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Abstract
The inequality of Popoviciu, which was improved by Vasić and Stanković (Math. Balk.
6:281-288, 1976), is generalized by using new identities involving new Green’s
functions. New generalizations of an improved Popoviciu inequality are obtained by
using generalized Montgomery identity along with new Green’s functions. As an
application, we formulate the monotonicity of linear functionals constructed from the
generalized identities, utilizing the recent theory of inequalities for n-convex functions
at a point. New upper bounds of Grüss and Ostrowski type are also computed.
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1 Introduction
Higher order convexity was introduced by Popoviciu, who defined it under the context
of divided differences of a function (see Ch., []). Inequalities of higher order convex
functions are very important and many physicists used them while dealing with higher
dimensions. It is interesting to note that results for convex functions may not be true for
convex functions of higher order. There are remarkable changes in the results, which force
to think about the existence of such results. Butt and Pečarić paid tribute to Professor T.
Popoviciu in their book [] in  to commemorate  years to Popoviciu’s inequality.
They generalized Popoviciu’s inequality for higher order convex functions and gave its
applications. Also in  [], a new class of n-convex functions at a point was introduced
by Pečarić, Praljak and Witkowski. They developed a remarkable theory to investigate
linear operator inequalities with the help of the functions, which are n-convex at a point.
This theory leads to many interesting and fascinating results with a lot of applications
in operator theory and statistics. A characterization of convex functions established by
Popoviciu [] has been studied by many people (see [, ] and the references therein).
In recent years the inequality of Popoviciu was studied in [–]. The following form of
Popoviciu’s inequality is by Vasić and Stanković in [] (see page  []).
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Theorem  Let [δ, δ] be an interval in R, for integers m ≥ ,  ≤ s ≤ m – , consider
the m-tuples z = (z, . . . , zm) ∈ [δ, δ]m, q = (q, . . . , qm) be positive m-tuples along with the
condition that

∑m
i= qi = . Then, for ψ : [δ, δ] →R being a convex function,

ψs,m(z, q) ≤ m – s
m – 

ψ,m(z, q) +
s – 
m – 

ψm,m(z, q) ()

holds, where

ψs,m(z, q) :=


Cm–
s–

∑

≤i<···<is≤m

( s∑

j=

qij

)

ψ

(∑s
j= qij zij

∑s
j= qij

)

is the linear functional with respect to ψ .

By inequality (), we write

POP[z, q;ψ] :=
m – s
m – 

ψ,m(z, q) +
s – 
m – 

ψm,m(z, q) – ψs,m(z, q). ()

Remark  Under the assumptions of Theorem , POP[z, q;ψ] ≥  for ψ being a convex
function and zero for a constant and linear function.

In order to obtain our main results in the present paper, we use the generalized Mont-
gomery identity via Taylor’s formula given in paper [].

Theorem  Let n ∈ N, ψ : I →R be such that ψ (n–) is absolutely continuous, I ⊂R is an
open interval, δ, δ ∈ I , δ < δ. Then the following identity holds:

ψ(z) =


δ – δ

∫ δ

δ

ψ(ξ ) dξ +
n–∑

l=

ψ (l+)(δ)
l!(l + )

(z – δ)l+

δ – δ
–

n–∑

l=

ψ (l+)(δ)
l!(l + )

(z – δ)l+

δ – δ

+


(n – )!

∫ δ

δ

Rn(z, ξ )ψ (n)(ξ ) dξ , ()

where

Rn(z, ξ ) =

⎧
⎨

⎩

– (z–ξ )n

n(δ–δ) + z–δ
δ–δ

(z – ξ )n–, δ ≤ ξ ≤ z,

– (z–ξ )n

n(δ–δ) + z–δ
δ–δ

(z – ξ )n–, z < ξ ≤ δ.
()

In the case n = , the sum
∑n–

l= · · · is empty, so identity () reduces to the well-known
Montgomery identity (see, for instance, [])

ψ(z) =


δ – δ

∫ δ

δ

ψ(ξ ) dξ +
∫ δ

δ

P(z, s)ψ ′(ξ ) dξ ,

where P(z, ξ ) is the Peano kernel defined by

P(z, ξ ) =

⎧
⎨

⎩

ξ–δ
δ–δ

, δ ≤ ξ ≤ z,
ξ–δ
δ–δ

, z < ξ ≤ δ.
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Remark  It is important to note that Rn ≥  for even n, as

Rn(z, ξ ) =

⎧
⎨

⎩

(z–ξ )n–

n(δ–δ) (n(z – δ) – (z – ξ )), δ ≤ ξ ≤ z,
(–)n(ξ–z)n–

n(δ–δ) (n(δ – z) – (ξ – z)), z < ξ ≤ δ.

Now δ ≤ ξ ≤ z ⇔ z – δ ≥ z – ξ . As n > , so n(z – δ) – (z – ξ ) ≥ .
Also z < ξ ≤ δ ⇔ δ – z ≥ ξ – z. As n > , so n(δ – z) – (ξ – z) ≥ .

The complete reference concerning the Abel-Gontscharoff polynomial and theorem for
‘two-point right focal’ problem is given in []. As a special choice for n = , the Abel-
Gontscharoff polynomial for ‘two-point right focal’ interpolating polynomial can be given
as

ψ(z) = ψ(δ) + (z – δ)ψ ′(δ) +
∫ δ

δ

G�,(z, w)ψ ′′(w) dw, ()

where G�,(z, w) is the Green’s function for ‘two-point right focal problem’ given as

G(z, w) = G�,(z, w) =

⎧
⎨

⎩

δ – w, δ ≤ w ≤ z,

δ – z, z ≤ w ≤ δ.
()

In the next section, we present our main results by introducing some new types of Green’s
functions.

2 Main results
We start this section by our nice observation about Abel-Gontscharoff identity () and
the related Green’s function for ‘two-point right focal problem’. Therefore, keeping in view
the Abel-Gontscharoff Green’s function for ‘two-point right focal problem’, we would like
to introduce some new types of Green’s functions Gk : [δ, δ] × [δ, δ] → R, (k = , , )
defined as

G(z, w) =

⎧
⎨

⎩

z – δ, δ ≤ w ≤ z,

w – δ, z ≤ w ≤ δ.
()

G(z, w) =

⎧
⎨

⎩

z – δ, δ ≤ w ≤ z,

w – δ, z ≤ w ≤ δ.
()

G(z, w) =

⎧
⎨

⎩

δ – w, δ ≤ w ≤ z,

δ – z, z ≤ w ≤ δ.
()

The graphical representations of Gk , k = , , , , are depicted in Figure  which shows
that all four Green’s functions are continuous and symmetric. Moreover, all functions are
convex with respect to both the variables z and w. These new Green’s functions enable us
to introduce some new identities, stated in the form of the following lemma.
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Figure 1 Graph of Green’s functions for fixed w.

Lemma  Let ψ : [δ, δ] → R be a twice differentiable function and Gk (k = , , , )
be the new Green’s functions defined above. Then along with () the following identities
hold:

ψ(z) = ψ(δ) + (δ – z)ψ ′(δ) +
∫ δ

δ

G(z, w)ψ ′′(w) dw, ()

ψ(z) = ψ(δ) – (δ – δ)ψ ′(δ) + (z – δ)ψ ′(δ) +
∫ δ

δ

G(z, w)ψ ′′(w) dw, ()

ψ(z) = ψ(δ) + (δ – δ)ψ ′(δ) – (δ – z)ψ ′(δ) +
∫ δ

δ

G(z, w)ψ ′′(w) dw. ()

Proof We can give the proofs of the above identities by following the same integrating
scheme. Therefore we would like to give the proof of () only.

As

∫ δ

δ

G(z, w)ψ ′′(w) dw

=
∫ z

δ

G(z, w)ψ ′′(w) dw +
∫ δ

z
G(z, w)ψ ′′(w) dw

=
∫ z

δ

(δ – w)ψ ′′(w) dw +
∫ δ

z
(δ – z)ψ ′′(w) dw

= (δ – w)ψ ′(w) |zδ –
∫ z

δ

–.ψ ′(w) dw + (δ – z)
[
ψ ′(δ) – ψ ′(z)

]
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= (δ – z)ψ ′(z) – (δ – δ)ψ ′(δ) + ψ(z) – ψ(δ) + (δ – z)ψ ′(δ) – (δ – z)ψ ′(z)

= (δ – z)ψ ′(δ) – (δ – δ)ψ ′(δ) – ψ(δ) + ψ(z).

Now by simplifying terms, we will get our identity (). �

Remark  Lemma  gives another proof of the special case of Abel-Gontscharoff identity
(). G and G are new Green’s functions, but the results are not so simple as in other two
cases.

The inequality of Popoviciu, which was improved by Vasić and Stanković [], is general-
ized by using the above new Green’s functions. In Theorem  we have that qi (i = , . . . , s)
are positive real numbers. Now we give the generalization of that result for real values of
qi (i = , . . . , s) with

∑s
i= qi =  using the new Green’s functions Gk , k = , , , , as defined

in Lemma .

Theorem  Let [δ, δ] be an interval in R, for integers m ≥ ,  ≤ s ≤ m – , consider the
tuples z ∈ [δ, δ]m, q be a real m-tuple such that

∑s
j= qij 	=  for any  ≤ i < · · · < is ≤ m

and
∑m

i= qi = . Also, let
∑s

j= qij zij∑s
j= qij

∈ [δ, δ] for any  ≤ i < · · · < is ≤ m. Then the following
statements are equivalent:

(i) For every continuous convex function ψ : [δ, δ] →R,

ψs,m(z, q) ≤ m – s
m – 

ψ,m(z, q) +
s – 
m – 

ψm,m(z, q) ()

holds, where

ψs,m(z, q) :=


Cm–
s–

∑

≤i<···<is≤m

( s∑

j=

qij

)

ψ

(∑s
j= qij zij

∑s
j= qij

)

;

(ii) For all w ∈ [δ, δ] and k = , , , ,

Gk
s,m(z, w; q) ≤ m – s

m – 
Gk

,m(z, w; q) +
s – 
m – 

Gk
m,m(z, w; q), ()

where

Gk
s,m(z, w; q)

:=


Cm–
s–

∑

≤i<···<is≤m

( s∑

j=

qij

)

Gk

(∑s
j= qij zij

∑s
j= qij

, w
)

;  ≤ s ≤ m,

for the functions Gk : [δ, δ] × [δ, δ] →R.
Moreover, the statements (i) and (ii) are also equivalent if we change the sign of the inequal-
ity in both () and ().

Proof (i) ⇒ (ii): Let (i) be valid. Fix k = , , , . Then as the functions for all k Gk(·, w)
(w ∈ [δ, δ]) are also continuous and convex, it follows that for these functions () also
holds for each fix k, i.e., () is valid.
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(ii) ⇒ (i): Let ψ : [δ, δ] →R be a convex function, ψ ∈ C([δ, δ]) and (ii) holds. Then,
by Lemma , we can represent a function ψ in the form (), (), () and () for their
respective fixed k. Now, by means of some simple calculations, we can write

m – s
m – 

ψ,m(z, q) +
s – 
m – 

ψm,m(z, q) – ψs,m(z, q)

=
∫ δ

δ

(
m – s
m – 

Gk
,m(z, w; q) +

s – 
m – 

Gk
m,m(z, w; q) – Gk

s,m(z, w; q)
)

ψ ′′(w) dw. ()

By the convexity of ψ , we have ψ ′′(w) ≥  for all w ∈ [δ, δ]. Hence, if for every w ∈
[δ, δ], () is valid for each k = , , , , then it follows that for every convex function
ψ : [δ, δ] →R, with ψ ∈ C([δ, δ]), () is valid.

Here we can eliminate the differentiability condition due to the fact that it is possible
to approximate uniformly a continuous convex function by convex polynomials (see [],
p.).

Analogous to the above proof, we can give the proof of the last part of our theorem. �

Next we formulate generalized identities with the help of identities defined in Lemma 
and Fink’s identity.

Theorem  Let all the assumptions of Theorem  be valid with n > , and let m, s ∈ N,
m ≥ ,  ≤ s ≤ m – , z ∈ [δ, δ]m, q be a real m-tuple such that

∑s
j= qij 	=  for any

 ≤ i < · · · < is ≤ m and
∑m

i= qi = . Also let
∑s

j= qij zij∑s
j= qij

∈ [δ, δ] for any  ≤ i < · · · < is ≤ m

with Rn(·, v) and Gk(·, w), (k = , , , ) be the same as defined in () and Lemma , respec-
tively. Then we have the following new identities for k = , , , :

POP
[
z, q;ψ(z)

]

=
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw

+


(n – )!

∫ δ

δ

ψ (n)(v)
(∫ δ

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw

)

dv, ()

where

R̃n–(w, v) =

⎧
⎨

⎩


δ–δ

[ (w–v)n–

(n–) + (w – δ)(w – v)n–], δ ≤ v ≤ w,


δ–δ
[ (w–v)n–

(n–) + (w – δ)(w – v)n–], w < v ≤ δ,



Mehmood et al. Journal of Inequalities and Applications  (2017) 2017:108 Page 7 of 17

and

POP
[
z, q;ψ(z)

]

=
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )

)

dw

+


(n – )!

∫ δ

δ

ψ (n)(v)
(∫ δ

δ

POP
[
z, q; Gk(z, w)

]
Rn–(w, v) dw

)

dv. ()

Proof Fix k = , , , . Applying Popoviciu’s functional () to identities (), (), (),
() along with their respective new Green’s functions and following the properties of
POP[z, q; ·], we get

POP
[
z, q;ψ(z)

]
=

∫ δ

δ

POP
[
z, q; Gk(z, w)

]
ψ ′′(w) dw. ()

Differentiating () twice with respect to the first variable, we have

ψ ′′(w) =
ψ ′(δ) – ψ ′(δ)

δ – δ

+
n–∑

l=

(
l

(l – )!

)(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

δ – δ

)

+


(n – )!

∫ δ

δ

R̃n–(w, v)ψ (n)(v) dv. ()

Using () in (), we get

POP
[
z, q;ψ(z)

]
=

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+
n–∑

l=

l
(l – )!

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
(

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

δ – δ

)

dw

+


(n – )!

∫ δ

δ

P
(
x, p; Gk(z, w)

)
(∫ δ

δ

R̃n–(w, v)ψ (n)(v) dv
)

dw.

By executing Fubini’s theorem in the last term, we have () respectively for k = , , , .
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Next, using formula () on the function ψ ′′, replacing n by n –  (n ≥ ) and rearranging
the indices, we have

ψ ′′(w) =
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)

+
n–∑

l=

(


(l – )!(l – )

)(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

δ – δ

)

+


(n – )!

∫ δ

δ

Rn–(w, v)ψ (n)(v) dv. ()

Similarly, using () in () and employing Fubini’s theorem, we get () respectively for
k = , , , . �

As an application of the above obtained identities, the next theorem gives artistic gen-
eralization of Popoviciu-type inequalities for n-convex functions involving new Green’s
functions.

Theorem  Let all the assumptions of Theorem  be satisfied and n ≥ . Also let ψ be an
n-convex function such that ψ (n–) is absolutely continuous. Then we have the following two
results:

If

∫ δ

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw ≥ , v ∈ [δ, δ] ()

for k = , , , , then

POP
[
z, q;ψ(z)

] ≥
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw; ()

and if

∫ δ

δ

POP
[
z, q; Gk(z, w)

]
Rn–(w, v) dw ≥ , v ∈ [δ, δ] ()

for k = , , , , then

POP
[
z, q;ψ(z)

] ≥
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )

)

dw. ()
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Proof Fix k = , , , . Since ψ (n–) is absolutely continuous on [δ, δ], ψ (n) exists almost
everywhere. As ψ is n-convex, so ψ (n)(z) ≥  for all z ∈ [δ, δ] (see [], p.). Hence we
can apply Theorem  to obtain () and () respectively. �

Remark  Inequalities () and () hold in reverse directions if the inequalities in ()
and () are reversed.

Now we state the final result of this section in the form of the following theorem.

Theorem  In addition to the assumptions of Theorem , let q = (q, . . . , qm) be a positive
m-tuple such that

∑m
i= qi = , and ψ : [δ, δ] →R be an n-convex function.

(i) For fixed k = , , , , inequalities () and () hold provided that n is even and
(n ≥ ).

(ii) For fixed k = , , , , let inequality () be satisfied and

n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–) ≥ ; ∀w ∈ [δ, δ], ()

OR () be satisfied and

ψ ′(δ) – ψ ′(δ)

+
n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )
≥ ; ∀w ∈ [δ, δ]. ()

Then we have

POP
[
z, q;ψ(z)

] ≥ . ()

Proof It is clear from Figure  that Green’s function Gk(z, w) is convex for all k = , , , ,
and the weights are assumed to be positive. Therefore, applying Theorem  and taking
into account Remark , we can obtain POP[z, q; Gk(z, w)] ≥  for all k = , , , .

(i) R̃n–(w, v) ≥  and Rn–(w, v) ≥  for n = , , . . . , so () and () hold. As ψ is
n-convex, hence by following Theorem , we obtain () and ().

(ii) Using () in () and () in (), () is established for all k = , , , . �

3 Applications to (n + 1)-convex functions at a point
In the present section we give related results for the class of (n + )-convex functions at a
point introduced in [].

Definition  Let I ⊆R be an interval, c ∈ Io and n ∈N. A function ψ : I →R is said to be
(n + )-convex at point c if there exists a constant Zc such that the function

�(z) = ψ(z) –
Zc

n!
zn ()

is n-concave on I ∩ (–∞, c] and n-convex on I ∩ [c,∞). A function ψ is said to be (n + )-
concave at point c if the function –ψ is (n + )-convex at point c.
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A function is (n + )-convex on an interval if and only if it is (n + )-convex at every
point of the interval (see []). Pečarić, Praljak and Witkowski in [] studied necessary and
sufficient conditions on two linear functionals � : C([δ, c]) →R and � : C([c, δ]) →R so
that the inequality �(ψ) ≤ �(ψ) holds for every function ψ that is (n+)-convex at point c.
In the present section we give inequalities of such type for the particular linear functionals
obtained from the inequalities in the previous section. Let σi denote the monomials σi(z) =
zi, i ∈ N. For the rest of this section, �k(ψ) and �k(ψ) for fixed k = , , ,  will denote
the linear functionals obtained as the difference of the L.H.S. and R.H.S. of inequality
(), applied to the intervals [δ, c] and [c, δ], respectively, i.e., for z ∈ [δ, c]m, q ∈ R

m,
y ∈ [c, δ]m̄ and q̄ ∈R

m̄, let

�k(ψ) := POP
[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(c)

c – δ

)∫ c

δ

POP
[
z, q; Gk(z, w)

]
dw

+


c – δ

∫ c

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(c)(w – c)l–)

)

dw, ()

�k(ψ) := POP
[
y, q̄;ψ(y)

]
–

(
ψ ′(c) – ψ ′(δ)

δ – c

)∫ δ

c
POP

[
y, q̄; Gk(y, w)

]
dw

+


δ – c

∫ δ

c
POP

[
y, q̄; Gk(y, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(c)(w – c)l– – ψ (l)(δ)(w – δ)l–)

)

dw. ()

It is important to notify that by introducing new linear functionals for k = , , , , �k(ψ)
and �k(ψ), identity () applied to the respective intervals [δ, c] and [c, δ] takes the shape:

�k(ψ) =


(n – )!

∫ c

δ

ψ (n)(v)
(∫ c

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw

)

dv, ()

�k(ψ) =


(n – )!

∫ δ

c
ψ (n)(v)

(∫ δ

c
POP

[
y, q̄; Gk(y, w)

]
R̃n–(w, v) dw

)

dv. ()

Now we are ready to state the following theorem for inequalities involving (n + )-convex
function at a point.

Theorem  Let z ∈ [δ, c]m, q ∈ R
m, y ∈ [c, δ]m̄ and q̄ ∈ R

m̄ in such a way that for k =
, , , ,

∫ c

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw ≥ , v ∈ [δ, c], ()

∫ δ

c
POP

[
y, q̄; Gk(y, w)

]
R̃n–(w, v) dw ≥ , v ∈ [c, δ], ()

∫ c

δ

(∫ c

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw

)

dv

=
∫ δ

c

(∫ δ

c
POP

[
y, q̄; Gk(y, w)

]
R̃n–(w, v) dw

)

dv, ()
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where R̃n–(·, ξ ) and Gk(·, w), (k = , , , ) be the same as defined in Theorem  and
Lemma , respectively, and let �k(ψ), �k(ψ) be the linear functionals given by () and
(). If ψ : [δ, δ] →R is (n + )-convex at point c, then we get the monotonicity

�k(ψ) ≤ �k(ψ) for k = , , , . ()

If the inequalities in () and () are reversed, then () holds with the reversed sign of
inequality.

Proof Using Definition , construct the function �(z) = ψ(z) – Zc
n! σn in such a way that the

function � is n-concave on [δ, c] and n-convex on [c, δ]. Fix k = , , , , and applying
Theorem  to � on the interval [δ, c], we have

 ≥ �k(�) = �k(ψ) –
Zc

n!
�k(σn). ()

Analogously applying Theorem  to � on the interval [c, δ], we get

 ≤ �k(�) = �k(ψ) –
Zc

n!
�k

(
σ n). ()

Moreover, identities () and () applied to the function σ n gives

�k
(
σ n) =

(
n – n + n

)
∫ c

δ

(∫ c

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw

)

dv, ()

�k
(
σ n) =

(
n – n + n

)
∫ δ

c

(∫ δ

c
POP

[
y, q̄; Gk(y, w)

]
R̃n–(w, v) dw

)

dv. ()

Therefore assumption () is equivalent to

�k
(
σ n) = �k

(
σ n).

So, from () and (), we obtain the desired result. �

Remark  In the proof of Theorem , we have shown that for k = , , , ,

�k(ψ) ≤ Zc

n!
�k

(
σ n) =

Zc

n!
�k

(
σ n) ≤ �k(ψ). ()

More importantly, inequality () still holds if we replace assumption () with the weaker
assumption that is Zc(�k(σ n) – �k(σ n)) ≥ .

We conclude this section by adding the following remark.

Remark  Similar results can also be given by constructing linear functionals from in-
equality () involving new Green’s functions Gk for k = , , , .
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4 New upper bounds of Grüss and Ostrowski type for generalized identities
In the present section we use Čebyšev’s functional defined for Lebesgue integrable func-
tions F,F : [δ, δ] →R as

C(F,F) =


δ – δ

∫ δ

δ

F(ξ )F(ξ ) dξ –


δ – δ

∫ δ

δ

F(ξ ) dξ .


δ – δ

∫ δ

δ

F(ξ ) dξ ,

to construct some new upper bounds.
The following inequalities of Grüss type were given in [].

Theorem  Let F ∈ L[δ, δ] and F : [δ, δ] → R be an absolutely continuous function
along with (· – δ)(δ – ·)[F′

] ∈ L[δ, δ]. Then the inequality

∣
∣C(F,F)

∣
∣ ≤ √



[
C(F,F)
δ – δ

] 

(∫ δ

δ

(z – δ)(δ – z)
[
F

′
(z)

] dz
) 


()

holds with √
 being the best possible constant.

Theorem  Let F : [δ, δ] →R be an absolutely continuous function with F
′
 ∈ L∞[δ, δ]

and F : [δ, δ] →R be a monotonic nondecreasing function. Then the inequality

∣
∣C(F,F)

∣
∣ ≤ ‖F′

‖∞
(δ – δ)

∫ δ

δ

(z – δ)(δ – z) dF(z) ()

holds with the best possible constant 
 .

In the sequel, we consider the above theorems to construct new estimations of general-
ized identities proved earlier. In what follows, we let for k = , , , ,

Õk(v) =
∫ δ

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw, v ∈ [δ, δ] ()

and

Ok(v) =
∫ δ

δ

POP
[
z, q; Gk(z, w)

]
Rn–(w, v) dw, v ∈ [δ, δ]. ()

First we express some Ostrowski-type inequalities affiliated with our generalized Popovi-
ciu’s inequality.

Theorem  Consider the suppositions of Theorem  be satisfied. Let |ψ (n)|r : [δ, δ] →R

be an R-integrable function for some (n ≥ ) with r, r′ ∈ [,∞] such that 
r + 

r′ = . Then,
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for k = , , , , we have

∣
∣
∣
∣
∣
POP

[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥ψ (n)∥∥

r

(∫ δ

δ

∣
∣
∣
∣

∫ δ

δ

POP
[
z, q; Gk(z, w)

]
R̃n–(w, v) dw

∣
∣
∣
∣

r′

dv
)/r′

, ()

∣
∣
∣
∣
∣
POP

[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )

)

dw

∣
∣
∣
∣
∣

≤ 
(n – )!

∥
∥ψ (n)∥∥

r

(∫ δ

δ

∣
∣
∣
∣

∫ δ

δ

POP
[
z, q; Gk(z, w)

]
Rn–(w, v) dw

∣
∣
∣
∣

r′

dv
)/r′

. ()

The constants on the R.H.S. of () and () are sharp for  < r ≤ ∞ and best possible for
r = .

Proof Fix k = , , , . Rearrange identity () in such a way that

∣
∣
∣
∣
∣
POP

[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

+


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw

∣
∣
∣
∣
∣

=


(n – )!

∣
∣
∣
∣

∫ δ

δ

Õk(ξ )ψ (n)(ξ ) dξ

∣
∣
∣
∣. ()

Employing the classical Holder’s inequality to R.H.S. of () yields (). The proof for
sharpness is similar to Theorem . in [] (see also []).

The proof of () is similar to that of (), but we utilize identity () instead of (). �

Next we give some upper bounds of Grüss type.

Theorem  Consider the suppositions of Theorem  be fulfilled. Also let ψ (n) be absolutely
continuous with (· – δ)(δ – ·)[ψ (n+)] ∈ L[δ, δ] such that Õk , Ok (k = , , , ) defined in
() and () respectively. Then the remainders Rem(δ, δ, Õk ,ψ (n)), Rem(δ, δ,Ok ,ψ (n))
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given in the following identities

POP
[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw

–
ψ (n–)(δ) – ψ (n–)(δ)

(δ – δ)(n – )!

∫ δ

δ

Õk(v) dv = Rem
(
δ, δ, Õk ,ψ (n)), ()

POP
[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )

)

dw

–
ψ (n–)(δ) – ψ (n–)(δ)

(δ – δ)(n – )!

∫ δ

δ

Ok(v) dv = Rem
(
δ, δ,Ok ,ψ (n)), ()

satisfy the bounds

∣
∣Rem

(
δ, δ, Õk ,ψ (n))∣∣

≤ 
(n – )!

[
C(Õk , Õk)

] 


√
(δ – δ)



∣
∣
∣
∣

∫ δ

δ

(v – δ)(δ – v)
[
ψ (n+)(v)

] dv
∣
∣
∣
∣




and

∣
∣Rem

(
δ, δ,Ok ,ψ (n))∣∣

≤ 
(n – )!

[
C(Ok ,Ok)

] 


√
(δ – δ)



∣
∣
∣
∣

∫ δ

δ

(v – δ)(δ – v)
[
ψ (n+)(v)

] dv
∣
∣
∣
∣




,

respectively.

Proof Fix k = , , , . Using Čebyšev’s functional for F = Ok , F = ψ (n) and by comparing
() with (), we have

Rem
(
δ, δ, Õk ,ψ (n)) =

δ – δ

(n – )!
C

(
Õk ,ψ (n)).

Now applying Theorem  for the corresponding functions, we get the required bound.
Similarly, by comparing () with identity (), we get the respective bound. �

Theorem  Consider the suppositions of Theorem  be fulfilled, and let ψ (n+) ≥  on
[δ, δ] with Õk , Ok (k = , , , ) defined in () and (), respectively. Then in represen-
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tation () the remainder Rem(δ, δ, Õk ,ψ (n)) satisfies the estimation

∣
∣Rem

(
δ, δ, Õk ,ψ (n))∣∣

≤ (δ – δ)‖Õ′
k‖∞

(n – )!

[
ψ (n–)(δ) + ψ (n–)(δ)


–

ψ (n–)(δ) – ψ (n–)(δ)
δ – δ

]

, ()

whereas in representation () the remainder Rem(δ, δ,Ok ,ψ (n)) satisfies the estimation

∣
∣Rem

(
δ, δ,Ok ,ψ (n))∣∣

≤ (δ – δ)‖O′
k‖∞

(n – )!

[
ψ (n–)(δ) + ψ (n–)(δ)


–

ψ (n–)(δ) – ψ (n–)(δ)
δ – δ

]

. ()

Proof Fix k = , , , . We have established

Rem
(
δ, δ, Õk ,ψ (n)) =


(n – )!

C
(
Õk ,ψ (n)).

Now applying Theorem  for F →Ok and F → ψ (n), we have

∣
∣Rem

(
δ, δ,Ok ,ψ (n))∣∣ =


(n – )!

∣
∣C

(
Õk ,ψ (n))∣∣

≤ ‖O′
k‖∞

(δ – δ)(n – )!

∫ δ

δ

(ξ – δ)(δ – ξ )ψ (n+)(ξ ). ()

Simplifying the integral on R.H.S. of (), we get the estimation in (). �

5 Mean value theorems and n-exponential convexity
In the present section, we construct positive linear functionals and then give mean value
theorems of Lagrange and Cauchy type.

Remark  By virtue of Theorem , we can define the positive linear functionals from ()
(k = , , , ), with respect to n-convex function ψ as follows:

�k(ψ) := POP
[
z, q;ψ(z)

]

≥
(

ψ ′(δ) – ψ ′(δ)
δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

l
(l – )!

(
ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–)

)

dw. ()

	k(ψ) := POP
[
z, q;ψ(z)

]
–

(
ψ ′(δ) – ψ ′(δ)

δ – δ

)∫ δ

δ

POP
[
z, q; Gk(z, w)

]
dw

–


δ – δ

∫ δ

δ

POP
[
z, q; Gk(z, w)

]

×
( n–∑

l=

ψ (l)(δ)(w – δ)l– – ψ (l)(δ)(w – δ)l–

(l – )!(l – )

)

dw. ()
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We give results related to �k as we can also consider 	k in the similar fashion for
(k = , , , ). Lagrange- and Cauchy-type mean value theorems related to the above func-
tionals are given in the following theorems.

Theorem  Let ψ : [δ, δ] → R be such that ψ ∈ Cn[δ, δ]. If the inequality in () (k =
, , , ) holds, then there exist ξk ∈ [δ, δ] such that

�k(ψ) = ψ (n)(ξk)�k

(
zn

n!

)

, k = , , , ,

where �k(·) is defined by ().

Proof Similar to the proof of Theorem . in [] (see also []). �

Theorem  Let ψ ,μ : [δ, δ] → R be such that ψ ,μ ∈ Cn[δ, δ]. If the inequality in ()
(k = , , , ) holds, then there exist ξk ∈ [δ, δ] such that

�k(ψ)
�k(μ)

=
ψ (n)(ξk)
μ(n)(ξk)

, k = , , , ,

provided that the denominators are non-zero, where �k(·) is defined by ().

Proof Similar to the proof of Corollary . in [] (see also []). �

Theorem  enables us to define Cauchy means for (k = , , , ), in fact

ξk =
(

ψ (n)

μ(n)

)–(
�k(ψ)
�k(μ)

)

,

means that ξ is the mean of δ, δ for given functions ψ and μ.
We conclude our paper with the following remark.

Remark  One can also construct the nontrivial examples of n-exponentially and expo-
nentially convex functions from positive linear functionals �k(·) and 	k(·) (k = , , , ) by
following the n-exponential method introduced by Pečarić et al. in [] and [] (see also
[, ] and []). As an application it enables us to construct large families of functions
which are exponentially convex. Moreover, by considering the class of -convex functions,
we can get the log-convexity of these functionals and new Cauchy means, which are mono-
tonic in nature.

6 Conclusions
By integration techniques new Green’s functions are constructed, which are convex sym-
metric and continuous. Graphical representation of these new Green’s functions is also
included. These new Green’s functions are then used to extend the inequality of Popovi-
ciu given by Vasić and Stanković from nonnegative to real weights. Generalized identities
are obtained using generalized Montgomery identity and new Green’s functions which fur-
ther establish the extension of Popoviciu inequality from a convex function to higher order
convex functions along with real weights. The obtained results are then applied to estab-
lish the monotonicity of the linear functionals constructed from generalized inequalities.
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New upper bounds are obtained using the Čebyšev functional. A new way is introduced
to construct new n-exponential and logarithmic convex functions, which are then further
used to give the Stolarsky means.
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