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Abstract
In this paper, we derive a new extension of Hermite-Hadamard’s inequality via
k-Riemann-Liouville fractional integrals. Two new k-fractional integral identities are
also derived. Then, using these identities as an auxiliary result, we obtain some new
k-fractional bounds which involve k-Appell’s hypergeometric functions. These
bounds can be viewed as new k-fractional estimations of trapezoidal and mid-point
type inequalities. These results are obtained for the functions which have the
harmonic convexity property. We also discuss some special cases which can be
deduced from the main results of the paper.
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1 Introduction and preliminaries
Convexity theory has played a pivotal role through its numerous applications in different
fields of pure and applied sciences. In the past few years several new generalizations and
extensions of classical convexity have been proposed in the literature, see [–]. Shi et al.
[] introduced the notion of harmonic convex sets as follows.

Definition . ([]) A set � ⊂R+ is said to be a harmonically convex set if

xy
tx + ( – t)y

∈ �, ∀x, y ∈ �, t ∈ [, ].

Iscan [] introduced the class of harmonic convex functions. The natural domain of har-
monic convex functions is harmonic convex sets. Noor et al. [] extended the definition
of harmonic convex functions and defined a new generalization, which is called harmonic
h-convex functions.

Definition . ([]) Let h : [, ] ⊆ J → R be a real function. A function f : � ⊂R+ →R

is said to be a harmonically h-convex function if

f
(

xy
tx + ( – t)y

)
≤ h( – t)f (x) + h(t)f (y), ∀x, y ∈ I, t ∈ (, ). (.)
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Remark . Note that, if h(t) = t, ts, t–s, t– and t = , then the definition of harmonic
h-convex functions reduces to the definitions of harmonic convex, harmonic s-convex,
harmonic s-Godunova-Levin convex, harmonic Godunova-Levin and harmonic
P-functions, respectively. Thus it is worth to mention here that the class of harmonic
h-convex functions is quite unifying one as it naturally includes several other classes of
harmonic convex functions.

Convexity theory has also a strong relationship with theory of inequalities, and resul-
tantly many inequalities have been obtained via convex functions, see [, –]. Inter-
ested readers may find the importance of generalized convexity to variational inequalities
and multiple objective optimization in [–]. One of the most extensively studied in-
equalities is Hermite-Hadamard’s inequality. This inequality was proved by Hermite and
Hadamard independently. It provides a necessary and sufficient condition for a function
to be convex. Dragomir et al. [] has written a nice monograph on Hermite-Hadamard
type inequalities. Interested readers may find very interesting and useful details about
these inequalities in this monograph. Khattri [] discussed some very interesting ap-
plications of Hermite-Hadamard’s inequality. Recently fractional calculus has attracted
many researchers and thus become a powerful tool in many branches of mathematics. For
some recent investigations in fractional calculus, see []. The classical form of Riemann-
Liouville integrals is defined as follows.

Definition . ([]) Let f ∈ L[a, b]. Then the Riemann-Liouville integrals Jα
a+ f and Jα

b– f
of order α >  with a ≥  are defined by

Jα
a+ f (x) =


�(α)

∫ x

a
(x – t)α–f (t) dt, x > a, (.)

and

Jα
b– f (x) =


�(α)

∫ b

x
(t – x)α–f (t) dt, x < b, (.)

where

�(α) =
∫ ∞


e–txα– dx,

is the well-known gamma function.

Sarikaya et al. [] obtained Hermite-Hadamard type inequalities via Riemann-Liouville
fractional integrals. Diaz et al. [] introduced the generalized k-gamma function as

�k(x) = lim
n→∞

n!kn(nk)
x
k –

(x)n,k
, k > , x ∈C \ kZ–. (.)

�k is one parameter deformation of the classical gamma function as �k → � when k → .
�k is based on the repeated appearance of the expression of

φ(φ + k)(φ + k)(φ + k) · · · (φ + (n – )k
)
.
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This above statement is a function of the variable φ and is denoted by (φ)n,k . It is known
as Pochhammer k-symbol, which reduces to classical Pochhammer symbol (φ)n by taking
k = . The integral of �k is given by

�k(x) =
∫ ∞


tx–e– tk

k dt, 
(x) > . (.)

It is evident from (.) that

�k(x) = k
x
k –�

(
x
k

)
.

Diaz et al. [] also defined a k-beta function as

βk(x, y) =
�k(x)�k(y)
�k(x + y)

, 
(x) > ,
(y) > . (.)

The integral form of a k-beta function is given by

βk(x, y) =

k

∫ 


t

x
k –( – t)

x
k – dt. (.)

From (.) and (.) one can have

βk(x, y) =

k
β

(
x
k

,
y
k

)
.

Using these definitions of k-gamma and k-beta functions, Mubeen et al. [] introduced
the k-Riemann-Liouville fractional integral of the type

kJαf (x) =


k�k(α)

∫ x


(x – t)

α
k –f (t) dt, α > , x > , k > . (.)

It is obvious that when k → , the above definition reduces to classical Riemann-Liouville
fractional integrals.

Sarikaya et al. [] introduced the notion of k-Riemann-Liouville fractional integrals
and discussed some of its interesting applications with respect to inequalities.

To be more precise, let f be piecewise continuous on I∗ = (,∞) and integrable on any
finite subinterval of I = [,∞]. Then, for t > , we consider the k-Riemann-Liouville frac-
tional integral of f of order α

kJα
a f (x) =


k�k(α)

∫ x

a
(x – t)

α
k –f (t) dt, x > a, k > .

For more details, see []. Note that when k → , k-Riemann-Liouville fractional integrals
become classical Riemann-Liouville fractional integrals. It is worth mentioning here that
the notion of k-Riemann-Liouville fractional integral is the significant generalization of all
above Riemann-Liouville fractional integrals. We would like to emphasize that for k �= 
the properties of k-Riemann-Liouville fractional integrals are quite different from those
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of classical Riemann-Liouville fractional integrals. Due to these facts, the k-Riemann-
Liouville fractional integrals have important applications in several branches of pure and
applied sciences, see [, , ].

The integral representation of k-Appell’s series F,k , where k > , is

F,k =
�k(c)

k�k(a′)�k(c – a′)

∫ 


t

a′
k –( – t)

c–a′
k –( – kzt)– b

k ( – kzt)– b
k dt.

For some more details, see [].

2 Some new auxiliary results
In this section, we derive some new k-fractional identities which will serve as auxiliary
results for the developments of our next results.

Lemma . Let f : I \ {} → R be differentiable on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I
with a < b, then

Tf (a, b;α, k; g) =
ab(b – a)



∫ 



[t
α
k – ( – t)

α
k ]

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt,

where

Tf (a, b;α, k; g)

=
f (a) + f (b)


–

�k(α + k)


(
ab

b – a

) α
k
[

kJα


b+
(f ◦ g)

(

a

)
+ kJα


a–

(f ◦ g)
(


b

)]
.

Proof It suffices to show that

Tf (a, b;α, k; g) =
ab(b – a)



∫ 



[t
α
k – ( – t)

α
k ]

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

= K + K. (.)

Now integrating by parts yields

K =
ab(b – a)



∫ 



t
α
k

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

=



[
f (b) –

k�k(α + k)
k

(
ab

b – a

) α
k 

k�k(α)

∫ 
a


b

(

a

– x
) α

k –

f
(


x

)
dx

]

=
f (b)


–

�k(α + k)


(
ab

b – a

) α
k

kJα


b+
(f ◦ g)

(

a

)
. (.)

Similarly

K =
ab(b – a)



∫ 



( – t)
α
k

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

=
f (a)


–

�k(α + k)


(
ab

b – a

) α
k

kJα


a–
(f ◦ g)

(

b

)
. (.)
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Combining (.), (.) and (.) completes the proof. �

Lemma . Under the assumptions of Lemma . and k = , we have

Tf (a, b;α, ; g) =
ab(b – a)



∫ 



tα – ( – t)α

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt,

where

Tf (a, b;α, ; g) =
f (a) + f (b)


–

�(α + )


(
ab

b – a

)α[
Jα


b+

(f ◦ g)
(


a

)
+ Jα


a–

(f ◦ g)
(


b

)]
.

This is due to Iscan [].

Lemma . Let f : I \ {} → R be differentiable on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I
with a < b, then

Mf (a, b;α, k; g) =



∑
i=

Ii

=



[
ab(b – a)

∫ 





[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

– ab(b – a)
∫ 





[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

– ab(b – a)
∫ 



[
( – t)

α
k – t

α
k
] 

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

]
,

where

Mf (a, b;α, k; g)

= f
(

ab
a + b

)
–

�k(α + )


(
ab

b – a

) α
k
{

kJα


b–
(f ◦ g)

(

a

)
+ kJα


a+

(f ◦ g)
(


b

)}
.

Proof Calculate I, I and I as follows:

I = ab(b – a)
∫ 






[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

= f
(

ab
a + b

)
– f (a). (.)

Now

I = – ab(b – a)
∫ 





[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

= f
(

ab
a + b

)
– f (b). (.)



Awan et al. Journal of Inequalities and Applications  (2017) 2017:118 Page 6 of 15

Also

I = – ab(b – a)
∫ 



[
( – t)

α
k – t

α
k
] 

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

= –
∫ 



[
( – t)

α
k – t

α
k
]

df
(

ab
ta + ( – t)b

)

= –
∫ 


( – t)

α
k df

(
ab

ta + ( – t)b

)
+

∫ 


t

α
k df

(
ab

ta + ( – t)b

)

= II + III . (.)

Now consider

II = –
∫ 


( – t)

α
k df

(
ab

ta + ( – t)b

)

= f (a) –
α

k

∫ 


( – t)

α
k –f

(
ab

ta + ( – t)b

)
dt.

Now suppose u = ab
ta+(–t)b , then

II = f (a) –
α

k

(
ab

b – a

) α
k
∫ b

a

(

u

–

b

) α
k – 

u f (u) du.

Again suppose u = 
t , then

II = f (a) – �k(α + k)
(

ab
b – a

) α
k

kJα


b–
(f ◦ g)

(

a

)
. (.)

Similarly

III = f (b) – �k(α + k)
(

ab
b – a

) α
k

kJα


a+
(f ◦ g)

(

b

)
. (.)

Using (.) and (.) in (.) and then adding the resultant with (.) and (.) completes
the proof. �

Lemma . Under the assumptions of Lemma ., if k → , we have

Mf (a, b;α, ; g) =



∑
i=

Ii

=



[
ab(b – a)

∫ 





[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

– ab(b – a)
∫ 





[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

– ab(b – a)
∫ 



[
( – t)α – tα

] 
[ta + ( – t)b] f ′

(
ab

ta + ( – t)b

)
dt

]
,
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where

Mf (a, b;α, ; g) = f
(

ab
a + b

)
–

�(α + )


(
ab

b – a

) α
k
{

Jα


b–
(f ◦ g)

(

a

)
+ Jα


a+

(f ◦ g)
(


b

)}
.

This result is due to Set et al. [].

3 Results and discussions
In this section, we derive some new k-fractional integral inequalities.

Theorem . Let f : I \ {} → R be a harmonically h-convex function where a, b ∈ I with
a < b. If f ∈ L[a, b], then, for h( 

 ) �= , we have

k
αh( 

 )
f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ [
f (a) + f (b)

] ∫ 


t

α
k –[h( – t) + h(t)

]
dt.

Proof Since f is a harmonically h-convex function, so we have

f
(

ab
( – t)a + tb

)
≤ h

(



)[
f
(

ab
ta + ( – t)b

)
+ f

(
ab

( – t)a + tb

)]
.

Multiplying both sides of the above inequality by t
α
k – and integrating it with respect to t

on [, ], we have

k
α

f
(

ab
a + b

)

= f
(

ab
a + b

)∫ 


t

α
k – dt

≤ h
(




)[∫ 


t

α
k –f

(
ab

ta + ( – t)b

)
dt +

∫ 


t

α
k –f

(
ab

( – t)a + tb

)
dt

]

= h
(




)(
ab

b – a

) α
k
{∫ 

a


b

(
x –


b

) α
k –

f
(


x

)
dx +

∫ 
a


b

(

a

– x
) α

k –

f
(


x

)
dx

}

= h
(




)(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}
.

This implies

k
αh( 

 )
f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}
. (.)

Now

f
(

ab
ta + ( – t)b

)
≤ h( – t)f (a) + h(t)f (b),

f
(

ab
( – t)a + tb

)
≤ h(t)f (a) + h( – t)f (b).
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Adding the above two inequalities and multiplying both sides by t
α
k –, we have

t
α
k –f

(
ab

ta + ( – t)b

)
+ t

α
k –f

(
ab

( – t)a + tb

)
≤ t

α
k –[h( – t) + h(t)

][
f (a) + f (b)

]
.

Integrating the above inequality with respect to t on [, ], we have

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ [
f (a) + f (b)

]∫ 


t

α
k –[h( – t) + h(t)

]
dt. (.)

Summing inequalities (.) and (.) completes the proof. �

We now discuss some special cases of Theorem ..
I. If h(t) = t in Theorem ., then we have the following new result.

Corollary . Let f : I \ {} → R be a harmonically convex function, where a, b ∈ I with
a < b. If f ∈ L[a, b], then we have

k
α

f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ k[f (a) + f (b)]
α

.

II. If h(t) = ts in Theorem ., then we have the following new result.

Corollary . Let f : I \ {} →R be a harmonically s-convex function, where a, b ∈ I with
a < b. If f ∈ L[a, b], then we have

sk
α

f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ [
f (a) + f (b)

](
kBk

(
α, k(s + )

)
–

k
α + ks

)
.

III. If h(t) = t–s in Theorem ., then we have the following new result.

Corollary . Let f : I \ {} → R be a harmonically s-Godunova-Levin convex function,
where a, b ∈ I with a < b. If f ∈ L[a, b], then, for α > ks, we have

k
sα

f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ [
f (a) + f (b)

](
kBk

(
α, k( – s)

)
–

k
α – ks

)
.

IV. If h(t) =  in Theorem ., then we have the following new result.
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Corollary . Let f : I \ {} → R be a harmonic P-function, where a, b ∈ I with a < b. If
f ∈ L[a, b], then we have

k
α

f
(

ab
a + b

)
≤

(
ab

b – a

) α
k

k�k(α)
{

kJα


a–
(f ◦ g)

(

b

)
+ kJα


b+

(f ◦ g)
(


a

)}

≤ k[f (a) + f (b)]
α

.

Now using the auxiliary results, we derive some trapezoidal and mid-point type inequal-
ities.

Theorem . Assume that f : [, ] → R is a differentiable function such that |f ′|q is a
harmonic convex function on [, ]. Then

∣∣Tf (a, b;α, k; g)
∣∣ ≤ ab(b – a)


· I– 

q · J

q ,

where

I =
∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b] dt =


b

(
I –


α/k I + I – I

)
,

with

I = kF,k

(
k, –α, k, k;


k

,
b – a
bk

)
;

I = kBk(α + k, )F,k

(
α + k, , k,α + k + ; ,

b – a
bk

)
;

I = kBk(α + k, )F,k

(
α + k, , k,α + k + ; ,

b – a
bk

)
;

I = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
,

and

J =
∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
q

dt

≤ 
b

[∣∣f ′(a)
∣∣q

(
J –


α/k J + J – J

)
+

∣∣f ′(b)
∣∣q

(



J –


α/k+ J + J – J

)]
,

with

J = kBk(k, k)F,k

(
k, –α – k, k, k;


k

,
b – a
bk

)
;

J = kBk(α + k, k)F,k

(
α + k, –k, k,α + k;


k

,
b – a
bk

)
;

J = kBk(k, k)F,k

(
k, –α, k, k;


k

,
b – a
bk

)
;

J = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;
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J = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;

J = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;

J = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
;

J = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
.

Proof From Lemma ., using the property of modulus and the power-mean inequality,
we have

∣∣Tf (a, b;α, k; g)
∣∣

=
∣∣∣∣ab(b – a)



∫ 



[t
α
k – ( – t)

α
k ]

[ta + ( – t)b] f ′
(

ab
ta + ( – t)b

)
dt

∣∣∣∣
≤ ab(b – a)



∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣dt

≤ ab(b – a)


I– 
q J


q ,

where

I =
∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b] dt

= 
∫ /



( – t)
α
k – t

α
k

[ta + ( – t)b] dt +
∫ 



t
α
k – ( – t)

α
k

[ta + ( – t)b] dt

=


b

[
I –

(



) α
k · I + I – I

]
, (.)

with

I =
∫ 



(
 –

u


) α
k
(

 –
b – a

b
u
)–

du = kF,k

(
k, –α, k, k;


k

,
b – a
bk

)
;

I =
∫ 


u

α
k

(
 –

b – a
b

u
)–

du

= kBk(α + k, )F,k

(
α + k, , k,α + k + ; ,

b – a
bk

)
;

I =
∫ 


t

α
k

(
 –

b – a
b

t
)–

dt

= kBk(α + k, )F,k

(
α + k, , k,α + k + ; ,

b – a
bk

)
;

I =
∫ 


( – t)

α
k

(
 –

b – a
b

t
)–

dt = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
,
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and using the harmonic convexity of |f ′|q, we have

J =
∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
q

dt

≤
∫ 



|t α
k – ( – t)

α
k |

[ta + ( – t)b]

[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

= 
∫ /



( – t)
α
k – t

α
k

[ta + ( – t)b]

[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

+
∫ 



t
α
k – ( – t)

α
k

[ta + ( – t)b]

[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

=
∫ 



( – u
 )

α
k – ( u

 )
α
k

[ u
 a + ( – u

 )b]

[(
 –

u


)∣∣f ′(a)
∣∣q +

u

∣∣f ′(b)

∣∣q
]

du

+
∫ 



t
α
k – ( – t)

α
k

[ta + ( – t)b]

[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

=


b

[∣∣f ′(a)
∣∣q

(
J –


α/k J + J – J

)

+
∣∣f ′(b)

∣∣q
(




J –


α/k+ J + J – J

)]
, (.)

with

J =
∫ 



(
 –




u
) α

k +(
 –

b – a
b

u
)–

du = kBk(k, k)F,k

(
k, –α – k, k, k;


k

,
b – a
bk

)
;

J =
∫ 


u

α
k

(
 –




u
)(

 –
b – a

b
u
)–

du

= kBk(α + k, k)F,k

(
α + k, –k, k,α + k;


k

,
b – a
bk

)
;

J =
∫ 


u
(

 –



u
) α

k
(

 –
b – a

b
u
)–

du = kBk(k, k)F,k

(
k, –α, k, k;


k

,
b – a
bk

)
;

J =
∫ 


u

α
k +

(
 –

b – a
b

u
)–

du = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;

J =
∫ 


t

α
k ( – t)

(
 –

b – a
b

t
)–

dt = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;

J =
∫ 


t

α
k +

(
 –

b – a
b

t
)–

dt = kBk(α + k, k)F,k

(
α + k, , k,α + k; ,

b – a
bk

)
;

J =
∫ 


( – t)

α
k +

(
 –

b – a
b

t
)–

dt = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
;

J =
∫ 


t( – t)

α
k

(
 –

b – a
b

t
)–

dt = kBk(k,α + k)F,k

(
k, , k,α + k; ,

b – a
bk

)
,

and the proof is complete. �
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Theorem . Assume that f : [, ] → R is a differentiable function such that |f ′|q is a
harmonic convex function on [,]. Then

∣∣Mf (a, b;α, k; g)
∣∣ ≤ ab(b – a)


(
I–/qJ/q + K –/qL/q + M–/qN /q),

where I is given by (.) , J is given by (.),

K =
a

b(a + b)
,

L ≤ |f ′(a)|q
b · kBk(k, k)F,k

(
k, –k, k, k;


k

,
b – a
bk

)

+
|f ′(b)|q

b · kBk(k, k)F,k

(
k, , k, k; ,

b – a
bk

)
,

M =


b(a + b)

and

N ≤ |f ′(a)|q
b

[
F,k

(
k, , k, k; ,

b – a
bk

)
– F,k

(
k, –k, k, k;


k

,
b – a
bk

)]

+
|f ′(b)|q

b

[
F,k

(
k, , k, k; ,

b – a
bk

)
–




F,k

(
k, , k, k; ,

b – a
bk

)]
.

Proof From Lemma ., using the property of modulus and the power-mean inequality,
we have

∣∣Mf (a, b;α, k; g)
∣∣ ≤ ab(b – a)



[∫ 



|( – t)
α
k – t

α
k |

[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣dt

+
∫ 






[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣dt

+
∫ 





[ta + ( – t)b]

∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣dt
]

≤ ab(b – a)


(
I–/qJ/q + K –/qL/q + M–/qN /q),

where

K =
∫ 






[ta + ( – t)b] dt =

a
b(a + b)

,

and

L =
∫ 






[ta + ( – t)b]

[∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
]q

dt

≤
∫ 






[ta + ( – t)b]

[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt,
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and using the change of variables, we have

L ≤ 
b

∣∣f ′(a)
∣∣q

∫ 



(
 –




u
)(

 – u · b – a
b

)–

du

+


b

∣∣f ′(b)
∣∣q

∫ 


u
(

 – u · b – a
b

)–

du

=
|f ′(a)|q

b · kBk(k, k)F,k

(
k, –k, k, k;


k

,
b – a
bk

)

+
|f ′(b)|q

b · kBk(k, k)F,k

(
k, , k, k; ,

b – a
bk

)
,

M =
∫ 





[ta + ( – t)b] dt =


b(a + b)

,

and

N =
∫ 





[ta + ( – t)b]

[∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
]q

dt

=
∫ 




[ta + ( – t)b]

[∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
]q

dt

–
∫ 






[ta + ( – t)b]

[∣∣∣∣f ′
(

ab
ta + ( – t)b

)∣∣∣∣
]q

dt

≤ 
b

∫ 



(
 – t · b – a

b

)–[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

–


b

∫ 




(
 – t · b – a

b

)–[
( – t)

∣∣f ′(a)
∣∣q + t

∣∣f ′(b)
∣∣q]dt

=
|f ′(a)|q

b

[∫ 


( – t)

(
 – t · b – a

b

)–

dt –
∫ 




( – t)

(
 – t · b – a

b

)–

dt
]

+
|f ′(b)|q

b

[∫ 


t
(

 – t · b – a
b

)–

dt –
∫ 




t
(

 – t · b – a
b

)–

dt
]

=
|f ′(a)|q

b

[
F,k

(
k, , k, k; ,

b – a
bk

)
– F,k

(
k, –k, k, k;


k

,
b – a

bk

)]

+
|f ′(b)|q

b

[
F,k

(
k, , k, k; ,

b – a
bk

)
–




F,k

(
k, , k, k; ,

b – a
bk

)]
.

This completes the proof. �

4 Conclusion
A new refinement of Hermite-Hadamard’s inequality via k-Riemann-Liouville fractional
integrals is obtained. We have derived two new k-fractional integral identities. Utilizing
these identities, we have derived some new k-fractional bounds which involve k-Appell’s
hypergeometric functions via the functions which have the harmonic convexity property.
It is expected that the ideas and techniques of this article may be useful for future research.
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