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1 Introduction

The bilevel programming problem is a hierarchical optimization problem involving de-
cision processes with two decision makers, the so-called leader or upper level decision
maker and the so-called follower or lower level decision maker. In such a hierarchical
decision framework, the leader first specifies a strategy, and then the follower chooses a
strategy in view of the leader’s decision. Two decision makers attempt to optimize their
respective objective functions, but are affected by the actions with each other. In the past
few decades, the bilevel programming problem has widely applied in numerous areas in-
cluding transport network design [1, 2], price control [3], principal-agent problems [4, 5],
supply chain management [6, 7], engineering design [8, 9], electricity markets [10]. Never-
theless, the bilevel programming problem is generally non-convex and non-differentiable,
and it is NP-hard [11] and quite difficult to deal with. Many researchers have worked on
this topic, like Dempe [12], Colson et al. [13], Kalashnikov et al. [14], Bard [15], Dempe
[16], Dempe et al. [17] and Zhang et al. [18].
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It is well known that, in the conventional bilevel programming problem, the coefficients
in both objective functions and constraints are deterministic or crisp. However, in prac-
tice, we may be faced with some situations where the coefficients in the problem are uncer-
tain. To tackle these uncertain coefficients, stochastic and fuzzy approaches are commonly
used, and accordingly stochastic and fuzzy bilevel programming problems are proposed.
In stochastic bilevel programming problems [19], the coefficients are viewed as random
variables with known probability distributions; whereas in fuzzy bilevel programming
problems [20, 21], the coefficients are regarded as fuzzy sets with known membership
functions. It is worth mentioning that the probability distributions and the membership
functions are of great importance to formulate and solve these two classes of problems.
However, it is a complicated task for decision makers to choose appropriate probability
distributions or membership functions in the case of stochastic or fuzzy uncertainties. To
efficiently cope with the uncertainties, there emerges the interval programming, which
becomes a prominent tool for tackling decision problems with uncertain parameters and
it only requires to calculate the bounds of the uncertain coefficients. On this basis, the
interval bilevel programming problem, whose coefficients of both objective functions or
constraints are interval numbers, begins to attract more and more researchers, but to the
best of our knowledge, academic papers about this kind of problem are still few.

Some studies as regards the interval bilevel linear programming problem exist in the lit-
erature. Among them, Abass [22] applied the possibility degree of interval number to re-
duce interval inequality constraints into deterministic inequality forms and employed the
midpoint and radius of interval number to convert interval objective functions of the up-
per and lower levels into both deterministic objective functions. Then the interval bilevel
linear programming problem with interval coefficients in both objective functions and
constraints was transformed into a deterministic bilevel optimization problem. In this
way, a better optimal solution can be obtained with a smaller possibility degree of the
constraint, However, a smaller possibility degree implies a smaller reliability of the un-
certain constraint. Meanwhile, this transformation of interval inequality constraints into
crisp equivalent forms could lead to the uncertainty of intervals lost to some extent. Wang
and Du [23] investigated the bilevel linear programming problem with interval coefficients
in both objective functions, proposed a concept of the optimal solution and developed an
approach based on a new partial order on intervals to cope with the problem. For the same
kind of problem, Calvete and Galé [24] designed two enumerative algorithms to obtain the
best and worst optimal solutions of the problem and provided the optimal value range for
the upper level objective function. In the above two works, the constraints are confined to
crisp inequality forms. Subsequently, Ren and Wang [25] pointed out that the algorithm
of finding the worst optimal solution (KBW) proposed by Calvete and Galé [24] was not
always yield a correct solution, and presented two types of cutting plane methods to com-
pute the best and worst optimal solutions. Moreover, the two algorithms were extended
to determine the best and worst optimal solutions of the general interval bilevel linear
programming problem. Nehi and Hamidi [26] also discussed the drawbacks of the KBW
algorithm in [24], proposed a revised algorithm (RKBW) and extended the revised algo-
rithm to deal with the general interval bilevel linear case. It should be noted here that the
best and worst optimal solutions obtained by these above three studies are two extreme
cases, and thus it is difficult to reflect different preferences of different decision makers in
practice.
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Under the above consideration, from a point of decision makers’ preferences, our ob-
jective is to propose an alternative way based on preference-based index to deal with the
interval bilevel linear programming problem in which all coefficients in both objective
functions and constraints are intervals. To this end, we first convert the original constraint
region into its crisp equivalent form by combining normal variation of interval number
with chance-constrained programming [27], and thus transform the original problem into
an interval bilevel programming problem where interval coefficients are in both objective
functions only. This kind of transformation keeps the uncertainty of the original constraint
region as much as possible. Taking into account different preferences of different decision
makers, the preference level that the interval objective function is preferred to a target
interval is defined in terms of preference-based index developed by Ruan et al. [28]. Then
a preference-based deterministic bilevel programming problem can be constructed by re-
placing the upper level interval objective function with corresponding preference level
and using the order relation <,,, to handle the lower level interval objective function. For
the constructed nonlinear deterministic problem, we adopt an estimation of distribution
algorithm to solve it. Finally, several numerical examples are provided to demonstrate the
feasibility of the proposed method.

The remainder of this paper is organized as follows. Section 2 briefly recalls some ba-
sic definitions and preliminary results related to interval numbers. In Section 3, we intro-
duce the interval bilevel linear programming problem. In Section 4, a new approach based
on preference-based index is proposed to handle the interval bilevel linear programming
problem. Section 5 provides some numerical examples to illustrate the proposed method
and make some comparisons with the existing methods. Finally, we conclude the paper
and suggest directions for future work in Section 6.

2 Preliminaries
Let R be the set of all real numbers.
An interval number ¢’ can be defined as

= [c‘,c*] = {c|c’ <c<c',ce R},

where ¢™ and ¢* are the lower and upper bounds of ¢/, respectively. If ¢~ = ¢*, then ¢! is a
real number.

In terms of its midpoint and half-width, an interval number ¢! can also be defined as

= (m(c’),w(c’)) = {clm(c’) - w(c’) <c< m(c’) + w(c’),c ER},

where m(c!) = % and w(c) = ”écf are the midpoint and half-width of interval ¢/, re-
spectively.

For ¢! = [¢],¢f], ¢ = [c5,¢3] and ¢! = [, ¢*], the arithmetical operations on intervals are
defined as follows:

(i) d+c=lef +c5,¢f +c3l;

(i) d—cb =[] —ci,cf —c3];

(i) ke' = {10

With respect to the more details of interval mathematics, please see Moore [29] and
Alefeld and Herzberger [30].

Next we recall two types of interval ranking relations.
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Definition 1 ([31]) The order relation <, between two interval numbers ¢} = [c], ¢;] and
b =[c3,¢3] is defined as:

c{ =w cé if m(c{) < m(cé) and w(c{) < w(cé) for minimization problems,

< b if m(ch) < m(ch) and w(ch) > w(cl) for maximization problems.

Furthermore, ¢} <, ¢} if ¢} <, ¢} and ] #cb.

Definition 2 ([32]) The perceived value of an interval number ¢! = [¢™,¢*] is defined as:
o(d)=yc +@-y),
where y(0 <y <1) is the optimism degree of decision makers.

Definition 3 ([28]) For any two interval numbers ¢! = [¢],¢]] and ¢}, = [c;, 3], a prefer-
ence-based index can be defined as:

5(c <l = o(ch) —olc)  (yeg+(1-y)e3) —(yeg + (1 -y)e})

w(c) +w(c) +1 3 —c)+ 3t —e)+1

)

where < denotes ¢! to be inferior to ¢}, o(cl) and o(c}) denote the perceived values of ¢!
and ¢, respectively. If §(cf < c) > 0, ¢! is preferred to cl, for a minimization problem.

3 Interval bilevel linear programming problem
Consider the following interval bilevel linear programming problem with interval objec-

tives and interval constraints:

min,, [, cf; o + [y, ¢fp 1%
where x, solves
ming, [c5;, 511w + [€59, €55 1%0 g

s.t. lag,aj o + [ag,ahle > [b7,bf], i=1,2,...,m,

x1>0,%, >0,

where x; and x; are #n;-dimensional upper level decision variable column vector and #,-
dimensional lower level decision variable column vector, respectively, [cl‘j,cl*i], l,j=1,2,
and [al.’j, alfj], i=1,2,...,m, are n;-dimensional interval vectors whose components are all
intervals, and [b7, /], i=1,2,...,m are interval numbers.

Here, it is important to realize that the meaning of minimizing both objective functions
and inequality constraints is not clear at all owing to the presence of interval coefficients in
problem (1). In other words, how to tackle the relationship between the left and the right
hand sides of the interval inequality constraints and how to search the optimal values for
the interval objective functions are two important issues. Thus we cannot blindly apply
solution concepts and existing approaches for deterministic bilevel cases to handle this
type of problem. For this purpose, we will develop a solution methodology from a new
perspective to transform and deal with problem (1) in the following section.

4 Solution methodology
In this section, we develop a novel approach on the basis of preference-based index to
convert and cope with the interval bilevel linear programming problem (1).
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4.1 Conversion of the interval constraint region into its crisp one
To deal with problem (1), we first shall discuss crisp equivalent transformation for the in-
terval constraint region in problem (1). In order to do so, we first need to convert each
interval inequality constraint into its crisp form. From the point of decision maker’s satis-
faction, several typical methods introduced by Sengupta et al. [33], Guo and Wu [34], and
Allahdadi and Nehi [35] mainly focus on transforming an interval inequality constraint
into a type of satisfactory crisp constraint. However, it has been pointed out by Chen et al.
[27] that these types of conversion could lose the uncertainty of intervals in part during the
transformation process. In a different approach, recently Chen et al. [27] discussed a new
equivalent transformation for interval inequality constraint in terms of normal variation
of interval number and chance-constrained programming approach. The main advantage
of this kind of transformation is to maintain as much uncertainty as possible. In this way,
we first transform any interval inequality constraint of problem (1) into a stochastic in-
equality form by normal variation of intervals.

For any interval a/ = [a~,a*], in terms of the 30 law, its corresponding normally dis-

tributed random variable, denoted by @ ~ N (i1, 5%), can be determined as follows:

Clearly, we have [a~,a*] = [u — 30, u + 30]. Notice that the probability that any interval
number a falls in [a~,a"] is 99.73% on the basis of the 30 law. Thus it is reasonable to
utilize a normally distributed random variable to represent an interval.

By replacing interval coefficients with their corresponding normally distributed random

variables, the ith interval inequality constraint of problem (1) can be converted as:
anXi +apxy > by, i=1,2,...,m,

where a;; = (lejl,ﬁi/2,...,ﬁljn}.), i=12,...,m, j = 1,2, are corresponding normally dis-
L'_j)
ing normally distributed random variables of interval numbers [5;7, b;]. For simplicity, we

tributed random vectors of interval vectors [a a;;.], and 1_9,-, i=1,2,...,m are correspond-
assume that a;;,a;, ..., lef,fnj and b; are independent from each other.

As is well known, chance-constrained programming approach [36] is the most applied
one to handle the stochastic constraints. By this means, stochastic constraints hold at least
some satisficing probability level specified by decision makers. With the aid of chance-
constrained programming, the above ith stochastic inequality constraint can be reformu-

lated as follows:
Pr{ayx +anx, > b} > pi, i=12,...,m,

where Pr denotes the probability of the event, and B; € (0,1) is the probability level of the
ith constraint, i = 1,2,...,m.
In terms of Theorem 5.1 in [27], the crisp equivalent form of the above ith chance in-

equality constraint can be obtained.
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Now we have converted the interval constraint region of problem (1) into its crisp struc-

ture. Then problem (1) can be transformed into the following problem:

min,,  [cg, ey )xn + [, cfy lxn
where x, solves
min,, [c5;,c5 1% + [€35, C5p ] %2
s.t. Yook E@ng)xis
+ 212 E(@ioe) %o
OB S Vi@ + Y0 Vi@, + V()
>E(b), i=1,2,...,m,

(2)

T T
X1 = (K11,%125 X1y ) - = 0,50 = (K21, %20, ..., %20,) " > 0,

where E(-) and V/(-) denote the expectation and variance of a random variable, and ®! is
the inverse function of standardized normal distribution.
For convenience, we denote the constraint region of problem (2) by D.

Equivalently, problem (2) can be rewritten as

minaq Fl(xb %X3) = [61_1’ Cﬁ]xl + [51_2: sz]xz

where x, solves
3)

miny, f7(%1,%2) = [y, €311 + [€35, €l

s.t. (x%1,%0) € D,

where F! = [F~,F*] and f’ = [f~,f*] denote interval objective functions of the upper and
lower level programming problems, respectively.
Clearly, the above problem is a bilevel programming problem with interval coefficients

in both objective functions only.

4.2 Preference-based deterministic bilevel programming problem

In order to reflect different preferences of different decision makers, in this section we
first introduce the concept of the preference level that the interval objective function is
preferred to a target interval in light of preference-based index in [28]. Then we build a
preference-based deterministic bilevel programming problem for problem (3) based on
the preference level and the order relation <,,,,.

For a given x;, the lower level programming problem of problem (3) is an essentially
single level optimization problem for objective function involving interval coefficients.
For this type of problem, the midpoints of the intervals are often used to cope with the
related interval objective functions, but it may cause the loss of helpful information to
some extent in terms of such a treatment. To better reflect uncertain information, the
order relation <,,,, which considers the midpoint and half-width of intervals at the same
time is employed to compare different interval objective function values of the lower level
problem for different decision variables. For given x;, denote the feasible region of the

lower level problem by D(x;). Based on the linear combination method, then the lower
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level problem can be converted into the following problem:

ming,  Om(fl(x1,x2)) + (1 - O)w(f! (x1,%2))

%2 € D(x1),

(4)

where 6(0 < 6 < 1) denotes a weighting factor, m(f! (x1,%,)) = w and w(f7(xy,
x7)) = Jw represent the midpoint and half-width of the lower level objective
function f!(x1,,), respectively.

Denote the set of optimal solutions of problem (4) by M’(x;) for a given x;. Then the

feasible region of problem (3) can be defined as:
IR' = {(xl,x2)|(x1;x2) €D,x; € Ml(xl)}-
Thus problem (3) can be formulated as:

minxl,xz Fl(xlyxZ) (5)

s.t. (%1, %) € IR,

It is well known that the order relation between intervals is often applied to tackle inter-
val objective function. So far there have been all sorts of definitions of the interval order
relations based on various mathematical approaches [37-39] with the exception of the
order relation <,,,, mentioned above. Among them, Sengupta and Pal [38] proposed the
acceptability index for ranking any two interval numbers based on decision maker’s sat-
isfaction. It has been pointed out by Ruan et al. [28] that this index cannot be applied for
reflecting different preferences from different decision makers. For this purpose, we ap-
ply preference-based index for ranking interval numbers introduced by Ruan et al. [28] to
treat the interval objective function in the upper level of problem (5).

In order to find a satisfying solution for the decision maker at the upper level, the interval
objective function often needs to satisfy a desired target interval determined in advance by
the decision maker as far as possible. Let C! = [C~, C*] be a predetermined target interval
corresponding to the upper level objective function. Based on preference-based index for
ranking interval numbers, we define the concept of the preference level as follows.

Definition 4 For any (x1,x7) > 0, §(F/(x,%,) < C!) is said to be a preference level that
the interval objective function F!(x1,%,) is inferior to a target interval C’. If §(F!(xy,x,) <
C!) > 0, F!(x1,%,) is preferred to C! for a minimization problem.

Clearly, it needs to maximize the preference level of the interval objective function to
be inferior to its target interval for a minimization problem. In this sense, problem (5) can
be transformed into the following preference-based deterministic bilevel programming
problem:

maxy y, O(F (x1,%;) < Cl) ©)

s.t. (x1,%7) € IR,

Now we give the concept of a preference §-optimal solution for the interval bilevel linear
programming problem (1).
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Definition 5 A solution (x},x3) € IR is said to be a preference §-optimal solution of prob-
lem (1) if there does not exist another feasible solution (x1,x3) € IR! such that 8(F(x1,%5) <
Ch) > §(F!(x},x3) < CI).

Using Definition 3, we have

o(C") = o(F! (1, %,))
w(CT) + w(FI(x1, %)) +1°

8(F'(x1,20) < C') =

Thus problem (6) can be rewritten as

o(Ch—o(F! (x),x7))
w(C)+w(FL(x1,40))+1

where x, solves
miny,  Om(f!(x1,x2)) + (1 — O)w(f! (x1,%2))
n_l E Zli sM1s
2 E( 1n2) u )
+ ) 4 E(@ie)xot
+ CI)fl(ﬁi)\/Z?:ll V(‘_zils)x%s + Z?:zl V(ZZL’Zt)x%t + V(I;z)

>Eb;), i=12,...,m,

T T
X1 = (X1, %125 X1 ) = 0,80 = (K21, %02, ..., X2,) - = 0.

On the other hand, if the original problem is a type of maximization stated as follows:

maxy, [cq,cfilxn + [chy cip ]2
where x, solves
maxy, [cy,¢5 1% + [, ¢35 1%2 8)

s.t. la;, afjlx + [ag,ahlx, > [b7,6]], i=1,2,...,m,

x1>0,x, > 0.

For problem (8), the decision maker hopes to maximize the preference level of the inter-
val objective function to be superior to its target interval. By using the similar idea for the
above minimization, another preference-based deterministic bilevel programming prob-

lem of problem (8) can be expressed as:

maxy, 8(F/(x1,%7) = C)
where x; solves )
maxy, Om(f(x1,%2)) + (1 = 0)(~w(f!(x1,%2)))

(x1,%2) € D.
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Equivalently, problem (9) can be rewritten in the form

o(FL (x1,%9))~0(CT)
w(F! (x1,%2))+w(Cl)+1

where x, solves
max,, Om(f'(x1, %)) + (1 - 0)(~w(f! (x1,%2)))
Yot E(@is)xs
+ 22 E(@ine)xe
+ OB) S, Vian)wd + Y0 Viadad, + Vi)
>EGB), i=12...,m,

max,,

— T _ T
X1 = (‘xll)xlzi"‘!xlnl) > Oer = (x21!x22’~'7x2n2) > 0.

Clearly, problems (7) and (10) are a class of nonlinear bilevel programming problems
which are coped with by one of the metaheuristic techniques namely estimation of distri-

bution algorithm in the next subsection.

4.3 Solution approach based on estimation of distribution algorithm

It is well known that bilevel programming problem is a complex optimization model and
it is difficult to tackle. Usually, traditional solution methods involve huge computational
load when solving this type of problem and they are only successful for some special bilevel
cases. Estimation of distribution algorithm (EDA) [40], which is a new evolutionary meta-
heuristic algorithm, has attracted considerable attention as an alternative method for solv-
ing bilevel programming problem [41, 42] in recent years. For EDA, the main steps of the
iterative procedure include: randomly create initial population, select some excellent in-
dividuals, build a probabilistic model based on excellent individuals chosen, generate new
individuals by sampling from the constructed probabilistic model, and repeat the cycle
until a stopping criterion is met. Notice that the main characteristics of this approach is to
reproduce a new generation implicitly by sampling from a probability model constructed
by promising candidate solutions.

In our work, estimation of distribution algorithm is applied to solve nonlinear bilevel
programming problems (7) and (10). For these two problems, observing that the lower
level objective functions are linear and constraint functions are quadratic, thus a number
of traditional techniques can be employed to solve the lower level problem. Furthermore,
estimation of distribution algorithm is used to deal with the upper level problem. Based
on these ideas, we give the details of the computational method by combining estimation
of distribution algorithm with some traditional method for solving problems (7) and (10)
as follows:

Step 1 Ask the decision makers to specify the probability levels 8;,i =1,2,...,m,

weighting factor 6, target interval C! and optimism degree of the upper level
decision maker y. Generate the initial population Pop(0) with population size N
comprised by the upper level decision variable. Let £ = 0.

Step 2 For each given upper level individual, we solve the lower level problem by means

of some traditional method.

Step 3 Evaluate the fitness value defined by the upper level objective function value for

each individual.
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Step 4 Select M best individuals from Pop(¢) to form the parent set Q(¢) by the

truncation selection, and update the probability model by estimating the

distribution of Q(%).
Step 5 Sample N new individuals from the updated probabilistic model. Denote the set
of all these individuals by O(¢). Select N best offspring candidates from the set

Pop(z) U O(¢) to construct the next population Pop(t + 1).

Page 10 of 16

Step 6 If the algorithm is executed to the maximal number of generations, then stop;

otherwise, let £ = £ + 1, go to Step 2.

5 Numerical examples and discussion

To show the feasibility and efficiency of the proposed approach for handling the interval

bilevel linear programming problem, we test three numerical examples in this section.

Furthermore, some comparisons between the proposed method and some existing ap-

proaches are made to better demonstrate advantages of the proposed approach.

5.1 Numerical examples

The following three examples are selected from the existing literature.

Example 1 This example extracted from the literature [22] is an interval bilevel linear

programming problem with only one interval inequality constraint:

max,

maxy

s.t.

[3,6]x + [4,9]y
where y solves
[11,13]x + [7,9]y
[3,5]x + [4,6]y > 16,
x+y=<6,

x>0,y>0.

Example 2 The following interval bilevel linear programming problem in which all the

coefficients in constraints are interval numbers is taken from [25]:

min,

miny,

s.t.

[0,1]x + [-1,2]y

where y solves

20 ]x+ [_10’ 2]y> [ 38 1407 )

107 ]yZ [_187_?]’

1,3y

(3%, 1]x + [35, 2]y = [10, 2],
[_%r_l]x"'[ ] [ ’ 136(}
[-2,-2]x + [3,1]y > [-21,-20],
[ 63

5
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Table 1 Normal distributions corresponding to interval coefficients in the first constraint of
Example 1

Interval  N(w,02) Interval  N(u,02)
13,5] N(4,03333%)  [4,6] N(5,0.33332)

Table 2 Normal distributions corresponding to interval coefficients in all the constraints of

Example 2

Interval N(p,02) Interval N(p,02) Interval N(p,02)

[3,1] N(0.9857,0.00482) (1.2 N(1.85,0.05%) [10, 3] N(10.1,0.0333%)

- é -1] N(-1.0833,0.0278%) [% 2] N(1.7,0.12) -6,-%1] N(-5.6833,0.1056%)
- % -2] N(-2.25,0.0833%) (511 N(0.75,0.0833%) [-21,-20] N(-20.5,0.1667%)
2,11 N(-1.2875,00958?) [—i—%} -2 N(-205,00167%)  [-38-3]  N(-36.5875,04708%)
) N(0.7333,0.0889%) [55,-2  N(20500167%)  [-18,-%) N(-17.4,02%)

Table 3 Normal distributions corresponding to interval coefficients in all the constraints of

Example 3

Interval N(p,02) Interval N(u,02) Interval N(u,02)

[0.5,1] N(0.75,0.08332) [1.9,2] N(1.95,0.01672) [10,10.5] N(10.25,0.08332)
[-2,-1] N(=1.5,0.16672) [,2] N(1.5,0.1667%) [-6,-5] N(=5.5,0.16672)
[-3,-2] N(=2.5,0.16672) [05,1] N(0.75,0.08332) [-21,20] N(=20.5,0.16672)
[-2,-1] N(=1.5,0.16672) [-3,-2] N(=2.5,0.16672) [-38,-37] N(=37.5,0.16672)
[0.5,1] N(0.75,0.0833%) [-3,-2] N(=2.5,0.16672) [-18,-17] N(=17.5,0.16672)

Example 3 Consider the following interval bilevel linear programming problem from
[43]:

min, [-1,-0.5]y
where y solves
1,2]y
0.5,1]x + [1.9,2]y > [10,10.5],
2,-1]x + [1,2]y > [-6,-5], 13)

min, [
[
[~
[-3,-2]x + [0.5,1]y > [-21,-20],
[~
[

s.t.

2,-1]x + [-3,-2]y > [-38,-37],
0.5,1]x + [-3,-2]y > [-18,-17],
x>0,y>0.

5.2 Results and discussion

In this section, we show the computational results of three numerical examples to assess
the performance of the proposed approach. The parameters, population size of each gen-
eration, size of the selected population, maximum number of generations, associated with
estimation of distribution algorithm are taken as 50, 15 and 100, respectively.

In order to deal with these examples, first we give normal distribution random variables
corresponding to interval coefficients of all the constraints of such problems according to
the 30 law. Tables 1-3 present the relations of interval coefficients and corresponding ran-
dom variables with normal distributions for these three examples. Base on these results,
all interval inequality constraints of these problems can be reformulated into stochastic
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equivalent forms. For simplicity, each chance-constrained probability related to the re-
sulted stochastic inequality constraints is set as g = 0.95, and we have ®~1(8) = 1.645.
Based on the proposed models (7) and (10), these interval bilevel linear programming
problems can be converted into their equivalent deterministic ones.

For Example 1, the interval target corresponding to the upper level objective functions
are set as C! = [15,25], and the weighting factor for the lower level objective function is
set as 6 = 0.4. On the basis of model (10), then the equivalent deterministic form of this

problem is expressed as follows:

[y Bx+4y)+(1-y)(6x+9y)]-[y15+(1~y)25]

ma
R ©re9y) Grd) | 2535 )
where y solves
max, 0.4[ BN W] | g [ Bt (v »

s.t. 4x + 5y + 1.645,/0.33332x2 + 0.33332y2 > 16,
x+y<6,

x>0,y>0.

We apply estimation of distribution algorithm to solve model (14) with assumption that
the decision makers specify the optimism degree y = 0.6. Then we obtain the following
result: the optimal solution is (x*, y*) = (0, 6), the corresponding upper level objective value
is F} ; = [24,54]. Furthermore, we have §(F} , > [15,25]) = 0.8095. This indicates that the
obtained interval value of the upper level objective function is superior to the interval
goal.

For this example, Abass [22] gives the optimal solution as (x*,y*) = (0, 6) with the pos-
sibility degree level A = 0.3 by adopting the midpoints and half-widths of the interval co-
efficients to formulate both interval objective functions and applying the concept of the
possibility degree of interval number to treat interval inequality constraints. As far as the
final result is concerned, the result obtained by our approach is the same as that obtained
in [22]. From the viewpoint of equivalent transformation of interval inequality constraint,
our approach can ensure that the formulated stochastic constraint at the obtained optimal
solution holds with probability of at least 95% based on chance-constrained program-
ming, in other words, this constraint is violated with probability of at most 5%. While
equivalent conversion based on the possibility degree of interval number in [22] holds at
a small possibility degree level A = 0.3. As we know, a smaller possibility degree means a
lower reliability of the interval constraint. Thus the result obtained by Abass’ approach
[22] shows a relatively low reliability.

For Example 2, the interval goal is set as C! = [10,15] for the upper level objective func-

tion, and the weighting factor is set as 6 = 0.5 for the lower level objective function. Then
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the equivalent deterministic bilevel problem can be stated as follows:

[y10+1-y)15]-[y (=) +(1-y) (x+2y)]
QEI_O L2909 4

max,

where y solves

min,  0.5(22) + 0.5(2%2)

s.t. 0.98571x + 1.85y + 1.64-5\/0.00482962 +0.05292 + 0.03332 > 10.1,
-1.0833x + 1.7y + 1.645\/0.02782962 +0.12y2 + 0.10562 > —5.6833,
-2.25x+0.75y + 1.645\/0.08332962 +0.08332y2 + 0.16672 > -20.5,
-1.2875x — 2.05y + 1.64-5\/0.09582962 +0.016672y% + 0.47082

> -36.5875,
0.7333x — 2.05y + 1.645\/0.08892962 +0.01672y% + 0.22 > -17.4,

(15)

x>0,y>0.

Next, we cope with the above problem by estimation of distribution algorithm with
y = 0.6. The optimal solution is (x*,y*) = (7.0,2.46) and the corresponding upper level
objective value is Fj , = [-2.46,11.92]. Also, we obtain §(F} , < [10,15]) = 0.8146. Thus
F} . is preferred to C! at preference-based index 0.8146.

By using two types of cutting plane methods developed by Ren and Wang [25], the best
and worst optimal solutions of this example is finally obtained as (16,11) and (7,2), and
the corresponding upper objective function values are [-11,38] and [-2,11]. In the light
of preference-based index, §([-11,38]p¢ < [10,15]) = 0.4714 and §([-2,11]p6 < [10,15]) =
0.88 when y = 0.6. It is obvious that a modest optimal interval value of the upper level is
offered to an optimistic decision maker.

For Example 3, the interval goal corresponding to the upper level objective function
is specified as C! = [-1,1], and the weighting factor related to the lower level objective
function is chosen as 6 = 0.5. Then problem (11) can be transformed into the following

equivalent deterministic bilevel problem by making use of model (7):

y (D+A-9)]=[y (=)+(1-y) (x+2y)]
1-(-1) . (x+2y)-(=y) +1
2 2

max,

where y solves
min,  0.5(22) +0.5(2%2)
st 0.75x +1.95y + 1.645,/0.0833%42 + 0.016672y2 + 0.04172 > 10.25
~1.5% + 1.5y + 1.645,/0.16672x* + 016672y + 016672 > —5.5 (16)
~2.5x + 0.75y + 1.645,/0.1667242 + 0.0833%) + 0.1667> > —20.5
~1.5x — 2.5y + 1.645,/0.1667242 + 0.16667%)” + 0.166672 > —37.5
0.75x — 2.5y + 1.645,/0.0833242 + 0.16672)2 + 0.16672 > —17.5

x>0,y>0.

After solving the above problem by estimation of distribution algorithm at y = 0.7, we
obtain its optimal solution (x*,y*) = (12.4317,9.2434) and the corresponding upper level
objective value Fj, = [-9.2434,-4.6217]. Meanwhile, we get §(F), < [-1,1]) = 1.7297.
Clearly, F} , is preferred to the interval goal C! with a higher preference-based index.
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Table 4 Objection function values and corresponding preference-based indices under
different optimism degrees of Example 3

y (X*,y*) FI 6F

03 [124317,92434]  [-9.2434,-4.6217] 14865
0.5 [124317,92434]  [-9.2434,-46217]  1.6082
07 [124317,92434]  [-9.2434,-4.6217]  1.7298
09 [9.1441,11.0] [-11,-5.5] 20316

The best and worst optimal solutions to Example 3 obtained in [43] are (16,11)
and (5.82,6.64), and corresponding upper level objective values are [-11,-5.5] and
[-6.64,-3.32]. According to preference-based index, when y = 0.7, we have §([-11,
-5.5]p7 < [-1,1]) = 3.5052 and §([-6.64,-3.32]p7 < [-1,1]) = 1.4328. Clearly, our ap-
proach provides a modest optimal interval value for an optimistic decision maker of the
upper level.

In order to show the influence of different optimism degrees from different decision
makers, Table 4 provides the results of the upper level objective function and preference-
based index under different optimism degrees. From Table 4, it is seen that y = 0.9 has
great influence on the upper level objective function. Although the objective function
values are unchanged when y = 0.3, 0.5 and 0.7, the corresponding preference-based
indices are different. Clearly, pessimistic decision maker (y = 0.3), moderate decision
maker (y = 0.5) and optimistic decision maker (y = 0.7) think that the interval value
[-9.2434, —4.6217] is superior to the interval goal C! with a lower, moderate and greater

preference-based index.

6 Conclusions
In this paper, we focus on a class of interval bilevel linear programming problems where
all coefficients are interval numbers. To deal with these problems, a novel approach based
on preference-based index is presented. In particular, we first transform the original prob-
lem into an interval bilevel programming problem with interval coefficients in both ob-
jective functions only by combining normal variation of interval number with chance-
constrained programming. This type of conversion is able to keep the uncertainty of the
original constraint region to a larger extent. Then we construct a preference-based de-
terministic bilevel programming problem by means of the preference level and the order
relation <,,,. Subsequently, we apply an estimation of distribution algorithm to deal with
the deterministic nonlinear bilevel one. Finally, the experimental results show the effec-
tiveness of the presented approach.

As future work, the proposed approach will be applicable to more realistic applications.
In addition, we will extend the proposed method to deal with interval bilevel nonlinear

programming problems.
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