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Abstract
The aim of this paper is to present a new algorithm for proving mixed
trigonometric-polynomial inequalities of the form

n∑

i=1

αix
pi cosqi x sinri x > 0

by reducing them to polynomial inequalities. Finally, we show the great applicability
of this algorithm and, as an example, we use it to analyze some new rational (Padé)
approximations of the function cos2 x and to improve a class of inequalities by Yang.
The results of our analysis could be implemented by means of an automated proof
assistant, so our work is a contribution to the library of automatic support tools for
proving various analytic inequalities.

MSC: 41A10; 26D05; 68T15; 12L05; 41A58

Keywords: mixed trigonometric-polynomial functions; Taylor series;
approximations; inequalities; algorithms; automated theorem proving

1 Introduction and motivation
In this paper, we propose a general computational method for reducing some inequali-
ties involving trigonometric functions to the corresponding polynomial inequalities. Our
work has been motivated by many papers [–] recently published in this area. As an
example, we mention the work of Mortici [] who extended Wilker-Cusa-Huygens in-
equalities using the method he called the natural approach method. This method consists
in comparing and replacing sin x and cos x by their corresponding Taylor polynomials as
follows:

s+∑

i=

(–)ixi+

(i + )!
< sin x <

s∑

i=

(–)ixi+

(i + )!
,

k+∑

i=

(–)ixi

(i)!
< cos x <

k∑

i=

(–)ixi

(i)!

for every integer s, k ∈N and x ∈ (,π/).
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In this way, complicated trigonometric expressions can be reduced to polynomial or
rational expressions, which can be, at least theoretically, easier studied (this can be done
using some software for symbolic computation, such as Maple).

For example, Mortici in [] (Theorem ) proved the following inequality:

cos x –
(

sin x
x

)

> –
x


, x ∈

(
,

π



)
,

by intercalating the following Taylor polynomials:

cos x –
(

sin x
x

)

+
x


>  –

x

!
+

x

!
–

x

!
–

(x – x

! + x

!
x

)

+
x


=

xR(x)
,,

,

where R(t) = , – ,t + t – t.
Let δ ≤  ≤ δ, with δ < δ. Recall that a function defined by the formula

f (x) =
n∑

i=

αixpi cosqi x sinri x, x ∈ (δ, δ), ()

is named a mixed trigonometric-polynomial function, denoted in the sequel by an MTP
function [, ]. Here, αi ∈ R \ {}, pi, qi, ri ∈ N, n ∈ N. Moreover, an inequality of the
form f (x) >  is called a mixed trigonometric-polynomial inequality (MTP inequality).

MTP functions currently appear in the monographs on the theory of analytical inequal-
ities [, ] and [], while concrete MTP inequalities are employed in numerous engi-
neering problems (see, e.g., [, ]). A large class of inequalities arising from different
branches of science can be reduced to MTP inequalities.

It is notable that many of the above-mentioned analyses and treatments of MTP inequal-
ities are all rather sophisticated and involve complex transformations and estimations. Al-
most all approaches are designed for ’pen and paper analysis’ and many of them are ripe
for automation, being formally defined in precise detail, and yet somewhat overwhelming
for humans.

Notwithstanding, the development of formal methods and procedures for automated
generation of proofs of analytical inequalities remains a challenging and important task of
artificial intelligence and automated reasoning [, ].

The aim of this paper is to develop a new algorithm, based on the natural approach
method, for proving MTP inequalities by reducing to polynomial inequalities.

Although transformation based on the natural approach method has been made by sev-
eral researchers in their isolated studies, a unified approach has not been given yet. More-
over, it is interesting to note that just trigonometric expressions involving odd powers of
cos x were studied, as the natural approach method cannot be directly applicable for the
function cos x over the entire interval (,π/). Our aim is to extend and formalize the
ideas of the natural approach method for a wider class of trigonometric inequalities, in-
cluding also those containing even powers of cos x, with no further restrictions.

Notice the logical-hardness general problem under consideration. According to Wang
[], for every function G defined by arithmetic operations and a composition over polyno-
mials and sine functions of the form sinπx, there is a real number r such that the problem
G(r) =  is undecidable (see []). In , Laczkovich [] proved that this result can
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be derived if the function G is defined in terms of the functions x, sin x and sin(x sin xn),
n = , , . . . (without involving π ). On the other hand, several algorithms [, ] and []
have been developed to determine the sign and the real zeroes of a given polynomial, so
that such problems can be considered decidable (see also [, ]).

Let us denote by

Tφ,a
n (x) =

n∑

k=

φ(k)(a)
k!

(x – a)k

the Taylor polynomial of nth degree associated with the function φ at a point a. Here,
Tφ,a

n (x) and Tφ,a
n (x) represent the Taylor polynomial of nth degree associated with the

function φ at a point a, in the case Tφ,a
n (x) ≥ φ(x), respectively Tφ,a

n (x) ≤ φ(x), for every
x ∈ (a, b). We will call Tφ,a

n (x) and Tφ,a
n (x) an upward and a downward approximation of φ

on (a, b), respectively.
We present a new algorithm for approximating a given MTP function f (x) by a polyno-

mial function P(x) such that

f (x) > P(x), ()

using the upward and downward Taylor approximations T sin,
n (x), T sin,

n (x), Tcos,
n (x),

Tcos,
n (x).

2 The natural approach method and the associated algorithm
The following two lemmas [] related to the Taylor polynomials associated with sine and
cosine functions will be of great help in our study.

Lemma  Let Tn(x) =
∑(n–)/

i=
(–)ixi+

(i+)! .
(i) If n = s + , with s ∈N, then

Tn(x) ≥ Tn+(x) ≥ sin x for every  ≤ x ≤ √
(n + )(n + ); ()

and

Tn(x) ≤ Tn+(x) ≤ sin x for every –
√

(n + )(n + ) ≤ x ≤ . ()

(ii) If n = s + , with s ∈N, then

Tn(x) ≤ Tn+(x) ≤ sin x for every  ≤ x ≤ √
(n + )(n + ); ()

and

Tn(x) ≥ Tn+(x) ≥ sin x for every –
√

(n + )(n + ) ≤ x ≤ . ()

Lemma  Let Tn(x) =
∑n/

i=
(–)ixi

(i)! .
(i) If n = k, with k ∈N, then

Tn(x) ≥ Tn+(x) ≥ cos x

for every –
√

(n + )(n + ) ≤ x ≤ √
(n + )(n + ). ()
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(ii) If n = k + , with k ∈N, then

Tn(x) ≤ Tn+(x) ≤ cos x

for every –
√

(n + )(n + ) ≤ x ≤ √
(n + )(n + ). ()

According to Lemmas -, the upper bounds of the approximation intervals of the func-
tions sin x and cos x are ε =

√
(n + )(n + ) and ε =

√
(n + )(n + ), respectively. As

ε > π
 and ε > π

 , the results of these lemmas are valid, in particular, in the entire interval
(, π

 ).

Lemma 
() Let n ∈N and x ∈ (, π

 ). Then

T sin,
n (x) ≥ .

() Let s ∈ N, p ∈N and x ∈ (, π
 ). Then

(
T sin,

s+(x)
)p ≤ sinp x ≤ (

T sin,
s+(x)

)p.

Lemma  Let k ∈N, p ∈ N and x ∈ (, π
 ). Then

cosp x ≤(
Tcos,

k (x)
)p.

In contrast to the function sin x and its downward Taylor approximations, in the in-
terval (, π

 ) the function cos x and the downward Taylor approximations Tcos,
k+(x) =

∑k+
i=

(–)ixi

(i)! , k ∈ N, require special attention as there is no downward Taylor approxi-
mation Tcos,

k+(x) such that cos x ≥ (Tcos,
k+(x)) for every x ∈ (, π

 ).
We present the following results related to the problem with downward Taylor approx-

imations of the cosine function.

Proposition 
() For every k ∈N, the downward Taylor approximation Tcos,

k+(x) is a strictly
decreasing function on (, π

 ).
() For every k ∈N, there exists unique ck ∈ (, π

 ) such that Tcos,
k+(ck) = .

() The sequence (ck)k∈N , with c =
√

, is strictly increasing and limk→+∞ ck = π
 .

() For every k ∈N, there exists dk ∈ (ck , π
 ) such that cos dk = |Tcos,

k+(dk)|.
() The sequence (dk)k∈N is strictly increasing and limk→+∞ dk = π

 .

Proof () The function Tcos,
k+(x) is strictly decreasing on (, π

 ) since, according to
Lemma , (Tcos,

k+(x))′ = –T sin,
k+(x) ≤ .

() The existence of ck follows from the fact that Tcos,
k+() =  >  and Tcos,

k+( π
 ) <

cos ( π
 ) = .

() The monotonicity of the sequence (ck)k∈N is a result of the monotonicity of Tcos,
k+(x)

and Lemma (ii).
The convergence of the sequence (Tcos,

n (x))n∈N implies the convergence of the sequence
(ck)k∈N to π

 .
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() The function |Tcos,
k+(x)| is decreasing on (, ck) and increasing on (ck , π

 ). Based on
Lemma (ii), it follows that there exists dk ∈ (ck , π

 ) such that cos dk = |Tcos,
k+(dk)|.

() This statement is a consequence of the monotonicity of the sequence (ck)k∈N and
the increasing monotonicity of the function |Tcos,

k+(x)| on (ck , π
 ). �

Corollary  Let k ∈N and p ∈ N. Then
() cosp x > (Tcos,

k+(x))p for every x ∈ (, dk);
() cosp x < (Tcos,

k+(x))p for every x ∈ (dk , π
 ).

Based on the above results, we have the following.

Corollary  Let k ∈ N and p ∈N. Then Tcos,
k+(x) is not a downward approximation of the

MTP function cosp x on (dk , π
 ).

In order to ensure the correctness of the algorithm [, ] we will develop next in the
sequel, the following problem needs to be considered.

Problem For given δ ∈ (, π
 ) and I ⊆ (, π

 ), find k̂ ∈ N such that for all k ∈ N, k ≥ k̂
and x ∈ I

cos x ≥ (
Tcos,

k+(x)
). ()

Remark If cos x appears in odd powers only in the given MTP function f (x), we take k̂ = .

One of the methods to solve the problem of downward approximation of the function
cosp x, p ∈N is the method of multiple angles developed in []. All degrees of the functions
sin x and cos x are eliminated from the given MTP function f (x) through conversion into
multiple-angle expressions. This removes all even degrees of the function cos x, but then
sine and cosine functions appear in the form sinκx or cosκx, where κx ∈ (,κ π

 ) and κ ∈
N. In this case, in order to use the results of Lemmas -, we are forced to choose large
enough values of k ∈ N such that

√
(k + )(k + ) > κ π

 . Note that a higher value of k
implies a higher degree of the downward Taylor approximations and of the polynomial
P(x) in () (for instance, see [] and []).

Several more ideas to solve the above problem are proposed and considered below under
the names of Methods A-D. In the following, the numbers ck and dk are those defined in
Proposition .

Method A If δ < π
 , find the smallest k ∈ N such that dk ∈ (δ, π

 ). Then k̂ = k.

Note that Method A assumes solving a transcendental equation of the form cos x =
Tcos,

k+(x) that requires numerical methods.

Method B If δ < π
 , find the smallest k ∈N such that ck ∈ (δ, π

 ). Then k̂ = k.
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Method C If δ < π
 , find the smallest k ∈N such that Tcos,

k+(δ) ≥ . Then k̂ = k.

Note that Method B and Method C return the same output as for given δ and for every
k ∈N the following equivalence holds true:

(
ck ∈

(
δ,

π



)
∧ Tcos,

k+(ck) = 
)

⇐⇒ Tcos,
k+(δ) ≥ .

As Method B assumes determining the root ck of the downward Taylor approximation
Tcos,

k+(x) and Method C assumes checking the sign of the downward Taylor approximation
at point x = δ, it is notable that Method C presents a faster and simpler procedure.

Method D Eliminate all even degrees of the function cos x using the transformation

cosp x =
(
 – sin x

)p =
p∑

i=

(–)i

(
p
i

)
sini x. ()

Then k̂ = .

Note that Method D can be applied for any  < δ ≤ π/. Hence, if an MTP function f (x)
is considered in the whole interval (, π

 ), then Method D is applicable only (apart from the
multiple-angle method). However, Method D implies an increase in the number of terms
needed to be estimated. Let us represent a given MTP function f in the following form:

f (x) =
m∑

i=

αixpi coski x sinri x + f(x), ()

where there are no terms of the form cosj x, j ∈N, in f(x). The elimination of all terms of
the form coski x from () using transformation () will increase the number of addends
in (), in the general case with k + k + · · · + km; consequently, it will increase the number
of terms of the form sin� x, � ∈N, in () needed to be estimated.

2.1 An algorithm based on the natural approach method
Let f be an MTP function and I ⊆ (,π/). We concentrate on finding a polynomial
T P f (x) such that for every x ∈ I ,

f (x) > T P f (x).

In this case, the associated MTP inequality f (x) >  can be proved if we show that for every
x ∈ I ,

T P f (x) > ,

which is a decidable problem according to Tarski [, ]. The following algorithm de-
scribes the method for finding such a polynomial T P f (x).
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Comment on step II of the Procedure Estimation: in the general case, the addend ai(x) =
–βixpi (sin x)qi (cos x)ri can be estimated in one of the following three ways:

(i) ai(x) = –βixpi (sin x)qi (cos x)ri ≥ βixpi (T sin,
si+(x))qi (–Tcos,

ki
(x))ri ,

(ii) ai(x) = –βixpi (sin x)qi (cos x)ri ≥ βixpi (–T sin,
si+(x))qi (Tcos,

ki+(x))ri ,
(iii) ai(x) = –βixpi (sin x)qi (cos x)ri ≥ –βixpi (T sin,

si+(x))qi (Tcos,
ki

(x))ri .
Note that for fixed si, ki, qi and ri, the method (iii) generates polynomials of the smallest
degree.

We present the following characteristic [, ] for the Natural Approach algorithm.

Theorem  The Natural Approach algorithm is correct.

Proof Every step in the algorithm is based on the results obtained from Lemmas - and
Proposition . Hence, for every input instance (i.e., for any MTP function f (x) over a given
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interval I ⊆ (,π/)), the algorithm halts with the correct output (i.e., the algorithm re-
turns the corresponding polynomial). �

3 Some applications of the algorithm
We present an application of the Natural Approach algorithm in the proof (Application  -
Theorem ) of certain new rational (Padé) approximations of the function cos x, as well
as in the improvement of a class of inequalities () by Yang (Application , Theorem ).

Application  Bercu [] used the Padé approximations to prove certain inequalities for
trigonometric functions. Let us denote by (f (x))[m/n] the Padé approximant [m/n] of the
function f (x).

In this example we introduce a constraint of the function cos x by the following Padé
approximations:

(
cos x

)
[/] =

–x + x – ,x + ,
x + x + ,

and

(
cos x

)
[/] =

x – x + 
x + x + 

.

Theorem  The following inequalities hold true for every x ∈ (, π
 ):

(
cos x

)
[/] < cos x <

(
cos x

)
[/]. ()

Proof We first prove the left-hand side inequality (). Using the computer software for
symbolic computations, we can conclude that the function G(x) = (cos x)[/] has exactly
one zero δ = . . . . in the interval (, π

 ). As G() =  >  and G( π
 ) = –. . . . <

, we deduce that

G(x) ≥  for every x ∈ (, δ] ()

and

G(x) <  for every x ∈
(

δ,
π



)
. ()

Moreover, G(x) < cos x for every x ∈ (δ, π
 ). We prove now that

G(x) < cos x, x ∈ (, δ]. ()

We search a downward Taylor polynomial Tcos,
k+(x) such that for every x ∈ (, δ],

G(x) <
(
Tcos,

k+(x)
) < cos x. ()

We apply the Natural Approach algorithm to the function f (x) = cos x, x ∈ (, δ], to de-
termine the downward Taylor polynomial Tcos,

k+(x) such that

(
Tcos,

k+(x)
) < cos x, x ∈ (, δ].
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We can use Method C or Method D from the Natural Approach algorithm since δ < π
 . In

this proof, we choose Method C.
The smallest k for which Tcos,

k+(δ) >  is k = . Therefore k̂ = . In the Estimation pro-
cedure only step I can be applied to the (single) addend cos x. In this step, s ≥  and
k ≥ k̂ =  should be selected. Let us select s =  and k = .a As a result of this selection,
the output of the Natural Approach algorithm is the polynomial

T P(x) =
(
Tcos,

 (x)
) =

(
 –

x

!
+

x

!
–

x

!
+

x

!
–

x

!

)

.

We prove that

(
Tcos,

 (x)
) – G(x) > , x ∈ (, δ]. ()

This is true since

(
Tcos,

 (x)
) – G(x) =

x

,,,,(x + x + ,)
Q(x),

where

Q(x) = x + x(, – x) + ,x(, – ,x)

+ ,
(
,, – ,,x) > .

Finally, we have G(x) < cos x for every x ∈ (, δ]. According to (), we have

G(x) < cos x for every x ∈
(

,
π



)
.

Now we prove the right-hand side inequality (). For G(x) = (cos x)[/], we prove the
following inequalities for every x ∈ (, π

 ):

cos x <
(
Tcos,

 (x)
) < G(x). ()

Based on Proposition , it is enough to prove that for every x ∈ (, π
 ),

(
Tcos x,

 (x)
) < G(x). ()

This is true as

G(x) –
(
Tcos x,

 (x)
) =

x

,,,(x + x + )
R(x),

where

R(x) = x(, – x) + x(,, – ,x) + 
(
, – ,x) > .

Since cos x ≤ (Tcos,
k (x)), for every k ∈N and all x ∈ (, π

 ), we have

cos x < G(x) for every x ∈
(

,
π



)
. �
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Note Using Padé approximations, Bercu [, ] recently refined certain trigonometric in-
equalities over various intervals I = (, δ) ⊆ (, π

 ). All such inequalities can be proved in
a similar way and using the Natural Approach algorithm as in the proof of Theorem .

Application  Jang [] proved the following inequalities for every x ∈ (,π ):

cos x


≤ sin x
x

≤ cos x


≤  + cos x


. ()

Previously, Klén et al. [] proved the above inequality on (,
√

/) only.

In this example we propose the following improvement of ().

Theorem  The following inequalities hold true for every x ∈ (,π ) and a ∈ (, 
 ):

cos x


≤
(

sin x
x

)a

≤ sin x
x

. ()

Proof As a >  and  < sin x
x < , we have

(
sin x

x

)a

<
sin x

x
.

We prove now the following inequality:

cos x


<
(

sin x
x

)a

()

for every x ∈ (,π ) and a ∈ (, 
 ). It suffices to show that the following mixed logarithmic-

trigonometric-polynomial function []

F(x) = a ln

(
sin x

x

)
–  ln

(
cos

x


)
()

is positive for every x ∈ (,π ) and a ∈ (, 
 ). Given that

lim
x→

F(x) = , ()

based on the ideas from [], we connect the function F(x) to the analysis of its derivative

F ′(x) =



f ( x
 )

x sin x
 cos x


,

where

f (t) = t(a – ) cos t – a sin t cos t – t(a – ). ()

Let us note that F ′(x) is the quotient of two MTP functions.
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The inequality F ′(x) >  is equivalent to f (t) > . The proof of the later inequality will be
done using the Natural Approach algorithm for the function f (t) on (, π

 ), with a ∈ (, 
 ).

As before, we search a polynomial T P(t) such that

f (t) > T P(t) > .

In step  of the Natural Approach algorithm, we can use Method D only because δ = π
 .

Then

f (t) = t(a – )
(
 – sin t

)
– a sin t cos t – t(a – )

= t( – a) sin t – a sin t cos t + ta ()

with k̂ = . In the Estimation procedure onlyb step II can be applied to the first and second
addends in (), where si ≥  and ki ≥ , i = , , should be selected. Let us, for example,
select s = k = s = k = . As a result of this selection, the Natural Approach algorithm
yields the polynomial

T P(t) = t( – a)
(

t –



t +



t

)

– a
(

t –



t +



t

)(
 –




t +



t

)
+ ta

for which f (t) > T P(t), for every t ∈ (, π
 ) and a ∈ (, 

 ). The inequality f (t) >  is reduced
to a decidable problem

T P(t) > , for every t ∈
(

,
π



)
and a ∈

(
,




)
. ()

The sign of the polynomial T P(t) can be determined in several ways. For example, let us
represent the polynomial T P(t) as

T P(t) = p(t)a + q(t), ()

where

p(t) = –
t(t – t + ,t – ,t + ,)

,

and

q(t) = t
(

t –



t +



t

)

.

For every fixed t ∈ (, π
 ), the function T P(t) = p(t)a + q(t) is linear, monotonically de-

creasing with respect to a ∈ (, 
 ) since for every t ∈ (, π

 ),

p(t) = –
t

,
(
t + t( – t) + ,

(
 – t)) < .
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Hence, for every fixed t ∈ (, π
 ), the value of () is greater than the value of the same

expression for a = 
 :

p(t)



+ q(t) = –
t

,
(
t – t + t – ,

)
.

But

p(t)



+ q(t) =
t

,
(
t( – t) + 

(
 – t)) > ,

so inequality () is true; and consequently, F ′(x) >  on (,π ) for every a ∈ (, 
 ). But

limx→ F(x) = , so F(x) >  on (,π ) for every a ∈ (, 
 ). �

Remark on Theorem  Let us consider possible refinements of inequality () by a real
analytical function ϕa(x) = ( sin x

x )a for x ∈ (, δ) and a ∈ R. The function ϕa(x) is real ana-
lytical as it is related to the analytical function

t(x) = a ln

(
sin x

x

)
= a

∞∑

k=

(–)kk–Bk

k(k)!
xk ()

(Bi are the Bernoulli numbers; see, e.g., []). The following consideration of the sign of
the analytical function in the left and right neighborhood of zero is based on Theorem .
from []. Let us consider the real analytical function

f(x) =
(

sin x
x

)a

– cos x


=
(

–
a


+



)
x +

(
a


–

a


–




)
x + · · · , ()

x ∈ (,π ). The restriction

f ′′
 () = –

a


+



> , ()

i.e.,

a ∈
(

–∞,



)
, ()

is a necessary and sufficient condition for f(x) >  to hold on an interval (, δ(a)
 ) (for some

δ
(a)
 > ). Also, the restriction

a ∈
(




,∞
)

()

is a necessary and sufficient condition for f(x) <  to hold on an interval (, δ(a)
 ) (for some

δ
(a)
 > ). The following equivalences hold true for every x ∈ (,π ):

a ∈ (,∞) ⇐⇒
(

sin x
x

)a

<
sin x

x
, ()

a ∈ (–∞, ) ⇐⇒ sin x
x

<
(

sin x
x

)a

. ()
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The refinement in Theorem  is given based on the possible values of the parameter a in
() and (). A similar analysis shows us that only the following refinements of inequality
() are possible.

Corollary  Let a ∈ [ 
 , +∞). There exists δ >  such that for every x ∈ (, δ), it holds

(
sin x

x

)a

≤ cos x


. ()

Corollary  Let a ∈ (–∞, ). There exists δ >  such that for every x ∈ (, δ), it holds

 + cos x


≤
(

sin x
x

)a

. ()

4 Conclusions and future work
The results of our analysis could be implemented by means of an automated proof assistant
[], so our work is a contribution to the library of automatic support tools [] for proving
various analytic inequalities.

Our general algorithm associated with the natural approach method can be successfully
applied to prove a wide category of classical MTP inequalities. For example, the Natural
Approach algorithm has recently been used to prove several open problems that involve
MTP inequalities (see, e.g., [–]).

It is our contention that the Natural Approach algorithm can be used to introduce and
solve other new similar results. Chen [] used a similar method to prove the following
inequalities, for every x ∈ (, ):

 +



x arctan x <
(

arcsin x
x

)

+
arctan x

x

and

 +



x arctan x < 

(
arcsin x

x

)
+

arctan x
x

;

then he proposed the following inequalities as a conjecture:

(
arcsin x

x

)

+
arctan x

x
<  +

π + π – 
π

x arctan x, x ∈ (, )

and


(

arcsin x
x

)
+

arctan x
x

<  +
π – 

π
x arctan x, x ∈ (, ).

Very recently, Malešević et al. [] solved this open problem using the same procedure, i.e.,
the natural approach method, associated with upwards and downwards approximations
of the inverse trigonometric functions.

Finally, we present other ways for approximating the function cosn x, n ∈ N. It is well
known that the power series of the function cosn x converges to the function everywhere
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on R. The power series of the function cosn x is an alternating sign series. For example,
for n =  and x ∈R, we have

cos x =  – x +



x –



x + · · · =  +

∞∑

k=

k–(–)k

(k)!
xk .

Therefore, for the above power (Taylor) series, it is not hard to determine (depending
on m) which partial sums (i.e., Taylor polynomials) Tcos x,

m (x) become good downward or
upward approximations of the function cos x in a given interval I . Assuming the following
representation of the function cosn x in power (Taylor) series

cosn x = a(n)
 – a(n)

 x + a(n)
 x – a(n)

 x + · · · ,

with a(n)
j >  (j = , , , , . . .), the power (Taylor) series of function cosn+ x will be an

alternating sign series as follows:

cosn+ x = cos x · cosn x

= a(n)
︸︷︷︸

a(n+)


–
(
a(n)

 + a(n)


)
︸ ︷︷ ︸

a(n+)


x

+
(




a(n)
 + a(n)

 + a(n)


)

︸ ︷︷ ︸
a(n+)



x

–
(




a(n)
 +




a(n)
 + a(n)

 + a(n)


)

︸ ︷︷ ︸
a(n+)



x

+ · · ·

with a(n+)
j >  (j = , , , , . . .).

Therefore, in general, for the function cosn x, it is possible to determine, depending
on the form of the real natural number m, the upward (downward) Taylor approxima-
tions Tcosn x,

m (x) (Tcosn x,
m (x)) that are all above (below) the considered function in a given

interval I . Such estimation of the function cosn x and the use of corresponding Taylor
approximations will be the object of future research.
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University of Târgovişte, Bd. Unirii 18, Târgovişte, 130082, Romania. 3Academy of Romanian Scientists, Splaiul
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Endnotes
a For the selection s1 = 0 and k1 = 1, the output of the Natural Approach algorithm is the polynomial

T P(x) = T cos,06 (x) = 1 –
x2

2!
+
x4

4!
–
x6

6!

such that T P(x)≶ G1(x) holds for some x ∈ (0,δ].
b Because for every fixed a ∈ (1, 32 ): α1 = 4(1 – a) < 0 and α2 = –2a < 0.
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Milovanović, G, Rassias, M (eds.) Topics in Special Functions III, pp. 297-345. Springer, Berlin (2014)
6. Yang, Z-H: New sharp Jordan type inequalities and their applications. Gulf J. Math. 2(1), 1-10 (2014)
7. Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl.

2016, 99 (2016)
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