(/t) convergence rate of
SGADMM in a non-ergodic sense.

Theorem . Let {wk} be the sequence generated by SGADMM. Then, for any w∗ ∈ W∗

and integer t ≥ , we have

∥∥wt – wt+∥∥
H ≤ α

(t + )(α – )
∥∥w – w∗∥∥

H . ()
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Proof By (), we get

α – 
α

t∑

k=

∥∥wk – wk+∥∥
H ≤ ∥∥w – w∗∥∥

H .

This and () imply that

(t + )(α – )
α

∥∥wt – wt+∥∥
H ≤ ∥∥w – w∗∥∥

H .

Therefore, the assertion of this theorem comes from the above inequality immediately.
The proof is completed. �

Remark . From (), we see that the larger α is, the smaller α
α– , which controls the up-

per bounds of ‖wt – wt+‖
H . Therefore, it seems that larger values of α are more beneficial

for speeding up the convergence of SGADMM.

4 Numerical experiments
In this section, we present some numerical experiments to verify the efficiency of
SGADMM for solving compressed sensing. Those numerical experiments are performed
in Matlab Ra on a ThinkPad computer equipped with Windows XP,  MHz and
 GB of memory.

Compressed sensing (CS) is to recover a sparse signal x̄ ∈ Rn from an undetermined
linear system b = Ax̄, where A ∈Rm×n (m � n), can be depicted as problem ().

Obviously, Problem () is equivalent to the following two models:
(a) Model : Problem ().
(b) Model :

minμ‖x‖ +


‖Ax – y‖

s.t. –x – x = ,

x ∈Rn, x ∈Rn.

()

4.1 The iterative schemes for (3) and (35)
Since () and () are both some concrete models of (), SGADMM are applicable to them.
Below, we elaborate on how to derive the closed-form solutions for the sub-problems re-
sulting by SGADMM.

For problem (), its first two sub-problems resulting by SGADMM are as follows.
• With the given xk

 and λk , the x-sub-problem in () is (here R = )

xk+
 = argmin

x∈Rn

{


‖x‖

 + x�
 λ +

αβ


∥∥x – Axk

 + y
∥∥

}
,

which has the following closed-form solution:

xk+
 =


 + αβ

(
αβ

(
Axk

 – y
)

– λk).
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• With the updated xk+
 , the x-sub-problem in () is (here R = τ In – (α – )βA�A

with τ ≥ (α – )β‖A�A‖)

xk+
 = argmin

x∈Rn

{
μ‖x‖ – x�

 A�λk +
(α – )β


∥∥–xk+

 + Ax – y
∥∥ +



∥∥x – xk


∥∥

R

}
,

and its closed-form solution is given by

xk+
 = shrink μ

τ

(
(α – )βA�(

xk+
 + y

)
/τ +

(
τ In – (α – )βA�A

)
xk

/τ + A�λk/τ
)
,

where, for any c > , shrinkc(·) is defined as

shrinkc(g) := g – min
{

c, |g|} g
|g| , ∀g ∈Rn,

and (g/|g|)i should be taken  if |g|i = .
Similarly, for problem (), its first two sub-problems resulting by SGADMM are as

follows.
• With the given xk

 and λk , the x-sub-problem in () is (here R = )

xk+
 = argmin

x∈Rn

{
μ‖x‖ +

αβ



∥∥∥∥x –
(

xk
 +


αβ

λk
)∥∥∥∥

}
,

and its closed-form solution is given by

xk+
 = shrink μ

αβ

(
xk

 +


αβ
λk

)
.

• With the updated xk+
 , the x-sub-problem in () is (here R = τ In – A�A with τ ≥

‖A�A‖)

xk+
 = argmin

x∈Rn

{


‖Ax – y‖ + x�

 λk +
(α – )β


∥∥x – xk+


∥∥ +



∥∥x – xk


∥∥

R

}
,

and its closed-form solution is given by

xk+
 =


τ + (α – )β

(
A�y – λk + (α – )βxk+

 + A�Axk

)
.

Obviously, the above two iterative schemes both need to compute A�A and A�y, which
is quite time consuming if n is large. However, noting that these two terms are invariant
during the iteration process, therefore we need only compute them once before all itera-
tions.

Regarding the penalty parameter β and the constant α in SGADMM, any β >  and α ≥ 
can ensure the convergence of SGADMM in theory. There are two traditional methods to
determine them in practice. One is the tentative method, which is easy to execute. The
other is the self-adaptive adjustment method, which needs much computation. In this
experiment, for β and α, we use the tentative method to determine their suitable values.
For β , Xiao et al. [] set β = mean(abs(y)) for ADMM. Motivated by this choice, we set
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β = mean(abs(y))/(α – ) in our algorithm. As for the parameter α, we have pointed out
in Remark . that larger values of α may be beneficial for our algorithm. Here, we use
() to do a little experiment to test this. We choose different values of α in the interval
[, ]. Specifically, we choose α ∈ {., ., . . . , }. Other data about this experiment are as
follows: the proximal parameter τ is set as τ = .(α – )β‖A�A‖; the observed signal
y is set as y = Ax + . × randn(m, ) in Matlab; the sensing matrix A and the original
signal x are generated by

Ā = randn(m, n), [Q, R] = qr
(
Ā′, 

)
, A = Q′,

and

x = zeros(n, ); p = randperm(n); x
(
p( : k)

)
= randn(k, ).

Then the observed signal y is further set as (R�)–y. The initial points are set as x
 = A�y,

λ = Ax
. In addition, we set the regularization parameter μ = ., and the dimensions

of the problem are set as n = ,, m = , k = , where k denotes the number of the
non-zeros in the original signal x. To evaluate the quality of the recovered signal, let us
define the quantity ‘RelErr’ as follows:

RelErr =
‖x̃ – x‖

‖x‖ ,

where x̃ denotes the recovered signal. The stopping criterion is

‖fk – fk–‖
‖fk–‖ < –,

where fk denotes the function value of () at the iterate xk .

4.2 Numerical results
The numerical results are graphicly shown in Figure . Clearly, the numerical results in
Figure  indicate that Remark . is reasonable. Both CPU time and number of iterations
are descent with respect to α. Then, in the following, we set α = ., which is a moderate
choice for α.

Now, let us graphically show the recovered results of SGADMM for () and (). The
proximal parameter τ is set as τ = .(α – )β‖A�A‖ for (), and τ = .‖A�A‖ for ().
The initial points are set as x

 = A�y, λ = Ax
 for (), and x

 = A�y, λ = x
 for (). Other

parameters are set the same as above. Figure  reports the numerical results of SGADMM
for () and ().

The bottom two subplots in Figure  indicate that our new method SGADMM can be
used to solve () and ().

In the following, we do some numerical comparisons to illustrate the advantage of our
new method and to analyze which one is more suitable to compressed sensing () between
the two models () and (). SGADMM for () is denoted by SGADMM, SGADMM for
() is denoted by SGADMM. We also compare SGADMM with the classical ADMM.
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Figure 1 Sensitivity test on the parameter α.

Figure 2 Numerical results of SGADMM for (3) and (35). The top: the original signal; the second: the noisy
measurement; the bottom two: recovered signal.

The numerical results are listed in Table , where ‘Time’ denotes the CPU time (in sec-
onds), and ‘Iter’ denotes the number of iterations required for the whole recovering pro-
cess, m = floor(γ n), k = floor(σm). The numerical results are the average of the nu-
merical results of ten runs with different combinations of γ and σ .

4.3 Discussion
The numerical results in Table  indicate that: () by the criterion ‘RelErr’, all methods
successfully solved all the cases; () by the criteria ‘Time’ and ‘Iter’, SGADMM performs
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Table 1 Comparison of SGADMM1, SGADMM2 and ADMM

n γ σ SGADMM1 SGADMM2 ADMM

Time Iter RelErr Time Iter RelErr Time Iter RelErr

1,000 0.3 0.2 0.6911 92.4 0.0387 0.9578 266.0 0.0394 0.9812 264.0 0.0393
0.2 0.2 0.6661 118.6 0.0825 1.3915 421.8 0.0915 1.3603 419.6 0.0915
0.2 0.1 0.5008 85.3 0.0609 0.4758 139.0 0.0579 0.5008 138.0 0.0539

2,000 0.3 0.2 2.1965 90.0 0.0437 3.6535 267.7 0.0447 3.5412 265.6 0.0447
0.2 0.2 2.2339 109.6 0.0785 5.2182 431.4 0.0874 5.1543 429.0 0.0874
0.2 0.1 1.5428 79.9 0.0534 1.7893 142.8 0.0467 1.7613 140.8 0.0513

better than the other two methods. Especially the number of iterations of SGADMM is
about at most two-thirds of the other two methods. This experiment also indicate that the
model () is also an effective model for compressed sensing, and sometimes it is more ef-
ficient than the model (), though they are equivalent in theory. In conclusion, by choos-
ing some relaxation factor α ∈ [, +∞), SGADMM may be more efficient than the classical
ADMM.

5 Conclusions
In this paper, we have proposed a symmetric version of the generalized ADMM
(SGADMM), which generalizes the feasible set of the relaxation factor α from (, ) to
[, +∞). Under the same conditions, we have proved the convergence results of the new
method. Some numerical results illustrate that it may perform better than the classical
ADMM. In the future, we shall study SGADMM with α ∈ (, ) to perfect the theoretical
system.
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