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Abstract
In this paper, we study the continuity properties of wavelet transforms in the
Gelfand-Shilov spaces with the use of a vanishing moment condition. Moreover, we
also compute the Fourier transforms and the wavelet transforms of concrete
functions in the Gelfand-Shilov spaces.
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1 Introduction
In recent years, the wavelet transform has been shown to be a successful tool in signal pro-
cessing applications such as data compression and fast computations. The wavelet trans-
form of f ∈ L(R) with respect to the analyzed wavelet ψ ∈ L(R) satisfying the admissible
condition Cψ :=

∫
R |ψ̂(ξ )|/|ξ |dξ < ∞ is defined by

Wψ f (a, b) =


√
Cψ

∫

R
f (x)ψa,b(x) dx,

where

ψa,b(x) =
√
a
ψ

(
x – b

a

)

(a > , b ∈ R)

(see [, ] for example). The inverse wavelet transform of F ∈ L(R+ × R) with respect to
the analyzed wavelet ψ ∈ L(R) is defined by

MψF(x) =


√
Cψ

∫

R+

∫

R
F(a, b)ψa,b(x)

db da
a (x ∈ R).

For the time-frequency analysis, we are concerned with better localization in both time
and frequency spaces from a point of view of the uncertainty principle. For the well-
balanced localization, it would be suitable to consider the Schwartz space S regarded as
the space of functions which have arbitrary polynomial decay and whose Fourier trans-
forms also have arbitrary polynomial decay (see []). For instance, the typical Mexican hat
wavelet belongs to spaces of more rapidly decreasing and more regular functions in S . In
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this article we focus on Gelfand-Shilov spaces of functions which have sub-exponential de-
cay and whose Fourier transforms also have sub-exponential decay. For positive constants
μ, ν and h such that μ + ν ≥ , we define the Banach Gelfand-Shilov space

Sμ

ν,h(R) =
{

f ∈ S ;
∥
∥xα∂β

x f (x)
∥
∥

L∞(R) ≤ Chα+βα!νβ !μ for all α,β ∈ N
}

with the norm

‖f ‖Sμ
ν,h(R) = sup

α,β∈N

‖xα∂
β
x f (x)‖L∞(R)

hα+βα!νβ !μ
,

and the (non-Banach) Gelfand-Shilov space Sμ
ν (R)

Sμ
ν (R) = ind lim

h>
Sμ

ν,h(R)

with the inductive limit topology. The Gelfand-Shilov spaces were originally introduced in
[] and []. As well explained in [] and [], the Gelfand-Shilov spaces are better adapted
to the study of the problems of partial differential equations for which the solutions sub-
exponentially decay at infinity.

Remark . Restricting functions with Fourier transforms supported in the right half-
plane, we may also define the Banach progressive Gelfand-Shilov space

Sμ,+
ν,h (R) =

{
f ∈ Sμ

ν,h(R); supp f̂ ⊂ [,∞)
}

,

and the (non-Banach) progressive Gelfand-Shilov space

Sμ,+
ν (R) =

{
f ∈ Sμ

ν (R); supp f̂ ⊂ [,∞)
}

.

Such spaces can be considered in dealing with analytic signals as the Hardy space H(R)
(see []). If the analyzed wavelet ψ belongs to the progressive Gelfand-Shilov space, ψ̂

smoothly tends to zero and also has vanishing moments. For example, the Bessel wavelet
ψ(x) defined by ψ̂(ξ ) = e–ξ–ξ– for ξ >  and ψ̂(ξ ) =  for ξ ≤  belongs to S,+

 (R). Actually,
we know that ψ(x) = 

π
√

–ix K(
√

 – ix), where K is the first modified Bessel function of
the second kind (see []).

For the discrete wavelet case requiring strong additional conditions, the Meyer wavelets
or the Gevrey wavelets constructed as in [] belong to the Gelfand-Shilov spaces. As for
the continuous wavelet transform requiring only the admissible condition, there are many
possibilities to choose the analyzed wavelet. Boundedness results in a generalized Sobolev
space, Besov space and Lizorkin-Triebel space are given in []. As for ψ ∈ Sμ

ν (R) and ψ ∈
Sμ,+

ν (R), [] and [] show the continuity properties of wavelet transforms by preparing
spaces of functions in a and b, respectively. In this paper, we shall pay careful attention
also to the parameter h as the radius of convergence in the analytic class and attempt to
find a further detailed estimate with h. So, our purpose is to show the continuity properties
in (strong) topologies of Banach Gelfand-Shilov spaces with the use of a vanishing moment
condition and to give concrete examples which can indicate the optimality in Section .
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2 Results
To state our results, we also introduce the following lemma.

Lemma . There exist C >  and h >  such that

∥
∥eh|x|/ν

f
∥
∥

L∞(R) +
∥
∥eh|ξ |/μ

f̂
∥
∥

L∞(R) ≤ C

if and only if f ∈ Sμ

ν,h(R).

For the proof refer to [, ], etc. Taking Lemma . into account, we denote another
Banach Gelfand-Shilov space combining with the infinite vanishing moment condition
|f̂ (ξ )| ≤ Ce–h|ξ |–/δ ,

Sμ,δ
ν,h (R) =

{
f ∈ S ;

∥
∥eh|x|/ν

f
∥
∥

L∞(R) +
∥
∥eh max{|ξ |/μ ,|ξ |–/δ} f̂

∥
∥

L∞(R) < ∞}
.

We remark that Sμ

ν,h(R) corresponds to Sμ,δ
ν,h (R) with δ = ∞, i.e.,

Sμ,∞
ν,h (R) =

{
f ∈ S ;

∥
∥eh|x|/ν

f
∥
∥

L∞(R) +
∥
∥eh|ξ |/μ

f̂
∥
∥

L∞(R) < ∞}
.

Remark . In particular, when f̂ (ξ ) is just equal to e–h|ξ |–/δ , it belongs to the Gevrey
space of order δ + . So, ν can be taken as ν ≥ δ + .

Remark . We easily obtain eh max{|ξ |/μ ,|ξ |–/δ} ≤ eh(|ξ |/μ+|ξ |–/δ ). On the other hand, the
weight can be estimated from below as

eh max{|ξ |/μ ,|ξ |–/δ} ≥ eh(|ξ |/μ+|ξ |–/δ–) ≥ ceh(|ξ |/μ+|ξ |–/δ ). ()

Therefore, we find that ‖eh(|ξ |/μ+|ξ |–/δ ) f̂ ‖L∞(R) ∼ ‖eh max{|ξ |/μ ,|ξ |–/δ} f̂ ‖L∞(R).

Then we prove the following.

Theorem . Let μ, ν , h, h′ and δ be positive constants such that μ + ν ≥ , h′ < h. Define
that d(λ) = λ(λ – )–+/λ. Then, for the wavelet transform Wψ with the wavelet ψ ∈ Sμ,δ

ν,h (R),
the following estimates hold:

for f ∈ S∞,∞
ν,h (R)

(i)
∥
∥
∥
∥

eh|b/(a+)|/ν

a/ + 
Wψ f

∥
∥
∥
∥

L∞(R+×R)
≤ C

∥
∥eh|x|/ν

f
∥
∥

L∞(R) if ν > ,

(i)′
∥
∥eh′–/ν |b/(a+)|/ν

Wψ f
∥
∥

L∞(R+×R) ≤ C
∥
∥eh|x|/ν

f
∥
∥

L∞(R) if  < ν ≤ ,

for f ∈ Sμ,∞
∞,h (R)

(ii)
∥
∥
∥
∥

a/ehd(δ/μ+)/μa–/(μ+δ)

a + 
Wψ f

∥
∥
∥
∥

L∞(R+×R)
≤ C

∥
∥eh|ξ |/μ

f̂
∥
∥

L∞(R) if μ > ,

(ii)′
∥
∥a–/eh′–/μd(δ/μ+)/μa–/(μ+δ)

Wψ f
∥
∥

L∞(R+×R) ≤ C
∥
∥eh|ξ |/μ

f̂
∥
∥

L∞(R)

if  < μ ≤ ,
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for f ∈ Sμ,δ
∞,h(R)

(iii)
∥
∥
∥
∥

a/ehd(δ/μ+)/μ(max{a,a–})/(μ+δ)

a + 
Wψ f

∥
∥
∥
∥

L∞(R+×R)

≤ C
∥
∥eh max{|ξ |/μ,|ξ |–/δ} f̂

∥
∥

L∞(R) if μ > ,

(iii)′
∥
∥a–/eh′–/μd(δ/μ+)/μ(max{a,a–})/(μ+δ)

Wψ f
∥
∥

L∞(R+×R)

≤ C
∥
∥eh max{|ξ |/μ ,|ξ |–/δ} f̂

∥
∥

L∞(R) if  < μ ≤ .

Remark . We find that d(λ) is strictly greater than  for λ >  since d′(λ) = –(λ –
)–+/λλ– log(λ – ), and d(λ) has the maximum at the point λ =  and limλ→+ d(λ) =
limλ→∞ d(λ) = .

Remark . This work is motivated by [] where f and ψ are allowed to take each dif-
ferent value of parameters ν , μ and have infinite vanishing moments, more precisely
vanishing moments of arbitrary polynomial order. Therefore, we have restricted our-
selves to the case of f and ψ under the common parameters ν , μ, and have derived
the above estimates with δ (concerning vanishing moments of sub-exponential order).
For instance, ‖eh(|b|/(ν+μ–)+(max{a,a–})/(ν+μ–))Wψ f ‖L∞ is estimated by [] with ρ = s = μ,
ρ = ν , τ = τ = ν + μ –  and t = ν + μ –  (in the case of f and ψ under the com-
mon parameters ν and μ). If one considers small a >  and takes ν = δ +  (see Re-
mark .), a similar estimate as (ii) holds since (max{a, a–})/(ν+μ–)(max{a, a–})/(μ+δ) ∼
a–/(μ+δ). Thanks to the additional condition of sub-exponential order, (i) for small
a >  can become better since μ + ν ≥  and |b|/(ν+μ–) = |b|/(ν+(μ+ν–)) ≤ |b|/ν ∼ |b/
(a + )|/ν .

Considering the study of the continuity properties in [, ] and [], we introduce spaces
of functions in a and b which correspond to the Gelfand-Shilov spaces of functions in x
and ξ since a ∼ /|ξ | and b ∼ x after wavelet transforms. Therefore, we shall define the
following weighted L∞(R+ × R) space which is a subspace of L(R+ × R) as far as h is
positive:

V μ,δ
ν,h (R+ × R) =

{
F ∈ L(R+ × R);

∥
∥eh max{|b/(a+)|/ν ,a/μ ,a–/δ}F

∥
∥

L∞(R+×R) < ∞}
.

We remark that if μ = ∞,

V ∞,δ
ν,h (R+ × R) =

{
F ∈ L(R+ × R);

∥
∥eh max{|b/(a+)|/ν ,a–/δ}F

∥
∥

L∞(R+×R) < ∞}
.

By (i) and (ii), we have

∥
∥
∥
∥

{
eh|b/(a+)|/ν

a/ + 
+

a/ehd(δ/μ+)/μa–/(μ+δ)

a + 

}

Wψ f
∥
∥
∥
∥

L∞(R+×R)

≤ C
(∥∥eh|x|/ν

f
∥
∥

L∞(R) +
∥
∥eh|ξ |/μ

f̂
∥
∥

L∞(R)

)
.
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The weight function can be estimated from below as

eh|b/(a+)|/ν

a/ + 
+

a/ehd(δ/μ+)/μa–/(μ+δ)

a + 
≥ ceh max{|b/(a+)|/ν ,a–/(μ+δ)},

here we used Remark . also to eliminate the term a/. Therefore, by Theorem ., we
can also get the following continuity properties.

Corollary . Let μ, ν , h and δ be constants such that μ > , ν > , h >  and δ > . Then,
for the wavelet ψ ∈ Sμ,δ

ν,h (R), the wavelet transform Sμ,∞
ν,h (R) � f → Wψ f ∈ V ∞,μ+δ

ν,h (R+ × R)
is continuous. In particular, when f also satisfies the infinite vanishing moment condition,
the wavelet transform Sμ,δ

∞,h(R) � f → Wψ f ∈ V μ+δ,μ+δ

∞,h (R+ × R) is continuous.

In Section  we shall discuss the optimality of our boundedness results in Gelfand-Shilov
spaces.

3 Proof of Theorem 2.4
At first, we introduce the following lemma.

Lemma . It holds that for α,β ≥ 

α/θ + β/θ ≥
⎧
⎨

⎩

–/θ (α + β)/θ if  < θ ≤ ,

(α + β)/θ + ( – /θ ) min{α/θ ,β/θ } if θ > .

Remark . The latter inequality is given in [] and [], which also shows multiplication
algebras for the Gevrey-modulation spaces.

Proof of Lemma . We shall suppose that α ≥ β >  since the proof is trivial when α = 
or β = . Putting γ := α/β ( ≥ ), we may show

γ /θ +  ≥
⎧
⎨

⎩

–/θ (γ + )/θ if  < θ ≤ ,

(γ + )/θ +  – /θ if θ > .

This follows from

min
γ≥

{
γ /θ + 

(γ + )/θ

}

= –/θ if  < θ ≤ ,

and

min
γ≥

{
γ /θ +  – (γ + )/θ} =  – /θ if θ > . �

In the proofs of theorems, ‖ · ‖ denotes the L∞ norm on R or R+ × R. We shall consider
the following cases.

• Case of ν >  and a ≥ ) From the definition of the wavelet transform we get

∣
∣eh|b/ max{,a}|/ν

Wψ f (a, b)
∣
∣ ≤ C‖eh|x|/ν f ‖

a/

∫

R
e–h{|x|/ν+|(x–b)/a|/ν–|b/ max{,a}|/ν } dx.
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Lemma . with α = |b/a – x/a|, β = |x/a| gives

|x|/ν +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

–
∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

=
∣
∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣

/ν

+
∣
∣
∣
∣

x
a

∣
∣
∣
∣

/ν

–
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν

+ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

≥
(∣

∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣ +

∣
∣
∣
∣

x
a

∣
∣
∣
∣

)/ν

+
(
 – /ν)min

{∣
∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣

/ν

,
∣
∣
∣
∣

x
a

∣
∣
∣
∣

/ν}

–
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν

+ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

≥ (
 – /ν)min

{∣
∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣

/ν

,
∣
∣
∣
∣

x
a

∣
∣
∣
∣

/ν}

+ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

,

here we used (|b/a – x/a| + |x/a|)/ν ≥ |b/a|/ν . Therefore, putting D := {x ∈ R; |b/a – x/a| <
|x/a|}, we have

∣
∣eh|b/ max{,a}|/ν

Wψ f (a, b)
∣
∣ ≤ C‖eh|x|/ν f ‖

a/

∫

D
e–h(–/ν )|b/a–x/a|/ν

dx

+
C‖eh|x|/ν f ‖

a/

∫

R\D
e–h(–/ν )|x/a|/ν

dx

≤ Ca/∥∥eh|x|/ν
f
∥
∥

∫

R
e–h(–/ν )|x|/ν

dx

≤ Ca/∥∥eh|x|/ν
f
∥
∥.

• Case of ν >  and  < a < ) Lemma . with α = |b – x|, β = |x| gives

|x|/ν +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

–
∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

= |b – x|/ν + |x|/ν – |b|/ν + |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

≥ (|b – x| + |x|)/ν +
(
 – /ν)min

{|b – x|/ν , |x|/ν} – |b|/ν + |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

≥ (
 – /ν)min

{|b – x|/ν , |x|/ν} + |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

,

here we used (|b – x| + |x|)/ν ≥ |b|/ν . Therefore, putting

I :=
{

x ∈ R; |b – x| < 
}

,

we find that

∫

I
e–h|b–x|/ν {|/a|/ν–} dx =

∫ b+

b–
e–h|(b–x)/a|/ν {–a/ν } dx

= a
∫ /a

–/a
e–h|x|/ν {–a/ν } dx ≤ Mh,νa
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for  < a <  and have

∣
∣eh|b/ max{,a}|/ν

Wψ f (a, b)
∣
∣

≤ C‖eh|x|/ν f ‖
a/

∫

I
e–h|b–x|/ν {|/a|/ν–} dx

+
C‖eh|x|/ν f ‖

a/

∫

R\I
e–h{(–/ν ) min{|b–x|/ν ,|x|/ν }+|/a|/ν–} dx

≤ Mh,νa/∥∥eh|x|/ν
f
∥
∥

+ M′
h,ν

∥
∥eh|x|/ν

f
∥
∥

∫

R
e–h(–/ν ) min{|b–x|/ν ,|x|/ν } dx

≤ C
∥
∥eh|x|/ν

f
∥
∥,

here we used 
a/ e–h{|/a|/ν–} ≤ M′

h,ν for  < a < .
Thus, since max{, a} ≤ a +  and max{, a/} ∼ a/ + , it follows that

∥
∥
∥
∥

eh|b/(a+)|/ν

a/ + 
Wψ f

∥
∥
∥
∥ ≤ C

∥
∥eh|x|/ν

f
∥
∥.

• Case of  < ν ≤  and a ≥ ) For h > h′ > , we get

∣
∣eh′–/ν |b/ max{,a}|/ν

Wψ f (a, b)
∣
∣

≤ C‖eh|x|/ν f ‖
a/

×
∫ ∞

–∞
e–(h–h′){|x|/ν+|(x–b)/a|/ν }–h′{|x|/ν+|(x–b)/a|/ν––/ν |b/ max{,a}|/ν } dx.

Lemma . with α = |b/a – x/a|, β = |x/a| gives

|x|/ν +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

– –/ν
∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

=
∣
∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣

/ν

+
∣
∣
∣
∣

x
a

∣
∣
∣
∣

/ν

– –/ν
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν

+ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

≥ –/ν
(∣

∣
∣
∣
b
a

–
x
a

∣
∣
∣
∣ +

∣
∣
∣
∣

x
a

∣
∣
∣
∣

)/ν

– –/ν
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν

+ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

≥ |x|/ν
{

 –
∣
∣
∣
∣


a

∣
∣
∣
∣

/ν}

.

Therefore, we have

∣
∣eh′–/ν |b/ max{,a}|/ν

Wψ f (a, b)
∣
∣ ≤ C‖eh|x|/ν f ‖

a/

∫ ∞

–∞
e–(h–h′){|x|/ν+|(x–b)/a|/ν } dx

≤ C‖eh|x|/ν f ‖
a/

∫ ∞

–∞
e–(h–h′)|x|/ν

dx

≤ C
∥
∥eh|x|/ν

f
∥
∥.
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• Case of  < ν ≤  and  < a < ) Lemma . with α = |b – x|, β = |x| gives

|x|/ν +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

– –/ν
∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

= |b – x|/ν + |x|/ν – –/ν |b|/ν + |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

≥ –/ν(|b – x| + |x|)/ν – –/ν |b|/ν + |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

≥ |b – x|/ν
{∣
∣
∣
∣


a

∣
∣
∣
∣

/ν

– 
}

.

Therefore, we have

∣
∣eh′–/ν |b/ max{,a}|/ν

Wψ f (a, b)
∣
∣ ≤ C‖eh|x|/ν f ‖

a/

∫ ∞

–∞
e–(h–h′){|x|/ν+|(x–b)/a|/ν } dx

≤ C‖eh|x|/ν f ‖
a/

∫ ∞

–∞
e–(h–h′)|(x–b)/a|/ν

dx

≤ C
∥
∥eh|x|/ν

f
∥
∥.

Thus, since max{, a} ≤ a + , it follows that

∥
∥eh′–/ν |b/(a+)|/ν

Wψ f
∥
∥ ≤ C

∥
∥eh|x|/ν

f
∥
∥.

• Case of μ > ) Let μ′ := μ/(μ + δ). By Parseval’s theorem, the wavelet transform can be
rewritten as

Wψ f (a, b) =
√ a

Cψ

∫

R
f̂ (ξ )e–ibξ ψ̂(aξ ) dξ . ()

Since

eh max{|aξ |/μ ,|aξ |–/δ} ≥ eh(|aξ |/μ+|aξ |–/δ–) ≥ ceh(|aξ |/μ+|aξ |–/δ )

similarly as (), we see that

∣
∣e–ibξ ψ̂(aξ )

∣
∣ ≤ Ce–h(|aξ |/μ+|aξ |–/δ ).

Hence, we get

∣
∣eh{d(δ/μ+)(+/a)μ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫ ∞

–∞
e–h{|ξ |/μ+|aξ |/μ+|aξ |–/δ–{d(δ/μ+)(+/a)μ

′ }/μ} dξ .

Lemma . with α = |ξ |, β = |aξ | + |aξ |–μ/δ gives

|ξ |/μ + |aξ |/μ +


|aξ |/δ –
{

d(δ/μ + )
(

 +

a

)μ′}/μ

≥ |ξ |/μ +
(

|aξ | +


|aξ |μ/δ

)/μ

–
{

d(δ/μ + )
(

 +

a

)μ′}/μ
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≥
(

|ξ | + |aξ | +


|aξ |μ/δ

)/μ

+
(
 – /μ)

min

{

|ξ |/μ,
(

|aξ | +


|aξ |μ/δ

)/μ}

–
{

d(δ/μ + )
(

 +

a

)μ′}/μ

≥ (
 – /μ)

min

{

|ξ |/μ,
(

|aξ | +


|aξ |μ/δ

)/μ}

,

here we used

min
ξ∈R

(

|ξ | + |aξ | +


|aξ |μ/δ

)

= d
(

δ

μ
+ 

)(

 +

a

)μ′

.

Therefore, putting

D :=
{
ξ ∈ R; |ξ |/μ <

(|aξ | + |aξ |–μ/δ)/μ}
,

we have

∣
∣eh{d(δ/μ+)(+/a)μ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

D
e–h(–/μ)|ξ |/μ

dξ

+ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

R\D
e–h(–/μ)(|aξ |+|aξ |–μ/δ)/μ

dξ

≤
⎧
⎨

⎩

Ca/‖eh|ξ |/μ f̂ ‖ ∫
R e–h(–/μ)|ξ |/μ dξ if a ≥ ,

C‖eh|ξ |/μ
f̂ ‖

a/

∫
R e–h(–/μ)|ξ |/μ dξ if  < a < 

≤ C max
{

a/, a–/}∥∥eh|ξ |/μ
f̂
∥
∥.

Thus, since

eh{d(δ/μ+)(+/a)μ
′ }/μ ≥ eh{d(δ/μ+)a–μ′ }/μ

= ehd(δ/μ+)/μa–/(μ+δ)

and max{a/, a–/} = a–/ max{a, } ∼ a–/( + a), it follows that

∥
∥
∥
∥

a/ehd(δ/μ+)/μa–/(μ+δ)

 + a
Wψ f

∥
∥
∥
∥ ≤ C

∥
∥eh|ξ |/μ

f̂
∥
∥.

• Case of μ >  with the condition |f̂ (ξ )| ≤ Ce–h|ξ |–/δ ) Let δ′ := δ/(μ + δ). By () we get

∣
∣eh{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥

×
∫ ∞

–∞
e–h{|ξ |/μ+|ξ |–/δ+|aξ |/μ+|aξ |–/δ–{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
dξ .
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Lemma . with α = |ξ | + |ξ |–μ/δ , β = |aξ | + |aξ |–μ/δ gives

|ξ |/μ +


|ξ |/δ + |aξ |/μ +


|aξ |/δ –
{

d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′}/μ

≥
(

|ξ | +


|ξ |μ/δ

)/μ

+
(

|aξ | +


|aξ |μ/δ

)/μ

–
{

d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′}/μ

≥
(

|ξ | +


|ξ |μ/δ + |aξ | +


|aξ |μ/δ

)/μ

+
(
 – /μ)

min

{(

|ξ | +


|ξ |μ/δ

)/μ

,
(

|aξ | +


|aξ |μ/δ

)/μ}

–
{

d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′}/μ

≥ (
 – /μ)

min

{(

|ξ | +


|ξ |μ/δ

)/μ

,
(

|aξ | +


|aξ |μ/δ

)/μ}

,

here we used

min
ξ∈R

(

|ξ | +


|ξ |μ/δ + |aξ | +


|aξ |μ/δ

)

= d
(

δ

μ
+ 

)

( + a)μ
′
(

 +


aμ/δ

)δ′

.

Therefore, putting

D :=
{
ξ ∈ R;

(|ξ | + |ξ |–μ/δ)/μ <
(|aξ | + |aξ |–μ/δ)/μ}

,

we have

∣
∣eh{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥

∫

D
e–h(–/μ)(|ξ |+|ξ |–μ/δ )/μ

dξ

+ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥

∫

R\D
e–h(–/μ)(|aξ |+|aξ |–μ/δ )/μ

dξ

≤
⎧
⎨

⎩

Ca/‖eh(|ξ |/μ+|ξ |–/δ ) f̂ ‖ ∫
R e–h(–/ν )|ξ |/μ dξ if a ≥ ,

C‖eh(|ξ |/μ+|ξ |–/δ ) f̂ ‖
a/

∫
R e–h(–/ν )|ξ |/μ dξ if  < a < 

≤ C max
{

a/, a–/}∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥.

Thus, since

( + a)μ
′
(

 +


aμ/δ

)δ′

≥
(

max

{

a,

a

})μ′

, ()

and

eh{d(δ/μ+)(+a)μ
′
(+/aμ/δ )δ

′ }/μ ≥ ehd(δ/μ+)/μ(max{a,a–})/(μ+δ)
,
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it follows that
∥
∥
∥
∥

a/ehd(δ/μ+)/μ(max{a,a–})/(μ+δ)

 + a
Wψ f ‖ ≤ C‖eh(|ξ |/μ+|ξ |–/δ ) f̂

∥
∥
∥
∥.

• Case of  < μ ≤ ) Let k = max{/μ – , } – /δ. For h > h′ > , we get

∣
∣eh′–/μ{d(δ/μ+)(+/a)μ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

×
∫ ∞

–∞
e–(h–h′){|ξ |/μ+|aξ |/μ+|aξ |–/δ}

× e–h′{|ξ |/μ+|aξ |/μ+|aξ |–/δ––/μ{d(δ/μ+)(+/a)μ
′ }/μ} dξ .

We note that if μ �= , i.e.,  < μ < , there exists L >  such that

(

|aξ | +


|aξ |μ/δ

)/μ

=


|aξ |/δ

(|aξ |+μ/δ + 
)/μ

≤
⎧
⎨

⎩


|aξ |/δ ((|aξ |+μ/δ)/μ + /μ + L|aξ |/μ–) if |aξ | ≥ ,


|aξ |/δ ((|aξ |+μ/δ)/μ + /μ + L|aξ |) if  < |aξ | < 

≤ 
|aξ |/δ

((|aξ |+μ/δ)/μ + /μ + L|aξ |max{/μ–,})

= |aξ |/μ +


|aξ |/δ + L|aξ |k . ()

If μ = , () also holds with L = . Lemma . with α = |ξ |, β = |aξ | + /|aξ |μ/δ gives

|ξ |/μ + |aξ |/μ +


|aξ |/δ – –/μ
{

d(δ/μ + )
(

 +

a

)μ′}/μ

≥ |ξ |/μ +
(

|aξ | +


|aξ |μ/δ

)/μ

– L|aξ |k – –/μ
{

d(δ/μ + )
(

 +

a

)μ′}/μ

≥ –/μ
(

|ξ | + |aξ | +


|aξ |μ/δ

)/μ

– L|aξ |k – –/μ
{

d(δ/μ + )
(

 +

a

)μ′}/μ

= –L|aξ |k ,

here we used

min
ξ∈R

(

|ξ | + |aξ | +


|aξ |μ/δ

)

= d(δ/μ + )
(

 +

a

)μ′

.

There exist R ≥  > r >  independent of a >  such that

Lh′|aξ |k ≤ (
h – h′)(|aξ |/μ + |aξ |–/δ) for |aξ | ≥ R or |aξ | < r,

since –/δ < k = max{/μ – , } – /δ < /μ. Therefore, putting

I :=
{
ξ ∈ R; r/a ≤ |ξ | < R/a

}
,
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we have

∣
∣eh′–/μ{d(δ/μ+)(+/a)μ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

R
e–(h–h′)(|ξ |/μ+|aξ |/μ+|aξ |–/δ )+Lh′|aξ |k dξ

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

R\I
e–(h–h′)|ξ |/μ

dξ

+ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

I
e–(h–h′)(|ξ |/μ+|aξ |/μ+|aξ |–/δ )+Lh′|aξ |k dξ

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

R
e–(h–h′)|ξ |/μ

dξ

+ Ca/∥∥eh|ξ |/μ
f̂
∥
∥

∫

R
e–(h–h′)|ξ |/μ+Lh′ max{Rk ,rk} dξ

≤ Ca/∥∥eh|ξ |/μ
f̂
∥
∥.

Thus, it follows that

∥
∥a–/eh′–/μd(δ/μ+)/μa–/(μ+δ)

Wψ f
∥
∥ ≤ ∥

∥a–/eh′–/μ{d(δ/μ+)(+/a)μ
′ }/μ

Wψ f
∥
∥

≤ C
∥
∥eh|ξ |/μ

f̂
∥
∥.

• Case of  < μ ≤  with the condition |f̂ (ξ )| ≤ Ce–h|ξ |–/δ ) For h > h′ > , we get

∣
∣eh′–/μ{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥

×
∫ ∞

–∞
e–(h–h′){|ξ |/μ+|ξ |–/δ+|aξ |/μ+|aξ |–/δ}

× e–h′{|ξ |/μ+|ξ |–/δ+|aξ |/μ+|aξ |–/δ––/μ{d(δ/μ+)(+a)μ
′
(+/aμ/δ )δ

′ }/μ} dξ .

By () Lemma . with α = |ξ | + /|ξ |μ/δ , β = |aξ | + /|aξ |μ/δ gives

|ξ |/μ + |ξ |–/δ + |aξ |/μ +


|aξ |/δ – –/μ
{

d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′}/μ

≥
(

|ξ | +


|ξ |μ/δ

)/μ

+
(

|aξ | +


|aξ |μ/δ

)/μ

– L
(|ξ |k + |aξ |k)

– –/μ
{

d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′}/μ

≥ –/μ
(

|ξ | +


|ξ |μ/δ + |aξ | +


|aξ |μ/δ

)/μ

– L
(|ξ |k + |aξ |k)

– –/μ
{

d(δ/μ + )( + a)μ′
(

 +


aμ/δ

)δ′}/μ

= –L
(|ξ |k + |aξ |k),
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here we used

min
ξ∈R

(

|ξ | +


|ξ |μ/δ + |aξ | +


|aξ |μ/δ

)

= d(δ/μ + )( + a)μ
′
(

 +


aμ/δ

)δ′

.

There exist R, R̃ ≥  > r, r̃ >  independent of a >  such that

Lh′|aξ |k ≤ (
h – h′)(|aξ |/μ + |aξ |–/δ) for |aξ | > R or |aξ | < r,

and for ε >  satisfying h > h′ + ε > h′ >  (e.g., ε = (h – h′)/)

Lh′|ξ |k ≤ (
h – h′ – ε

)(|ξ |/μ + |ξ |–/δ) for |ξ | > R̃ or |ξ | < r̃,

since –/δ < k = max{/μ – , } – /δ < /μ. Therefore, putting

I :=
{
ξ ∈ R; r/a ≤ |ξ | < R/a

}
and J :=

{
ξ ∈ R; r̃ ≤ |ξ | < R̃

}
,

we have
∣
∣eh′–/μ{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
Wψ f (a, b)

∣
∣

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥

×
∫

R
e–(h–h′)(|ξ |/μ+|ξ |–/δ+|aξ |/μ+|aξ |–/δ )+Lh′(|ξ |k+|aξ |k ) dξ

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥
{∫

R\(I∪J)
e–ε(|ξ |/μ+|ξ |–/δ ) dξ

+
∫

I\J
e–ε(|ξ |/μ+|ξ |–/δ )–(h–h′)(|aξ |/μ+|aξ |–/δ )+Lh′|aξ |k dξ

+
∫

J\I
e–(h–h′)(|ξ |/μ+|ξ |–/δ )+Lh′|ξ |k dξ

+
∫

I∩J
e–(h–h′)(|ξ |/μ+|ξ |–/δ+|aξ |/μ+|aξ |–/δ )+Lh′(|ξ |k+|aξ |k ) dξ

}

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥
{∫

R
e–ε(|ξ |/μ+|ξ |–/δ ) dξ

+
∫

R
e–ε(|ξ |/μ+|ξ |–/δ )+Lh′ max{Rk ,rk} dξ

+
∫

R
e–(h–h′)(|ξ |/μ+|ξ |–/δ )+Lh′ max{R̃k ,r̃k} dξ

+
∫

R
e–(h–h′)(|ξ |/μ+|ξ |–/δ )+Lh′ max{Rk ,R̃k ,rk ,r̃k} dξ

}

≤ Ca/∥∥eh(|ξ |/μ+|ξ |–/δ ) f̂
∥
∥.

Thus, by () it follows that for h > h′ > ,
∥
∥a–/eh–/μd(δ/μ+)/μ(max{a,a–})/(μ+δ)

Wψ f
∥
∥

≤ ∥
∥a–/eh′–/μ{d(δ/μ+)(+a)μ

′
(+/aμ/δ )δ

′ }/μ
Wψ f

∥
∥ ≤ C

∥
∥eh(|ξ |/μ+|ξ |–/δ ) f̂

∥
∥

.

This concludes the proof of Theorem ..
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4 Concrete examples
In this section, we introduce concrete examples according to whether the order of vanish-
ing moments is finite or infinite.

• Case of finite vanishing moments) Let us consider the function and the wavelet

f (x) = sech(hx), ψ(x) =
d

dx
sech(hx).

In particular, when h =
√

π
 , it holds that f̂ (ξ ) = f (ξ ), and we also see that ψ̂(ξ ) = iξ f (ξ )

and ψ ∈ S,∞
,h′ (R) with  < h′ < h. By the change of variables t = ehax, we have the wavelet

transform

Wψ f (a, b) =
√ a

Cψ

∫

R
ψ(x)f (ax + b) dx

= –h
√ a

Cψ

∫

R

ehx – e–hx

(ehx + e–hx) · 
eh(ax+b) + e–h(ax+b) dx

= –


ehb
√

Cψa

∫ ∞



t/a – 
(t/a + ) · dt

t
a–
a (t + e–hb)

,

where

Cψ =
∫

R

|ψ̂(ξ )|
|ξ | dξ (=  log ).

Using the Hölder inequality A + B ≥ p
(p–)–/p A/pB–/p with

 <


 + h′
h

< p± :=


 ± h′
h max{,a}

<


 – h′
h

< ∞ for sgn b = ± respectively,

we obtain the estimate (from above)

∣
∣Wψ f (a, b)

∣
∣

≤ 
ehb

√
Cψa

∫ ∞




t/a + 

· dt
t a–

a · p±
(p±–)–/p± t/p±e–hb(–/p±)

=
(p± – )–/p±ehb(–/p±)

p±
√

Cψa

∫ ∞




t/a + 

· dt

t
a–
a + 

p±

≤ Ch′ehb(–/p±)
√

a

∫ ∞




t/a + 

· dt

t– 
a ± h′

h max{,a}

≤ Ch′ehb(–/p±)
√

a

{∫ 




 + 

· dt

t– 
a ± h

h max{,a}
+

∫ ∞




t/a + 

· dt

t– 
a ± h′

h max{,a}

}

=
Ch′ehb(–/p±)

√
a

{



a ± h′

h max{,a}
+




a ∓ h′
h max{,a}

}

=
Ch′ehb(–/p±)

√
a

a
 – ( h′a

h max{,a} )

≤ Ch′a/e–h′|b|/ max{,a}, ()
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here we used the fact that

 –


a
± h′

h max{, a} < ,  +


a
± h′

h max{, a} > .

Then (i)′ and (ii)′ in Theorem . become

(i)′
∥
∥eh′|b/(a+)|Wψ f

∥
∥

L∞(R+×R) ≤ C
∥
∥eh|x|f

∥
∥

L∞(R),

(ii)′
∥
∥a–/eh′

Wψ f
∥
∥

L∞(R+×R) ≤ C
∥
∥eh|ξ | f̂

∥
∥

L∞(R).

From estimate () it is possible that this example is the near critical case of (i)′ and (ii)′

since |b/(a + )| ∼ |b|/ max{, a}.

Remark . If we consider the typical example of the Mexican hat wavelet

ψ(x) =


π /
√


(
 – x)e–x/, ψ̂(ξ ) =


√

π

π /
√


ξ e–ξ/,

we see that ψ ∈ S/,∞
/,h′ (R) with  < h′ < h = /. In particular, when f (x) = e–x/ ∈ S/,∞

/,h (R),
the wavelet transform is computed as

Wψ f (a, b) =

√

π /a/(a –  – b)
√

Cψ (a + )/
e–b/(a+).

Then (i)′ in Theorem . becomes

(i)′
∥
∥eh′–|b/(a+)| Wψ f

∥
∥

L∞(R+×R) ≤ C
∥
∥eh|x| f

∥
∥

L∞(R).

The exponent –b/(a + ) is not a critical case of (i)′ with  < h′ < h = 
 since h′–|b/(a +

)| ∼ b/(a + ). Therefore, we gave the new wavelet ψ(x) = d
dx sech(hx) ∈ S,∞

,h′ (R) with
 < h′ < h =

√
π
 .

• Case of infinite vanishing moments) Firstly we prove the following.

Proposition . The inverse Fourier transform of e–ξ–tξ– is given by

F–[e–ξ–tξ–](x) =
√


∞∑

n=

(–t)n

n! F

(
 – n


,




, –
x



)

, ()

where F(a, b, z) is the confluent hypergeometric function of the first kind.

Remark . The change of variables also yields

F–[e–ξ/–tξ–]
(x) =

√

π

∫ ∞


e–ξ/–tξ–

cos xξ dξ

=
√
π

∫ ∞


e–ξ–(t/

√
)ξ–

cos(
√

x)ξ dξ
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=
√

F–[e–ξ–(t/
√

)ξ–]
(
√

x)

=
∞∑

n=

(–
√

t)n

n! F

(
 – n


,




, –
x



)

.

Proof of Proposition . Let us put

I(t, x) := F–[e–ξ–tξ–]
(x) =

√

π

∫ ∞


e–ξ–tξ–

cos xξ dξ .

Differentiating I(t, x) in x, we have

∂xI(t, x) = –
√


π

∫ ∞


e–ξ–tξ–

ξ sin xξ dξ ,

∂
x I(t, x) = –

√

π

∫ ∞


e–ξ–tξ–

ξ  cos xξ dξ .

On the other hand, differentiating I in t, we also have

∂tI(t, x) = –
√


π

t
∫ ∞


e–ξ–tξ–

ξ– cos xξ dξ .

Moreover, the integration by parts yields

∂tI(t, x) = –
√


π

t–
∫ ∞



{
e–tξ–}′e–ξ

ξ cos xξ dξ

=
√


π

t–
∫ ∞


e–ξ–tξ–{(

 – ξ ) cos xξ – xξ sin xξ
}

dξ .

Thus, we see that I(t, x) satisfies the partial differential equation

∂tI(t, x) = t–
{




I(t, x) + ∂
x I(t, x) +

x

∂xI(t, x)

}

. ()

We may suppose that x ≥  since I(t, x) =
√


π

∫ ∞
 e–ξ–tξ–

cos xξ dξ is an even function
in x. Now we consider the point x = √–y (y ≤ ) and get for J(t, y) := I(t, √–y)

∂yJ(t, y) =
–√–y

(∂xI)(t, 
√

–y), ∂
y J(t, y) = –


y
(
∂

x I
)
(t, 

√
–y) –


y

∂yJ(t, y).

Therefore, by the change of variables x = √–y, it holds that

∂tJ(t, y) = t–
{




J(t, y) – y∂
y J(t, y) +

(

y –



)

∂yJ(t, y)
}

.

To solve this partial differential equation, we shall use the method of separation of vari-
ables. By putting J(t, y) =

∑∞
n= Ln(t)Kn(y), we obtain

t∂tLn(t)
Ln(t)

=
–y∂

y Kn(y) – ( 
 – y)∂yKn(y) + 

 Kn(y)
Kn(y)

=: λn.
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We immediately see that Ln(t) = tλn Ln(). It is known that

I(t, ) =
√


π

∫ ∞


e–ξ–tξ–

dξ

=
√


e–t
(

≡ √


{

 +
(–)

!
t +

(–)

!
t + · · ·

})

. ()

We note that

I(t, ) = J(t, ) =
∞∑

n=

Ln(t)Kn() =
∞∑

n=

Ln(t),

here we may take Kn() =  for all n ∈ N by choosing the suitable Ln(t). Hence we see that
λn = n

 and

Ln(t) = tnLn() =
√


(–)n

n!
tn.

Meanwhile, the eigenvalue problem

–y∂
y Kn(y) –

(



– y
)

∂yKn(y) +



Kn(y) =
n


Kn(y)

with Kn() =  has

Kn(y) = F

(
 – n


,




, y
)

.

Thus it follows that

J(t, y) =
∞∑

n=

Ln(t)Kn(y) =
∞∑

n=

√


(–)n

n!
tn

F

(
 – n


,




, y
)

,

which gives

I(t, x) =
√


∞∑

n=

tn (–)n

n! F

(
 – n


,




, –
x



)

. ()

We knew that I(t, x) is an even function in advance and supposed that x ≥ . The last
representation also implies that I(t, x) is an even function in x. So, () holds for all x ∈ R.

We have derived () by solving the partial differential equation. To avoid confusion, let
us denote the solution represented as in () by Ĩ(t, x). It remains to show the uniqueness of
Ĩ(t, x) = √



∑∞
n= tn (–)n

n! F( –n
 , 

 , – x

 ) and I(t, x) =
√


π

∫ ∞
 e–ξ–tξ–

cos xξ dξ except the
case of t = . Instead of I(t, x), we consider for (s, x) ∈ (,∞) × R

I(s, x)
(
= I(

√
s, x)

)
=

√

π

∫ ∞


e–ξ–sξ–

cos xξ dξ
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for the differentiation with respect to s. Then, by Stirling’s formula, we obtain

∣
∣∂m

s ∂ j
xI(s, x)

∣
∣ ≤

√

π

∫ ∞


e–ξ/ · e–sξ–

ξ–m · e–ξ/(ξ )j/ dξ

≤ C sup
η≥

e–sηηm · sup
μ≥

e–μ/μj/

≤ Ce–m
(

m
s

)m

· e–j/jj/

≤ Crm+j
s m!(j!)/ (≤ Crm+j

s m!j!
)
.

This implies that I(s, x) is analytic for (s, x) ∈ [s,∞) × R with arbitrarily fixed
s > . Therefore, we see that I(t, x) =

√

π

∫ ∞
 e–ξ–tξ–

cos xξ dξ is analytic for (t, x) ∈
(,∞) × R. �

Remark . Probably I(t, x) would be analytic also at t = . But I(s, x) (= I(
√

s, x)) loses the
analyticity at s = . Indeed, we find that I(

√
s, ) = √

 e–
√

s = √
 { + (–)

!
√

s + (–)

! s + · · · }.

The Taylor expansion around a point t = T >  gives

I(t, x)
(

=
√


π

∫ ∞


e–ξ–tξ–

cos xξ dξ

)

=
∑

n≥,k≥

an,k(t – T)nxk ,

since I(t, x) is an even function in x. By () we also get another Taylor expansion

Ĩ(t, x) =
√


∞∑

n=

{
(t – T) + T

}n (–)n

n! F

(
 – n


,




, –
x



)

=
∑

n≥,k≥

ãn,k(t – T)nxk .

Then U(t, x) := I(t, x) – Ĩ(t, x) =
∑

n≥,k≥ un,k(t – T)nxk satisfies

∂tU(t, x) = t–
{




U(t, x) + ∂
x U(t, x) +

x

∂xU(t, x)

}

,

and by ()

U(t, ) ≡ .

Therefore, we get un, =  for all n ≥  and

∑

n≥,k≥

nun,kt(t – T)n–xk =
∑

n≥,k≥

(k + )
{

un,k + (k + )un,k+
}

(t – T)nxk , ()

here we used that

∂
x I =

∑

n≥,k≥

k(k – )un,k(t – T)nxk– =
∑

n≥,k≥

(k + )(k + )un,k+(t – T)nxk .

Moreover, the left-hand side of () is changed into

∑

n≥,k≥

nun,kt(t – T)n–xk =
∑

n≥,k≥

{
nun,k + (n + )un+,kT

}
(t – T)nxk .



Fukuda et al. Journal of Inequalities and Applications  (2017) 2017:119 Page 19 of 24

Thus, it holds that

nun,k + (n + )un+,kT = (k + )
{

un,k + (k + )un,k+
}

.

Hence, when un, =  for all n ≥ , we find that un, =  for all n ≥ , and recursively un,k = 
for all n ≥  and k ≥ . So, we have

U(t, x) =
∑

n≥,k≥

un,k(t – T)nxk ≡ .

This concludes that I(t, x) (=
√


π

∫ ∞
 e–ξ–tξ–

cos xξ dξ ) must coincide with Ĩ(t, x) (=
√


∑∞
n= tn (–)n

n! F( –n
 , 

 , – x

 )) for (t, x) ∈ (,∞) × R. �
As an application of Proposition ., we can compute the Fourier transform and the

wavelet transform of concrete functions in the Gelfand-Shilov spaces. So, now let us take
ψ̂(ξ ) = f̂ (ξ ) = e–ξ–ξ– . We see that ψ , f ∈ S/,/

/,h (R) for some h >  since e–ξ gives μ = /
and the Gevrey function e–ξ– gives δ = / and ν = / by the Paley-Wiener theorem.
Then by () it follows that

Wψ f (a, b) = 
√ a

Cψ

∫ ∞


e–(+a)ξ–(+a–)ξ–

cos bξ dξ

= 
√ a

Cψ ( + a)

∫ ∞


e–ω–(+a–)(+a)ω–

cos
b√

 + a
ω dω

=
√ a

Cψ ( + a)

∫ ∞

–∞
e–ω–(a+/a)ω–

e
i b√

+a ω
dω

=

√
πa

Cψ ( + a)
F–[e–ω–(a+/a)ω–]

(
b√

 + a

)

.

By the Paley-Wiener theorem, we find that for some ρ > 

∣
∣Wψ f (a, b)

∣
∣ ≤ Ce–ρ|b/

√
+a|/ ∼ Ce–ρ|b/(+a)|/ .

This implies that the order (i) in Theorem . is almost optimal with respect to a and b.
Using Proposition . with t =  and t = a + /a, we have the following.

Theorem . Let ψ̂(ξ ) = f̂ (ξ ) = e–ξ–ξ– for ξ �=  and =  for ξ = . Then

ψ(x) = f (x) =
√


∞∑

n=

(–)n

n! F

(
 – n


,




, –
x



)

∈ S/,/
/,h (R)

for some h > , and the wavelet transform is given by

Wψ f (a, b) =
√

πa
Cψ ( + a)

∞∑

n=

{–(a + /a)}n

n! F

(
 – n


,




, –
b

( + a)

)

,

where F(a, b, z) is the confluent hypergeometric function of the first kind.
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Remark . Especially when b = , we also find

∣
∣Wψ f (a, )

∣
∣ =

√
πa

Cψ ( + a)
e–(a+ 

a ). ()

Then (iii)′ in Theorem . becomes

∥
∥a–/eh′ max{a,a–}Wψ f ‖L∞(R+×R) ≤ C‖eh max{|ξ |,|ξ |–} f̂

∥
∥

L∞(R).

() implies that max{a, a–} in (iii)′ cannot be improved anymore since h′ ∼  and

h′ max
{

a, a–} ∼ 
(

a +

a

)

.

Remark . As introduced in Remark ., the Bessel wavelet ψ(x) satisfies ψ̂(ξ ) = e–ξ–ξ–

for ξ >  and ψ̂(ξ ) =  for ξ ≤  belongs to S,+
 (R). Hence, we also see that

ψ(x) =


π
√

 – ix
K(

√
 – ix) +


π

√
 + ix

K(
√

 + ix)

satisfies ψ̂(ξ ) = e–|ξ |–|ξ |– for ξ �=  and ψ̂(ξ ) =  for ξ =  belongs to S
(R) and S,

,h(R) for
some h > .

5 Conclusions
In this paper, we consider the Banach spaces of Gelfand-Shilov functions satisfying van-
ishing moment conditions and study the wavelet transforms. Our contributions are as
follows:

() We derived sharp estimates of the wavelet transforms which are useful for the
time-frequency analysis, and stated the continuity properties of the wavelet
transforms in Gelfand-Shilov spaces as a corollary.

() We computed the Fourier transforms and the wavelet transforms of concrete
functions in the Gelfand-Shilov spaces. These examples show the optimality of
estimates in Theorem ..

Appendix
Concerned with the inverse wavelet transform, we also get the following.

Theorem A. Let μ, ν , h, h′ and δ be positive constants such that μ + ν ≥ , h′ < h. Define
that d(λ) = λ(λ – )–+/λ. Then, for the inverse wavelet transform Mψ with the wavelet
ψ ∈ Sμ,δ

ν,h (R), the following estimates hold: for F ∈ V μ,δ
ν,h (R+ × R)

(iv)
∥
∥ehd(ν/μ+)|x|/(μ+ν)

MψF
∥
∥

L∞(R)

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

L∞(R+×R) if ν > ,

(iv)′
∥
∥eh′–/νd(ν/μ+)|x|/(μ+ν)

MψF
∥
∥

L∞(R)

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

L∞(R+×R) if  < ν ≤ ,
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(v)
∥
∥
∥
∥
|ξ |/ehd(δ/μ+)/μ(max{|ξ |,|ξ |–})/(μ+δ)

|ξ | + 
F [MψF]

∥
∥
∥
∥

L∞(R)

≤ ∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

L∞(R+×R) if μ > ,

(v)′
∥
∥eh′–/μd(δ/μ+)/μ(max{|ξ |,|ξ |–})/(μ+δ)F [MψF]

∥
∥

L∞(R)

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

L∞(R+×R) if  < μ ≤ .

The weight function of (iv) and (v) can be estimated as

eh{|b/ max{,a}|/ν+a/μ+a–/δ} ≤ eh max{|b/(a+)|/ν ,a/μ ,a–/δ},

and estimated from below as

ehd(ν/μ+)|x|/(μ+ν) ≥ ceh|x|/(μ+ν)
,

and

|ξ |/ehd(δ/μ+)/μ(max{|ξ |,|ξ |–})/(μ+δ)

|ξ | + 
≥ ceh{|ξ |/(μ+δ)+|ξ |–/(μ+δ)}

|ξ |/ + |ξ |–/ ≥ c


eh{|ξ |/(μ+δ)+|ξ |–/(μ+δ)}

in the same way with (). Therefore, by Theorem A., we can also get the following conti-
nuity property.

Corollary A. Let μ, ν , h and δ be constants such that μ > , ν > , h >  and δ > . Then,
for the wavelet ψ ∈ Sμ,δ

ν,h (R), the inverse wavelet transform V μ,δ
ν,h(R+ × R) � F → MψF ∈

Sμ+δ,μ+δ

μ+ν,h (R) is continuous.

We shall only give a sketch of the proof of Theorem A..
• Case of ν > ) From the definition of the inverse wavelet transform we get

∣
∣ehd(ν/μ+)|x|/(μ+ν)

MψF(x)
∣
∣

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

×
∫

R+

∫

R
a–/e–h{|b/ max{,a}|/ν+a/μ+a–/δ+|(x–b)/a|/ν–d(ν/μ+)|x|/(μ+ν)} db da.

We shall use the Hölder inequality A + B ≥ (Ap)/p(Bq)/q with p = μ/ν + , q = ν/μ + . If
a ≥ , Lemma . with α = |x/a – b/a|, β = |b/a| gives

∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

+ a/μ + a–/δ +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

– d
(

ν

μ
+ 

)

|x|/(μ+ν)

≥ (
 – /ν)min

{∣
∣
∣
∣

x
a

–
b
a

∣
∣
∣
∣

/ν

,
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν}

+
∣
∣
∣
∣

x
a

∣
∣
∣
∣

/ν

+ a/μ – d
(

ν

μ
+ 

)

|x|/(μ+ν) + a–/δ

≥ (
 – /ν)min

{∣
∣
∣
∣

x
a

–
b
a

∣
∣
∣
∣

/ν

,
∣
∣
∣
∣
b
a

∣
∣
∣
∣

/ν}

+ a–/δ .
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If  < a < , Lemma . with α = |x – b|, β = |b| gives

∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

+ a/μ + a–/δ +
∣
∣
∣
∣
x – b

a

∣
∣
∣
∣

/ν

– d
(

ν

μ
+ 

)

|x|/(μ+ν)

≥ |b|/ν + d
(

ν

μ
+ 

)

|x – b|/(μ+ν) – d
(

ν

μ
+ 

)

|x|/(μ+ν) + a–/δ

≥ d
(

ν

μ
+ 

)
(
 – /(μ+ν))min

{|x – b|/(μ+ν), |b|/(μ+ν)} – mμ,ν + a–/δ ,

here we used

|b|/ν – d
(

ν

μ
+ 

)

|b|/(μ+ν) ≥ –∃mμ,ν for b ∈ R.

Thus, it follows that

∥
∥ehd(ν/μ+)|x|/(μ+ν)

MψF
∥
∥ ≤ C

∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

× C
{∫ ∞


a–/e–ha–/δ

da +
∫ 


a–/e–h{–mμ,ν+a–/δ} da

}

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥.

• Case of  < ν ≤ ) This case can be shown similarly as the case of ν > .
• Case of μ > ) This case can be shown similarly as the case of μ >  with the condition

|f̂ (ξ )| ≤ Ce–|ξ |/δ for the wavelet transform by exchanging the roles of a and ξ .
• Case of  < μ ≤ ) For h > h′ > , we get

∣
∣eh′–/μ{d(δ/μ+)(+|ξ |)μ′

(+/|ξ |μ/δ )δ
′ }/μF [MψF](ξ )

∣
∣

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

∫

R+

∫

R
a–/e–(h–h′){a/μ+a–/δ+|aξ |/μ+|aξ |–/δ}

× e–h′{|b/ max{,a}|/ν+a/μ+a–/δ+|aξ |/μ+|aξ |–/δ––/μ{d(δ/μ+)(+|ξ |)μ′
(+/|ξ |μ/δ )δ

′ }/μ} db da.

Similarly as the case of  < μ ≤  for the wavelet transform, by () Lemma . with α =
a + a–μ/δ , β = |aξ | + |aξ |–μ/δ gives

∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

+ a/μ + a–/δ + |aξ |/μ + |aξ |–/δ

– –/μ
{

d
(

δ

μ
+ 

)
(
 + |ξ |)μ′

(

 +


|ξ |μ/δ

)δ′}/μ

≥ –L
(
ak + |aξ |k) +

∣
∣
∣
∣

b
max{, a}

∣
∣
∣
∣

/ν

.

There exist R, R̃ ≥  > r, r̃ >  independent of a >  such that

Lh′|aξ |k ≤ (
h – h′)(|aξ |/μ + |aξ |–/δ) for |aξ | > R or |aξ | < r,
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and for ε >  satisfying h > h′ + ε > h′ >  (e.g., ε = (h – h′)/)

Lh′ak ≤ (
h – h′ – ε

)(
a/μ + a–/δ) for a > R̃ or a < r̃,

since –/δ < k = max{/μ – , } – /δ < /μ. Therefore, putting

I :=
{

a ∈ R+; r/|ξ | ≤ a < R/|ξ |} and J := {a ∈ R+; r̃ ≤ a < R̃},

we have

∣
∣eh′–/μ{d(δ/μ+)(+|ξ |)μ′

(+/|ξ |μ/δ )δ
′ }/μF [MψF](ξ )

∣
∣

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥

×
∫

R+

min
{

a–/, a–/}e–(h–h′){a/μ+a–/δ+|aξ |/μ+|aξ |–/δ}+Lh′(ak +|aξ |k ) da

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥
{∫

R+\(I∪J)
min

{
a–/, a–/}e–ε(a/μ+a–/δ ) da

+
∫

I\J
min

{
a–/, a–/}e–ε(a/μ+a–/δ )–(h–h′)(|aξ |/μ+|aξ |–/δ )+Lh′|aξ |k da

+
∫

J\I
min

{
a–/, a–/}e–(h–h′)(a/μ+a–/δ )+Lh′ak

da

+
∫

I∩J
min

{
a–/, a–/}e–(h–h′)(a/μ+a–/δ+|aξ |/μ+|aξ |–/δ )+Lh′(ak +|aξ |k ) da

}

≤ C
∥
∥eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥.

Thus, by the inequality ( + |ξ |)μ′ ( + 
|ξ |μ/δ )δ′ ≥ (max{|ξ |, 

|ξ | })μ
′ , it follows that

∥
∥eh′–/μd(δ/μ+)/μ(max{|ξ |,|ξ |–})/(μ+δ)F [MψF]‖ ≤ ‖eh{|b/ max{,a}|/ν+a/μ+a–/δ}F

∥
∥.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
This work was carried out in collaboration among all authors. The author TK plays the role of corresponding author. All
authors read and approved the final manuscript.

Author details
1Matsue College, National Institute of Technology, Matsue, Shimane 690-8518, Japan. 2Institute of Mathematics, Tsukuba
University, Tsukuba, Ibaraki 305-8571, Japan.

Acknowledgements
This work was supported by Grant-in-Aid for Scientific Research (C) (No. 16K05223), Japan Society for the Promotion of
Science. The authors appreciate the reviewers for their constructive comments to improve the quality of the paper. The
authors also wish to thank Prof. Kunio Yoshino for valuable suggestions.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 January 2017 Accepted: 4 May 2017



Fukuda et al. Journal of Inequalities and Applications  (2017) 2017:119 Page 24 of 24

References
1. Daubechies, I: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61.

SIAM, Philadelphia (1992)
2. Mallat, S: A Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way. Elsevier, Amsterdam (2009)
3. Pathak, RS: The wavelet transform of distributions. Tohoku Math. J. (2) 56(3), 411-421 (2004)
4. Gelfand, IM, Shilov, GE: Generalized Functions, vol. 2. Academic Press, New York (1968)
5. Gelfand, IM, Shilov, GE: Generalized Functions, vol. 3. Academic Press, New York (1967)
6. Nicola, F, Rodino, L: Global Pseudo-Differential Calculus on Euclidean Spaces. Pseudo-Differential Operators, Theory

and Applications, vol. 4. Birkhäuser, Basel (2010)
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