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Abstract
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1 Introduction
If0 < [;°f*(x)dx < 00 and 0 < [;° g%(y) dy < 00, then we have the following Hilbert’s inte-
gral inequality (cf [1]):

//wfx+y xdy<n(/ooofz(x)dx/(;oogZ(y)dy)%, 1)

where the constant factor 7 is the best possible. In 1925, by introducing one pair of con-
jugate exponents (p, g), Hardy [2] gave an extension of (1) as follows: For p > 1, 117 + % =1,
fx), () =0,0< [°fP(x)dx < 00 and 0 < [~ g7(y) dy < 00, we have

/ f e y<—sm(mp)(/o f”(x)dx) (/0 gq(y)dy), @)

where the constant factor is the best possible. Inequalities (1) and (2) are important

sin(j:r/p)
in analysis and its applications (cf. [3, 4]).
In 1934, Hardy et al. gave an extension of (2) as follows: If ki(x,y) is a non-negative

homogeneous function of degree -1, k, = fooo ki(u, 1)14_71 du € R, =(0,00), then

/ f k1<x,yy(x)g(y>dxdy<kp< / fP(x)dx)”( / gqmdy)", 3)
0 0 0 0

where the constant factor &, is the best possible (cf [3], Theorem 319). Additionally,
a Hilbert-type integral inequality with the non-homogeneous kernel is proved as follows:
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If h(u) >0, ¢p(o) = [° h(w)u’" du € R, then

/0 /o Hey)f ()g(y) daxdy

¢(1§> ( [ e dx)‘% ( | wgq@)dy)%, @

where the constant factor ¢( }%) is still the best possible (cf. [3], Theorem 350).

In 1998, by introducing an independent parameter A > 0, Yang gave a best extension
of (1) with the kernel — (cf [5, 6]). In 2004, by introducing another pair conjugate
exponents (r, s), Yang [ ] gave an extension of (2) as follows: If A >0, r > 1, % + % =1, f(x),
g0 =0,0< [;° 2= D-LEP (3) dx < 00 and 0 < fooqu(l’%)’lgq(y) dy < oo, then

[ [0
0 0

x* + y*

T (7 e o (1-%)11 i
< xsin(z/r) (/0 » fp(x)dx) ( /0 ¥ gq(y)dy) : 5)

where the constant factor is the best possible. For A =0, r = g, s = p, (5) reduces to

( Ir)
(2);ForA=1,r=p,s=g¢q, (5) reduces to the dual form of (2) as follows:

ol

1 1
~ 1
< ([orwan) ([ reoa) ©)
sin n/p) 0
For p = ¢ = 2, both (2) and (7) reduce to (1).
In 2005, in [8] one also gave an extension of (2) and (5) with the kernel ~-. Krnic et al.

[9-14] provided some extensions and particular cases of (2), (3) and (4) w1th parameters.
In 2009, Yang gave an extension of (3) and (5) as follows (cf. [15,16]): If Ay + A =A € R =

(=00, 00), ki (%, ) is a non-negative homogeneous function of degree —2, satisfying
ky(ux, uy) = w”ki(x,y)  (,%,9 > 0),
and
o0
)= [kt duer,,
0
then

/o /o ko () (x)g () dx dy

< k(xl)( /0 T () dx>’7 ( /0 " ypi1gagy) dy) ! )
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where the constant factor k(A;) is the best possible. For A =1, A; = é, Ay = 117’ (7) reduces
to (3). Additionally, an extension of (4) was given as follows:

/0 /o Hey)f ()g(y) dxdy

<¢(o) ( /o ") dx> ’ ( /0 o140 dy> g ®)

where the constant factor ¢(o) is the best possible (cf. [17]). For o = }7, (8) reduces to (4).

Some equivalent inequalities of (7) and (8) are considered by [16]. In 2013, Yang [17]
studied the equivalency between (7) and (8). In 2017, Hong [18] studied an equivalent
condition between (7) with a few parameters.

Remark 1 (cf [17]) If h(xy) = 0, forxy > 1, ¢(c) = fol h(w)u®'du = ¢1(0) € R,, then (8) re-
duces to the following Hardy-type integral inequality with the non-homogeneous kernel:

[ [ seoywas) iy
0 0
<oo)( [ wroripeas) ([Toriga) ©)
0 0

if h(xy) = 0, forxy <1, ¢(0) = [ h(u)u"~' du = ¢»(c) € R, then (8) reduces to the follow-
ing another kind of Hardy-type integral inequality with the non-homogeneous kernel:

[ oo ( INCE dx) dy

< ¢a(0) ( /0 b 210010 () dx> ’ ( /0 > Y=L () dy) . (10)

In this paper, by real analysis and the weight functions, we obtain a few equivalent con-

ditions of two kinds of Hardy-type integral inequalities with the non-homogeneous kernel

(minfxy,1)*| Inxy|?
(max{xy,1})A+e

proved to be the best possible. We also consider the operator expressions and some cases

and parameters as . The constant factors related to the gamma function are

of homogeneous kernel.

2 Two lemmas
For 8>-1,0 + u =L € R, we set

~ (min{z, 1})* | In 2|
hw) = (max{u,1})*+

(u>0).

Then, for o > -, setting v = —(0 + &) Inu, we find

[ (min{e, 1)) Inul’
kl(a).-/o (max(, 1)) u’ " du

1 1 o0 rp+1)
_ o+a=1(_1 B — _/ PeVdy= L "7 4o 11
/(; W @+aypt )y V¢ @ (0 +a)f*! °R w
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For u > —a, we find

o) : o B
k2(0):=/ (min{u, 1))" | In | utdu
1

(max{u,1})

1
= / vl ny)P dy = M =ki(un) €R,, (12)
0 (1 + )P+

where I'(n) := [ v""'e™ dv (1 > 0) is the gamma function (¢f. [19]).

Lemmal Ifp>1, % + é =1,01 €R, B > -1, 0 > —«, there exists a constant My, such that,
for any non-negative measurable functions f (x) and g(y) in (0, 00), the following inequality:

o0 % : o B
/0 g(y)|: 0 (min{xy, 1})¥| Inxy| f(x)dx] dy

(max{xy, 1})*+«

<M |:/oo xp(l—o)—lfp(x) dx] g |:foo yq(l—m)—lgq(y) dy] ‘ (13)
0 0

holds true, then we have o1 = o, and then My > ki(o).
Proof If o1 > 0, then, for n > UI%U (n € N), we set the following functions:

o+-L-1

x o, O0<x<l, 0, O<y<l,
Ju(x) = &n(y) = 1

01— —-—1

0, x>1, yor, y>1,

and find

1

1 . 1
Jii= |:/0 xp(l“’)‘lff(x) dx] ? [/0 yq(l—Ul)—ng(y) dy] 1
1 1 %, o0 1 %
= </ XL dx) (/ y’ﬁ_l dy) =n.
0 1

Setting u = xy, we obtain

00 % : , o B
I /0 gn(y)( /0 (minf{xy, 1})”| Inxy| £ dx) dy

(max{xy, 1})*+«

([ minby, )y oo N o
-] (/0 (max{xy, 1= dx) e

_ / * oot g, f ! mings 1) (- g1
1 0

(max{u,1})*+

Then by (13), we have

/ (o1-0 ———1df (mln{u71} ]nu)ﬁuow#—ldu
1

(max{u, 1}) +

:11 §M1]1 =M1}’I<OO. (14)
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Since (07 — 0) — 1 > 0, it follows that fooy("l"’)’l’1 dy = co. By (14), in view of

1
= . ﬂ
J5 (minfiu L) (- Inwf o+ 57 - du > 0, we find oo < 0o, which is a contradiction.

0 (max{u,1})*+e
If o1 <o, then, for n > — (n € N), we set the following functions:

1
0, 0<x<l, . yUaTl 0<y<l,

Fw=1 G0) =

%7 I , x>1, 0, y>1,
and find
~ 10 o 1
~ ~ p q
= | [T epwas | [T orngos ]
00 }7 1 %
:(/ x‘i_ldx) (/ y}r_ldy> =n.
1 0
Setting u = xy, we obtain
00 1.
- - ¥ (min{xy,1})*| Inxy|? _
L= "
=) (")(/o max ey 1ye oY)
1
_ *© x (mln{xyrl})a( lnxy)ﬂ 01+——1 n—l
‘/1 </o max(o 1y 0 )T

/‘Oox(a—al)—%—ldx ! (min{u:l})a( lnu)ﬂ (71+——1 du.
1 o (max{u,1})*+

Then by the Fubini theorem (c¢f. [20]) and (13), we have

/mx(a—"l)‘%‘ldxf (min{z, 1}))% (- In u)? ”“__ldu
1 o (max{u,1})*+

1

s 7 (min{xy, 1})*| Inxy|? - )
i 1‘/0 g”(y)(/o (a4 )&

< MyJ; = Myn < oo. (15)
Since (01 — o) — 5 > 0, it follows that f x@=0=351 gy = o0, By (15), in view of
! (min{u! 1})a(_ In ”)ﬂ o1+ -1
/ VT dus>0
0 (max{u’ 1}))#(1
we find 0o < 00, which is a contradiction.
Hence, we conclude that o7 = o
For o1 = o, we reduce (15) as follows:
1 : of_ B
Ml > (mln{l/l, 1}) ( In I/l) (T+qln—1 du. (16)
o (max{u,1})++
Since

[e¢]

(max{u, 1}))»4—01 n=1

{ (min{u! 1})a(_ In u)ﬂ o+t -1 }
u "
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is non-negative and increasing in (0, 1], by Levi theorem (cf. [20]), we find

1 : af_ B
Ml > lim (mln{u, 1}) ( lnu) Ma+ql7[—1 du
noo Jo  (max{u,1})*+*

/’1 . (min{y,1)*(~1nu)?
= lim
0

noo  (max{u, 1})***

o+t -1
u T du= k(o).

The lemma is proved. d

Lemma?2 Ifp>1, % + é =1,01 €R, B>-1, u=A-0 >—«a, there exists a constant M,
such that, for any non-negative measurable functions f (x) and g(y) in (0, 00), the following
inequality:

oo o0 : o B
/(; g(y)|:f1 (min{xy, 1})¥|Inxy| f(x)dx:| dy

(max{xy, 1})*+«

<M, [ f ” K012 () dx] ’ [ / - yAd-oD-1g4(y) dy} ’ 17)
0 0

holds true, then we have o1 = o, and then My > k().

Proof If 01 < o, then, for n > a%ql (n € N), we set two functions f,,(x) and g,(y) as in
Lemma 1, and find

1 00
jl — |:/(; xP(l—U)—ljf(x) dx:|p I:/() yLI(l—m)—ng(y) dy:| 1 -

Setting u = xy, we obtain

[e9) 00 : o B
hie [Ta0)( [ P P ) )
0 y

(max{xy, 1})*+«

:/ 1(/ " minkey 1) Un)" o dx>3’01+‘11”_1 dy
0 1
y

(max{xy, 1})*+

1 00 ; o B
_ (UI—U)*'%—ld / (mln{u,l}) (11’114) (r—pin—ld
,/0 ‘4 Y 1 (max{u,1})*+ “ "

and then by (17), we obtain

1 o0 ; o B
(U1—o)+%—1d f (minf{z, 1})*(In u) G_I%_ld
/o Y V)T (maxtu e ¢

= jz < MZjl =Msyn < 00. (18)

Since (01 — o) + 1 <0, it follows that | y("l“’)’f%—l dy = 0o. By (18), in view of

/"O (min{u,1))*(Inu)? ,_1_,
1

(max(u, e MO

we have 0o < 0o, which is a contradiction.
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If 01 > o, then, for n > 0'1%0' (n € N), we set two functions f,(x) and g,(y) as in Lemma 1,

and we find

1

1 00
h=| [Ceeorpwa]| [T migom] -n

Setting u = xy, we obtain

oo o] : o B
L ::/'0 fn(x)</1 (min{xy, 1})|Inxy| gn(y)dy) d

(max{xy, 1})*+«

1 [} : 1D B
:A I:/l (mln{xy }) (nxy) ygl_‘Il’"_ldy]xo+1’l'“_ldx

(max{xy, 1})*+

x

= /‘1x(0'—a])+}11—1 dx/oo (min{u,l})a(lnu)ﬂ uﬂ'l—%_l du
0 1 (max{u, 1})*+ '

and then by Fubini theorem (cf. [20]) and (17), we have

/lx("“’”*i‘l dx/oo (mint, L ln i) W gy
0 1 (max{u, 1})*+

0 00 : o B
212:/0 gn()/)(/; (min{xy, 1})*(Inxy) f,,(x)dx) dy

(max{xy, 1})*+«

<My = Msn. (19)

Since (o —o7) + % < 0, it follows that fol KO g = 0. By (19), in view of

u“l_ql7_l du>0,
(max{u,1}) +

f°° (minf{u,1})*(In u)?
1

we have 0o < 00, which is a contradiction.
Hence, we conclude that o7 = 0.
For o1 = o, we reduce (19) as follows:

o-L_1
u T du. (20)

* (min{x,1})*(In u)?
My = /; (max{u,1})*+

Since

{ (min{x,1))*(In u)? (,_L_l}oo
u

(max{u, 1})k+a n=1

is non-negative and increasing in [1, 00), still by the Levi theorem (cf [20]), we have

1
. 1
M, > lim u’ " dy

n—00

/°° (min{z,1})*(n u)?
1 (max{u,1})*+

oo : o B
:/‘ fim (min{u,1})*(In «) uafqlnfldu:kl(u).
1

n—oo  (max{u,1})**e

The lemma is proved. O
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3 Main results and corollaries
Theorem 1 Ifp > 1, }7 + é =1,01 €R, B > -1, 0 > —«, then the following conditions are
equivalent:

() There exists a constant My, such that, for any f(x) > 0, satisfying

0< f KPP () e < 00,
0

we have the following Hardy-type integral inequality of the first kind with the
non-homogeneous kernel:

o] % . o 5 [l’
J = {/ ypal—l|: (min{xy, 1})*| Inxy| f(x)dxrdy}
0 0

(max{xy, 1})*+*

<M, [ / Ooxp(l“’)‘lf"(x) dx] 7 (21)
0

(i) There exists a constant My, such that, for any f(x), g(y) > 0, satisfying
0 < [y 1= LfP(x) dix < 00, and 0 < [~ y11=70-1g4(y) dy < 00, we have the
following inequality:

Y %(min{xy,l})“llnxyvs }
1= [Teo| [ fx)dx | dy

(max{xy, 1})*+«

<M, [ / ” K012 () dx] ’ [ / Oo YAU-oD-1gd () dy] ! . (22)
0 0

(iii) o1 = 0.
If condition (iii) holds true, then M, > k(o) and the constant factor

rp+1)

M1=k1(0)=m

in (21) and (22) is the best possible.

Proof (i)=>(ii). By Holder’s inequality (cf. [21]), we have

o 1 % i ) “I1 B 1 4
1:/ I:ymp/ (mlﬂ{xy 1}) | nyl f(x)dx:|(yp 1g(y)) dy
0 0

(max{xy, 1})*+«

51[ /0 yTgi() dy] " (23)

Then by (21), we have (22).
(if)=>(iii). By Lemma 1, we have 07 = 0.
(ili)=(i). Setting u = xy, we obtain the following weight function:

1
¥ (min{xy, 1})*|Inxyl?
) =y’ T
wi(o,y) =y /0 (max{xy, 1})*+« * i

" (minfx, 1})*(~ Inu)?
“Jo (max{u,1})*+

W ldu=rk(o) (y>0). (24)
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By Holder’s inequality with weight and (24), for y € (0, 00), we have

U 7 (minfxy, 1})?[Inxy|?
0

(max{xy, 1})*+
5 o B[ ylo-Dip (0-1/q »

_| [ (min{xy, 1})*|Inxy| IIE ”
0 (max{xy, 1})*+« x(o-1)/q o-1)ip

< /i (min{xy, 1))°| Inxyl” y7~'f7 )
—Jo

(max{xy’ 1})A+a xlo-1plq

f()d}

dx

3 min{xy,1})¥|Inxy|f x°7!

y ( 4 p-1
) |:/0 (max{xy, L} y©@-Dalp x]

1ol o _
[elo,9)77" [ (minfxy,1})*|Inay|?  y7! 0
J/q(a—1)+1 0 (max{xy,l})““ (r lp/

-1

1
7 (min{xy,1})*|Inxy|?
Y S W (25)

= (k P-1 _po+l
@) J e
If (25) obtains the form of equality for a y € (0, 00), then (¢f. [21]), there exist constants
A and B, such that they are not all zero, and

o-1

X
P (x i
o Dp y(" i a.e.inR,.

We suppose that A # 0 (otherwise B = A = 0). It follows that

B
p(1-0) LfP(x) = ylo- D ae.inR,,
Ax

which contradicts the fact that 0 < fooo x?(1=9)-1£P (x) dx < co. Hence, (25) assumes the form
of strict inequality. Hence, for o1 = o, by (25) and by the Fubini theorem (cf. [20]), we obtain

1 0o % : o B Ao— }g
]<(k1(o))q{/0 [0 (min{xy, 1)| Inxy|? y7~1f? (x) dx} dy}

(max{ey, L)) #0000

[ [* (minfay, 1)°|Inxyl? y*~'dy ;
P(x) dx
o LJo (max{xy,1})*e  xle-De-D

= (kl(o))% |:/O<> wy (0, )PP (x) dx] '
0

Q=

= (kl(U))

- k(o) [ / " -0y dx] "
0

Setting M; > ki (o), (21) follows.

Therefore, conditions (i), (ii) and (iii) are equivalent.

When condition (iii) follows, if there exists a constant factor M; > ki(o0’), such that (22)
is valid, then by Lemma 1, we have M; > ki(c0). Hence, the constant factor M; = ki(o) in
(22) is the best possible. The constant factor M; = kj(o) in (21) is still the best possible.
Otherwise, by (23) (for 01 = ), we can conclude that the constant factor M; = k;(0) in
(22) is not the best possible. O
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Setting y = %, G(Y) = Yk‘zg(%), 1 = A — 07 in Theorem 1, then replacing Y by y and
G(Y) by g(y), we have

Corollaryl Ifp>1, % +-2=1Lu €R, B>-1,0=r—pu>—a,then the following conditions

1
q
are equivalent:

(i) There exists a constant My, such that, for any f(x) > 0, satisfying
o0
0< / xP 7LD (x0) dx < 00,
0

we have the following Hardy-type inequality of the first kind with the homogeneous
kernel:

{ [Ty [ [ tintso LTI dx]" dy}é
0 0

(max{x, y})*+«

<M, |:/00 x”(l_“)_lfp(x) dx] ’ . (26)
0

(i) There exists a constant My, such that, for any f(x), g(y) > 0, satisfying
0 < [y aP1=)"1fP(x) dx < 00, and 0 < [;° y10-1)-1g4(y) dy < 00, we have the
following inequality:

0 0

(max{x, y})*+«

<M [ / T o) dx] ’ [ / " ytigagy) dy] ‘. (27)
0 0

(i) w1 = p.
If condition (iii) holds true, then we have My > ky(o'), and the constant M, = k(o) in (26)
and (27) is the best possible.

Remark 2 On the other hand, setting y = 3, G(Y) = Y*~%¢(3), 01 = A — 11 in Corollary 1,
then replacing Y by y and G(Y) by g(y), we have Theorem 1. Hence, Theorem 1 and Corol-

lary 1 are equivalent.

Similarly, we obtain the following weight function:

wy(0,y) 1= a/w (min{xy,l})“llnxy|ﬁx”_ldx
2(0,)) =Y 1 (max{xy,l})“"‘

o o 1yl
:/ (min{u, 1)%|Inul® ,_, du=k(p) (y>0),
1

(max({z, 1})*+
and then in view of Lemma 2 and in the same way, we have

Theorem 2 Ifp>1, Ilj +

are equivalent:

% =1,01€R, B>-1, u=A—0 >—a, then the following conditions
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(i) There exists a constant My, such that, for any f(x) > 0, satisfying
o0
0< / xP 7P (x0) e < 00,
0

we have the following Hardy-type inequality of the second kind with the
non-homogeneous kernel:

0 00 [ " 5 [%
{/0 yparl [/1 (mm{xy, 1% Inxy| f(x) dx]ﬂ dy}

(max{xy, 1})*+«

<M, [ / h aPmO)=1p () dx} 7 (28)
0

(i) There exists a constant My, such that, for any f(x), g(y) > 0, satisfying
0 < [y a1 1fP(x) dx < 00, and 0 < ;7 y11--1g4(y) dy < o0, we have the
following inequality:

[ e[ [ e s a

(max{xy, 1})*+«

1

<M, [ / ~ K012 () dx:| ’ [ / > YAd=oD)-1gd () dy} ! . (29)
0 0

(iii) o1 =o0.
If condition (iii) holds true, then we have My, > ki(t) and the constant factor

rp+1)

My =ki(n) = W

in (28) and (29) is the best possible.

Setting y = )l,, G(Y) = Yx‘zg(%), i1 = A — o1 in Theorem 2, then replacing Y by y and
G(Y) by g(y), we have

Corollary2 Ifp>1, 1% +-=1Lu €R,B>-1, u=r—0 >—«, then the following conditions

1
q
are equivalent:

(i) There exists a constant My, such that, for any f(x) > 0, satisfying
o0
0< / xp(l_")_lf”(x) dx < 00,
0

we have the following Hardy-type inequality of the second kind with the
homogeneous kernel:

0 y

(max{x, y})*+<

1

<M, [ / h aPmO)71ep () dx:| ! (30)
0
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(i) There exists a constant My, such that, for any f(x), g(y) > 0, satisfying
0 < [y aP1=LfP(x) dx < 00, and 0 < [;° y10-1)-1g4(y) dy < 00, we have the
following inequality:

00 0 : o B
[ g(y)[ [ dx] "
0 y

(max{zx, y})***

1

<My [ / KL (x) dx} [ / g4 (y) dy] : (31)
0 0
(i) w1 = p.
If condition (iii) holds true, then we have My > ki (), and the constant M, = ki (u) in (30)
and (31) is the best possible.

Remark 3 Theorem 2 and Corollary 2 are still equivalent.

4 Operator expressions

For p > 1, }7 + é =1,0,2>0, u=A—o0, we set the following functions: ¢(x) := x?(1-9)-1,

) = y10-9)1, §(3) = 1011, wherefrom, Y1(y) = 71, $12(y) = ! (x,5 € R,).

Define the following real normed linear spaces:

Lyy(R,):= {fﬁ Ifllpe = (/(; p@|fW)|° dx)l7 < oo},

wherefrom

L=ty = ([ vorleol'ar) " <oc,
Lys(R,) = {g: gl = ( fo ¢()’)|g()’)}qdy> " oo},
Lo ) = s tyis = ([ 0000 ) <o),

Lyss®) = s s = ([~ 020000 ) <o),

(a) In view of Theorem 1 (01 = 0), for f € L, ,(R,), setting

5 (mi “|Inxy|#
() = /0 (minta, DTN ) g (v eRy),

(max{xy, 1})*+«

by (21), we have

2l y1op = [ /0 VP () dy}p < Mi|[fllpy < 00. (32)

Definition 1 Define a Hardy-type integral operator of the first kind with the non-
homogeneous kernel Tl(l) 1 Lpy(Ry) = Ly, 1-»(R,) as follows: For any f € L, ,(R,), there
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exists a unique representation Tl(l)f =h €L, 1-»(R,), satisfying for any y € R, Tl(l)f(y) =

n(y).

In view of (32), it follows that || Tl(l)fllplll,lfp = 1l py1» < Mi|fllpe, and then the opera-
tor Tl(l) is bounded satisfying

(1)
T )
I3 Syt _ 0

T _ -
I )Ly @®) I llpe

If we define the formal inner product of Tl(l)f and g as follows:

(1) /oo ( /y (mingey, 1) Inxyl” dx>g(y)dy,
0 0

(max{xy, 1})*+«

then we can rewrite Theorem 1 (for o7 = o) as follows.
Theorem 3 Ifp >1, 119 + % =1,8>-1,0 > —«a, then the following conditions are equivalent:

(i) There exists a constant My, such that, for any f(x) > 0,f € L, ,(R.), [f 156 > 0, we
have the following inequality:

I TEF (g0 < MiIF - (33)

(ii) There exists a constant My, such that, for any f(x), g(y) > 0, f € L,,(R,),
g€ Ly (R, fllpes lIgllgy > 0, we have the following inequality:

(TF,8) < Mylf Iy gl (34)
We still have || Tl(l) | = k(o) < M.

(b) In view of Corollary 1 (u; = u), for f € L, ,(R,), setting

o ,
h(y) = /O " minte DI g () e Ry),

(max{x, y})*+e

by (26), we have

1

17221 10 = [ /0 T (y) dyr < Mi|[f Iy < 00. (35)

Definition 2 Define a Hardy-type integral operator of the first kind with the homoge-
neous kernel Tl(z) :Lpy(Ry) = L, 51-»(R,) as follows: For any f € L, ,(R,), there exists a
unique representation Tl(z)f =hy € L, 5»(R,), satisfying for any y € Ry, Tl(z)f(y) =hy(y).

Inview of (35), it follows that || Tl(z)f||p,¢1_p = h2llpg1-» < Milfllp,e, and then the operator
T1(2) is bounded satisfying

@
177N pgr
” 7® |=  sup L Uy
Felpe @) fllpg
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If we define the formal inner product of T1(2)f and g as follows:

o . a B
(sz)f,g) ::/0 (/-Oy (min{x, y})¥| In(x/y)| f(x)dx)g(y)d%

(max{x, y})*+*

then we can rewrite Corollary 1 (for 11 = ) as follows.

Corollary 3 Ifp > 1,1% + %1 =1,8>-1,0 = A — u > —a«, then the following conditions are
equivalent:
(i) There exists a constant My, such that, for any f(x) > 0,f € L, ,(R.), [[f]l56 > 0, we
have the following inequality:

| T2, g1 < M g (36)

(ii) There exists a constant My, such that, for any f(x),g(y) > 0,f € L,,(R,),g €
Ly (R f llpes 1€llge > 0, we have the following inequality:

(177£,2) < Ml Il g (37)
We still have | T)|| = k(o) < M.
Remark 4 Theorem 3 and Corollary 3 are equivalent.

(c) In view of Theorem 2 (07 = ), for f € L, ,(R,), setting

o0 : o ,B
Hy() = / (mintay "Iy 10 e ry),

(max{xy, 1))

by (28), we have

1

1H1llpy1r = [/0 VP ()H (9) dy}p <M |[fllpy < 0. (38)

Definition 3 Define a Hardy-type integral operator of the second kind with the non-
homogeneous kernel Tél) 1 Lyy(Ry) = Ly, y1»(R,) as follows: For any f € L, ,(R,), there
exists a unique representation Tél)f =H € L, 1-»(R,), satisfying for any y € R, Tél)f(y) =
Hi(y).

In view of (38), it follows that || Tz(l)fllp,v,l—p = [|1Hlly1-» < Ma||flle, and then the oper-
ator Tz(l) is bounded satisfying

(1)
T .
175 fllpyi-r < M,.

7O _ -
i7"l F0elpy®) I llpe

If we define the formal inner product of Tz(l)f and g as follows:

) 0 (] a B
(Tél)f,g) ::/ (/; (min{xy, 1})*| Inxy| f(x)dx)g(y)dy,
0 y

(max{xy, 1})*+«

then we can rewrite Theorem 2 (for o7 = o) as follows.
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Theorem 4 Ifp > 1, 1% +
equivalent:
(i) There exists a constant Ms, such that, for any f(x) > 0, f € L, ,(R,), |fllpe > 0, we
have the following inequality:

% =1, B8>-1, u=XA—0 >—a, then the following conditions are

I TF [0 < Mol (39)

(ii) There exists a constant My, such that, for any f(x), gy) > 0, f € L, »(R,),
g€ L,y R, fllpes gllgy >0, we have the following inequality:

(13°£,8) < Ma|fllp gl g0 (40)
We still have || TZ(D | = ki(p) <M.

(d) In view of Corollary 2 (u; = ), for f € L, ,(R,), setting

00 : o B
) / (mintu ) 0GP 00
y

(max{zx, y})*+*

by (30), we have

1 Hallpg1-r = [/0 ¢ (y)H3 (y) dy}p <My ||fllpy < 0. (41)

Definition 4 Define a Hardy-type integral operator of the second kind with the homo-
geneous kernel Tf) 1Lyy(Ry) > L, 41-»(R,) as follows: For any f € L, ,(R,), there exists a
unique representation Téz)f =H; € L, 451-»(R,), satistying for any y € R,, T2(2)f(y) = Hy(y).

In view of (41), it follows that | 75" f||,,s1-» = |Hallg1» < Ma|f 4> and then the opera-
tor TZ(Z) is bounded satisfying

742 ~
175 f||p,¢1 P <

T _ -
7"l F)elpe®) I llpe

2

If we define the formal inner product of Tl(z)f and g as follows:

o0 00 (11 o B
(18r.0)= [ ([ et s ey
y

0 (max{x, y})**«

then we can rewrite Corollary 2 (for ; = ) as follows.

Corollary 4 Ifp>1, }9 +-=1,8>-1, u=A-0>-«, then the following conditions are

1
q
equivalent:

(i) There exists a constant My, such that, for any f(x) >0, f € L, ,(R,), [fll5e >0, we

have the following inequality:

” T2(2)f||p,¢1-1ﬂ <My ”f”lw‘ (42)
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(ii) There exists a constant My, such that, for any f(x), g(y) > 0, f € L,,(R,),
g€ Lyg(Ry), Wfllpgs lIgllge > 0, we have the following inequality:

(T71.8) < Maf gl - (43)
We still have || Téz)ll =ki(pn) < M,.
Remark 5 Theorem 4 and Corollary 4 are equivalent.

5 Conclusions

In this paper, by means of real analysis and weight functions a few equivalent conditions
of two kinds of Hardy-type integral inequalities with the non-homogeneous kernel and
parameters are obtained by Theorem 1, 2. The constant factors related to the gamma
function are proved to be the best possible. We also consider the operator expressions in
Theorem 3, 4. The dependent cases of homogeneous kernel are assumed by Corollary 1-
4. The method of weight functions is very important, it is the key to help us proving the
main inequalities with the best possible constant factor. The lemmas provide an extensive
account of this type of inequalities.
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