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Abstract
This paper deals with the abstract generalized vector quasi-equilibrium problem in
noncompact Hadamard manifolds. We prove the existence of solutions to the
abstract generalized vector quasi-equilibrium problem under suitable conditions and
provide applications to an abstract vector quasi-equilibrium problem, a generalized
scalar equilibrium problem, a scalar equilibrium problem, and a perturbed saddle
point problem. Finally, as an application of the existence of solutions to the
generalized scalar equilibrium problem, we obtain a weakly mixed variational
inequality and two mixed variational inequalities. The results presented in this paper
unify and generalize many known results in the literature.
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1 Introduction
Let K be a nonempty subset of a nonempty set X and f : X × X → R be a bifunction.
The scalar equilibrium problem (for short, SEP) is to find x̂ ∈ K such that f (̂x, y) ≥  for
every y ∈ K . It is well known that SEP contains a broad class of problems arising in pure
and applied mathematics, such as fixed point, minimax and variational inequality, Nash
equilibrium, complementarity, and convex optimization problems (see, for example, [–]
and the references therein). Recently, in a linear setting, many authors focused on the ex-
istence of solutions to equilibrium problems for vector mappings; see, for example, Ansari
and Yao [], Ansari and Flores-Bazán [], Fu [], Fu and Wan [], Khan [], Khan et al.
[], Khan and Chen [], Hou et al. [], Iusem and Sosa [], Chen et al. [], Kassay et
al. [], and the authors referenced by their works.

On the other hand, Riemannian manifolds provide a useful framework for the research
of the related problems in optimization and equilibrium. Actually, many concepts and
techniques fitting in Euclidean spaces have been extended to Riemannian manifolds. Most
of the generalized methods require the sectional curvature of Riemannian manifold to be
nonpositive. In fact, a large class of Riemannian manifolds, including Hadamard mani-
folds, possesses this important property which implies tight topological restrictions and
rigidity phenomena (see []). Hadamard manifolds have turned out to be a suitable frame-
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work for diverse disciplines (see, for example, [–]). Applying the KKM principle al-
lowed Colao et al. [] to confirm the existence of solutions to the SEP in Hadamard man-
ifolds. Approximately at the same time, Yang and Pu [] studied the existence and stabil-
ity of solutions to the SEP in Hadamard manifolds. By applying the KKM principle, Zhou
and Huang [] proved the existence of solutions to the vector optimization problem in
Hadamard manifolds. Similarly, Li and Huang [] presented some existence results of so-
lutions to the generalized vector quasi-equilibrium problems in Hadamard manifolds. Re-
cently, Batista et al. [] introduced and studied the generalized vector equilibrium prob-
lem in Hadamard manifolds. Their results generalize the corresponding results of Colao
et al. [], Zhou and Huang [], and Németh [].

Motivated by the recent work mentioned above, the main purpose of this paper is to
introduce and study the abstract generalized vector quasi-equilibrium problem (for short,
AGVQEP) in noncompact Hadamard manifolds. The rest of this paper is organized as
follows. In Section , we introduce notation, definitions, and preliminary results used in
the paper. In Section , we apply an existence result of maximal elements in noncompact
Hadamard manifolds in order to prove an existence theorem of solutions to AGVQEP un-
der some suitable conditions. Applications to an abstract vector quasi-equilibrium prob-
lem (for short, AVQEP), a generalized scalar equilibrium problem (for short, GSEP), SEP,
and a perturbed saddle point problem are provided. Section  is devoted to investigat-
ing the weakly mixed variational inequality problem (for short, WMVIP) in noncompact
Hadamard manifolds. Our methods are based on a result concerning the existence of so-
lutions to GSEP. Conclusions are presented in Section .

2 Preliminaries
In this section, we recall some notation, definitions, and auxiliary results, which are in-
tended to be used throughout this paper. These can be found in [–].

Let R denote the set of all real numbers. Let X be a set. Then we let F (X) represent
the family of nonempty finite subsets of X. Let A be a subset of a topological space X,
and then let int A and cl A denote the interior of A in X and the closure of A in X, re-
spectively. Moreover, if A ⊆ B ⊆ X, then intB A (respectively, clB A) stands for the interior
(respectively, closure) with respect to the topology of B, induced by that of X. Given two
nonempty sets X, Y and a set-valued mapping T : X ⇒ Y , the inverse T– : Y ⇒ X of T
is defined by T–(y) = {x ∈ X : y ∈ T(x)} for every y ∈ Y . Let X and Y be two topological
spaces. Then a set-valued mapping T : X ⇒ Y is said to be upper semicontinuous (re-
spectively, lower semicontinuous) on X iff, for each x ∈ X and each open set V ⊆ Y with
T(x) ⊆ V (respectively, T(x) ∩ V �= ∅), there exists an open neighborhood U(x) of x in X
such that T(z) ⊆ V (respectively, T(z) ∩ V �= ∅) for every z ∈ U(x). Let δn be the standard
n-dimensional simplex with vertices {e, e, . . . , en} and for each I ⊆ {, , . . . , n}, let δ|I|–

denote the simplex with vertices {ej : j ∈ I}, where |I| denotes the cardinality of I .
Let E be a simply-connected m-dimensional manifold. For each x ∈ E, we denote by TxE

the tangent space of E at x. Let TE =
⋃

x∈E TxE denote the tangent bundle of E, which is
naturally a manifold. A vector field on E is a mapping σ : E → TE such that σ (x) ∈ TxE
for every x ∈ E. Let 〈·, ·〉x denote the scalar product on TxE with the associated norm
‖ · ‖x, where the subscript x will be omitted in the sequel when no confusion arises. If
E is a differentiable manifold equipped with a scalar product 〈·, ·〉 that varies smoothly
from point to point, then we say that E is a Riemannian manifold. The family 〈·, ·〉 of scalar
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products is called a Riemannian metric. We always assume that E can be endowed with a
Riemannian metric to become a Riemannian manifold. Given a piecewise smooth curve
γ : [a, b] → E joining x to y (i.e., γ (a) = x and γ (b) = y), we can define the length of γ as
follows:

A(γ ) =
∫ b

a

∥

∥γ ′(t)
∥

∥dt.

Then, for any two points x, y ∈ E, the Riemannian distance d(x, y) is defined by

d(x, y) = inf
{

A(γ ) : γ is a piecewise smooth curve joining x and y
}

.

A vector field σ is said to be parallel along γ if ∇γ ′σ = , where ∇ is the Levi-Civita con-
nection associated with (E, 〈·, ·〉) and γ is a smooth curve in E. If γ ′ itself is parallel along
γ , then γ is called a geodesic, and in this case, ‖γ ′‖ is constant. When ‖γ ′‖ = , γ is said to
be normalized. A geodesic which joins x to y in E is said to be minimal if its length equals
d(x, y).

A Riemannian manifold E is geodesically complete if, for each x ∈ E, all geodesics start-
ing from x are defined for every t ∈ R. By the Hopf-Rinow theorem (see []), we can see
that if a Riemannian manifold is geodesically complete, then (E, d) is a complete metric
space and each bounded closed subset is compact. In addition, for any two points in E,
there exists a minimal geodesic joining these two points.

A Hadamard manifold E is a complete simply connected Riemannian manifold of non-
positive sectional curvature. Unless explicitly stated otherwise, throughout the remainder
of this paper, we assume that E is a finite dimensional Hadamard manifold and V is a
Hausdorff topological vector space.

Definition . ([]) Let x ∈ E. The exponential mapping expx : TxE → E at x is defined
by expx v = γv(, x) for every v ∈ TxE, where γv is the geodesic starting at x with velocity v
(i.e., γ () = x, γ ′() = v).

Lemma . ([]) Let x ∈ E. Then expx : TxE → E is a diffeomorphism, and for any two
points x, y ∈ E, there exists a unique minimal normalized geodesic γx,y = expx t exp–

x y for
every t ∈ [, ] joining x to y.

So from now on, a geodesic means the unique minimal normalized one.

Definition . ([]) A set C ⊆ E is said to be convex iff, for any two points x, y ∈ C, the
geodesic joining x to y is contained in C; that is, γx,y = expx t exp–

x y ∈ C for every t ∈ [, ].

Definition . ([]) A real-valued function f : E →R is said to be convex iff, for any two
points x, y ∈ E, we have f (expx t exp–

x y) ≤ tf (x) + ( – t)f (y) for every t ∈ [, ]. f is said to
be concave iff –f is convex.

Definition . Let Q be a nonempty subset of V . The set Q is called a convex cone iff
Q + Q ⊆ Q and λQ ⊆ Q for λ ≥ .
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Definition . Let Q ⊆ V be a nonempty convex cone. A set-valued mapping F : E ⇒ V
is said to be convex with respect to Q iff, for each x, y ∈ E and each t ∈ [, ], we have
F(expx t exp–

x y) ⊆ tF(x) + ( – t)F(y) + Q.

Remark . Definition . includes Definition . as a special case. In fact, when F is
a single-valued mapping, V = R, and Q = (–∞, ], Definition . coincides with Defini-
tion .. Also Definition . generalizes Definition . of Zhou and Huang [] in the
following aspects: () from a single-valued mapping to a set-valued mapping; () from
the convex cone in Euclidean spaces to the convex cone in Hausdorff topological vector
spaces.

Definition . Let Q ⊆ V be a nonempty convex cone. A set-valued mapping F : E ⇒ V
is said to be quasiconvex-like with respect to Q iff, for each x, y ∈ E and each t ∈ [, ], we
have F(expx t exp–

x y) ⊆ F(x) + Q or F(expx t exp–
x y) ⊆ F(y) + Q.

Definition . ([]) Let A ⊆ E. The convex hull of A is defined by the smallest convex
subset of E containing A and denoted by conv(A).

Definition . Let X be a topological space. A set-valued mapping F : X ⇒ E is called a
Fan-Browder mapping iff the following conditions are fulfilled:

(i) for each x ∈ X , F(x) is nonempty and convex;
(ii) for each y ∈ E, F–(y) is open in X .

Definition . Let G : E ⇒ E be a set-valued mapping. Then G is said to be of class HE

iff the following conditions are satisfied:
(a) for each x ∈ E, G(x) is convex;
(b) for each x ∈ E, x /∈ G(x);
(c) there exists a set-valued mapping F : E ⇒ E such that

() for each x ∈ E, F(x) ⊆ G(x);
()

⋃

y∈E F–(y) =
⋃

y∈E int F–(y);
() {x ∈ E : F(x) �= ∅} = {x ∈ E : G(x) �= ∅}.

Lemma . ([]) Let x ∈ E and {xn} ⊆ E such that xn → x. Then the following state-
ments hold:

(i) for each y ∈ E, exp–
xn y → exp–

x y and exp–
y xn → exp–

y x;
(ii) if {vn} is a sequence such that vn ∈ Txn E and vn → v, then v ∈ Tx E;

(iii) given the sequences {un}, {vn} ⊆ Txn E, if un → u, vn → v with u, v ∈ Tx E, then
〈un, vn〉 → 〈u, v〉.

Lemma . ([]) Let x ∈ E. Then the following statements are equivalent:
(i) the function E � y �→ 〈u, exp–

x y〉 is affine for every u ∈ TxE;
(ii) the mapping expx : TxE → E is a global isometry;

(iii) for each q, q ∈ E, the curve [, ] � t �→ expx(( – t) exp–
x (q) + t exp–

x (q)) is the
minimal geodesic joining q to q;

(iv) the sectional curvature of E is identically zero (i.e., E is isometric to the usual
Euclidean space).
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Let f : E → R be a real-valued function. The subdifferential of f is the set-valued map-
ping ∂f : E ⇒ TE defined by ∂f (x) = {u ∈ TxE : 〈u, exp–

x y〉 ≤ f (y) – f (x),∀y ∈ E} for every
x ∈ E and its elements are called subgradients. For each x ∈ E, the subdifferential ∂f (x) is
a closed convex subset (possibly empty) of TxE. Let D(∂f ) = {x ∈ E : ∂f (x) �= ∅} denote the
domain of ∂f .

The following lemma guarantees the existence of subgradients for convex functions.

Lemma . ([]) Let f : E → R be a convex function. Then, for any x ∈ E, the subdiffer-
ential ∂f (x) is a nonempty subset of TxE; i.e., D(∂f ) = E.

The following lemma, which provides the existence of maximal elements for a set-valued
mapping, plays a key role in the proof of the existence of solutions to AGVQEP.

Lemma . Let G : E ⇒ E be of class HE and K be a nonempty compact subset of E. Sup-
pose that one of the following conditions holds:

(i) for each N ∈ F (E), there exists a nonempty compact convex subset EN of E containing
N such that EN \ K ⊆ ⋃

y∈EN
intEN (G–(y) ∩ EN );

(i) there exists a point y ∈ E such that cl(E \ G–(y)) ⊆ K .

Then there exists x̂ ∈ K such that G(̂x) = ∅.

Proof Since G is of class HE , it follows that
(a) for each x ∈ E, G(x) is convex;
(b) for each x ∈ E, x /∈ G(x);
(c) there exists a set-valued mapping F : E ⇒ E such that

() for each x ∈ E, F(x) ⊆ G(x);
()

⋃

y∈E F–(y) =
⋃

y∈E int F–(y);
() {x ∈ E : F(x) �= ∅} = {x ∈ E : G(x) �= ∅}.

We prove Lemma . by considering the following two cases.
Case I. Suppose that (i) holds. We proceed by contradiction. If the conclusion of

Lemma . is false, then G(x) �= ∅ for every x ∈ K . By (), we have F(x) �= ∅ for every
x ∈ K , which implies that K ⊆ ⋃

y∈E F–(y). Moreover, it follows from () and () that
K ⊆ ⋃

y∈E int F–(y) ⊆ ⋃

y∈E int G–(y). Because K is a nonempty compact subset of E, we
may choose N ∈F (E) such that

K ⊆
⋃

y∈N

int G–(y). (.)

By (i), there exists a nonempty compact convex subset EN of E containing N such that

EN \ K ⊆
⋃

y∈EN

intEN

(

G–(y) ∩ EN
)

. (.)

By (.), we get K ∩ EN ⊆ ⋃

y∈N intEN (G–(y) ∩ EN ). Together with (.), we have EN =
(EN \ K) ∪ (K ∩ EN ) =

⋃

y∈EN
intEN (G–(y) ∩ EN ). Applying the compactness of EN , there

exists {y, y, . . . , yn} ∈F (EN ) such that {intEN (G–(yi) ∩ EN )}n
i= is a finite open cover of EN .

By Theorem . in [], there is, for every i, a continuous function βi : EN → [, ] such
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that
∑n

i= βi(x) =  for every x ∈ EN and such that βi(x) >  implies x ∈ intEN (G–(yi) ∩ EN ).
Consequently, we can define a continuous mapping f : EN → δn by f (x) =

∑n
i= βi(x)ei for

every x ∈ EN with f (x) =
∑

i∈I(x) βi(x)ei ∈ δ|I(x)|–, where I(x) is defined by

i ∈ I(x) ⇔ βi(x) >  ⇒ x ∈ intEN

(

G–(yi) ∩ EN
) ⇒ yi ∈ G(x).

Hence, it follows from the convexity of G(x) that conv({yi : i ∈ I(x)}) ⊆ G(x).
Following the same argument as in the proof of Lemma . in [], we can conclude that

there exists a continuous mapping ξ : δn → D({y, y, . . . , yn}) satisfying

ξ (δ|I|–) ⊆ D
({yi : i ∈ I}), ∀I ⊆ {, , . . . , n},

where D({y, y, . . . , yn}) :=
⋃n

i= Di, D = {y} and, for each i ∈ {, , . . . , n}, Di is defined by
Di = {z ∈ γy,x : x ∈ Di–}. Then D({y, y, . . . , yn}) is a closed subset of conv({y, y, . . . , yn}).

Now, the mapping g = ξ ◦ f has the property that g(x) = ξ (f (x)) ∈ ξ (δ|I(x)|–) ⊆ D({yi : i ∈
I(x)}) ⊆ conv({yi : i ∈ I(x)}) ⊆ G(x) for every x ∈ EN . Since the mapping f ◦ ξ : δn → δn

is continuous, it follows from the Brouwer fixed point theorem that there exists p∗ ∈ δn

such that p∗ = f (ξ (p∗)). Let x = ξ (p∗). Then we have x = ξ (p∗) = ξ (f (ξ (p∗))) = ξ (f (x)) ∈ G(x),
which contradicts (b). Therefore, there must exist x̂ ∈ K such that G(̂x) = ∅. This completes
the proof.

Case II. Assume that (i) holds. Suppose, by way of contradiction, that G(x) �= ∅ for ev-
ery x ∈ K . By (), we have F(x) �= ∅ for every x ∈ K . Thus, by () and (), we have K ⊆
⋃

y∈E F–(y) =
⋃

y∈E int F–(y) ⊆ ⋃

y∈E int G–(y). Since K is compact, there exists N ∈F (E)
such that

K ⊆
⋃

y∈N

int G–(y). (.)

By (i), we have E \ K ⊆ int G–(y). Together with (.), we get

E = (E \ K) ∪ K =
⋃

y∈N

int G–(y),

where N = {y} ∪ N = {y, y, . . . , yn} ∈ F (E). This implies that {int G–(yi)}n
i= is a finite

open cover of E. Since E is a normal space, it follows that there exists a finite collection of
functions {βi}n

i= subordinated to the open cover {int G–(yi)}n
i=, which implies that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

βi : E → [, ] is continuous for every i ∈ {, , . . . , n};
βi(x) >  ⇒ x ∈ int G–(yi);
∑n

i= βi(x) =  for every x ∈ E.

Consequently, the function on E defined by f (x) =
∑n

i= βi(x)ei for every x ∈ E with f (x) =
∑

i∈I(x) βi(x)ei ∈ δ|I(x)|– is continuous, where I(x) is defined by

i ∈ I(x) ⇔ βi(x) >  ⇒ x ∈ int G–(yi) ⇒ yi ∈ G(x).

Hence, by the convexity of G(x), we have conv({yi : i ∈ I(x)}) ⊆ G(x).
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By using the same method as in the proof of Lemma . in [], we can conclude that
there exists a continuous mapping ξ : δn → D({y, y, . . . , yn}) satisfying

ξ (δ|I|–) ⊆ D
({yi : i ∈ I}), ∀I ⊆ {, , . . . , n},

where D({y, y, . . . , yn}) is the same as in the previous case.
Now, let g = ξ ◦ f . Then g has the following property: g(x) ∈ ξ (δ|I(x)|–) ⊆ D({yi : i ∈

I(x)}) ⊆ conv({yi : i ∈ I(x)}) ⊆ G(x) for every x ∈ E. By the Brouwer fixed point theorem,
the continuous mapping f ◦ ξ : δn → δn has a fixed point p∗ ∈ δn; that is, p∗ = f (ξ (p∗)).
Let x = ξ (p∗). Then we have x = ξ (p∗) = ξ (f (ξ (p∗))) = ξ (f (x)) ∈ G(x), which contradicts (b).
Therefore, there must exist x̂ ∈ K such that G(̂x) = ∅. This completes the proof. �

Remark . Lemma . generalizes Theorem . of Yang and Pu [] in the follow-
ing aspects: (a) from compact Hadamard manifolds to noncompact Hadamard mani-
folds; (b) from one set-valued mapping to two set-valued mappings; (c) the condition
that

⋃

y∈E F–(y) =
⋃

y∈E int F–(y) is weaker than () of Theorem . of Yang and Pu [];
(d) concerns the more general Hadamard manifold with its sectional curvature being non-
positive instead of the Hadamard manifold with its sectional curvature being identically
zero. This fact can be deduced from Lemma ..

Remark . (i) of Lemma . can be replaced by the following equivalent condition.
• For each N ∈F (E), there exists a nonempty compact convex subset EN of E

containing N such that EN \ K ⊆ ⋃

y∈EN
int G–(y).

3 Abstract generalized vector quasi-equilibrium problem
In this section, we introduce AGVQEP in Hadamard manifolds and present a sufficient
condition for the existence of solutions to AGVQEP. As applications, we obtain results
to solve AVQEP, GSEP, SEP, and the perturbed saddle point problem in noncompact
Hadamard manifolds.

Let K be a nonempty subset of E, W be a nonempty set, and let H : E ⇒ E, C : E ⇒ W ,
ψ : E × E ⇒ W be set-value mappings. We consider the following AGVQEP as follows:
find x̂ ∈ K such that

x̂ ∈ H (̂x) and ψ (̂x, y) � C(̂x), ∀y ∈ H (̂x).

It is worthwhile noting that AGVQEP is motivated by the generalized vector quasi-
equilibrium problem introduced by Ansari and Flores-Bazán []. In particular, let E = R

n,
W be a Hausdorff topological vector space, and let P : Rn ⇒ W be a set-valued mapping
such that, for each x ∈ R

n, P(x) is a closed and convex cone with int P(x) �= ∅. Moreover,
let C : Rn ⇒ W be a set-valued mapping defined by C(x) = – int P(x) for every x ∈ R

n.
Then AGVQEP retrieves a particular instance of the equilibrium problem in []. Here
we would like to point out that the feasible set of AGVQEP is controlled by a set-valued
mapping. In the real world, there are important problems which can be regarded as
AGVQEPs in which the condition that the feasible set of AGVQEP is controlled by a set-
valued mapping must be satisfied; for example, the equilibrium problems of the general-
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ized games in Dasgupta and Maskin [], Smeers et al. [], Krawczyk [], and Ansink
and Houba [].

Remark . If H(x) ≡ E for every x ∈ E, W is a Hausdorff topological vector space, and
each C(x) is replaced by – int C(x), where C(x) is a closed and convex cone with int C(x) �=
∅, then AGVQEP reduces to the generalized vector equilibrium problem investigated by
Batista et al. []. By the arguments in [], we can see that AGVQEP also includes the
equilibrium problems in [, , ] as its special cases.

Remark . Some other special cases of AGVQEP are given as follows.
(I) Let H(x) ≡ E for every x ∈ E. Then AGVQEP reduces to the abstract vector

quasi-equilibrium problem (for short, AVQEP), which consists in finding x̂ ∈ E such
that ψ (̂x, y) � C(̂x) for every y ∈ E.

(II) If W = R, C(x) ≡ (–∞, ) for every x ∈ E, and F = f , where f : E × E →R is a
bifunction, then GVQEP reduces to the generalized scalar equilibrium problem (for
short, GSEP), which is to find x̂ ∈ E such that x̂ ∈ H (̂x) and f (̂x, y) ≥  for every
y ∈ H (̂x). Furthermore, if H(x) ≡ E for every x ∈ E, then GSEP reduces to SEP.

Now, we are ready, by using Lemma ., to present the following existence theorem of
solutions to AGVQEP in noncompact Hadamard manifolds.

Theorem . Let K ⊆ E be a nonempty compact set and W be a nonempty set. Let ς ,ψ :
E × E ⇒ W , C : E ⇒ W be three set-valued mappings and H : E ⇒ E be a Fan-Browder
mapping. Assume that

(i) the set E∗ = {x ∈ E : x /∈ H(x)} is open in E;
(ii) for each (x, y) ∈ E × E, ς (x, y) ⊆ C(x) implies ψ(x, y) ⊆ C(x);
(iii) for each x ∈ E, ψ(x, x) � C(x);
(iv) for each x ∈ E, the set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex;
(v)

⋃

y∈E{x ∈ H–(y) : ψ(x, y) ⊆ C(x)} =
⋃

y∈E int{x ∈ H–(y) : ψ(x, y) ⊆ C(x)};
(vi) one of the following conditions holds:
(vi) for each N ∈F (E), there exists a nonempty compact convex subset EN of E containing

N such that

EN \ K ⊆
⋃

y∈EN

int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

;

(vi) there exists a point y ∈ E such that

E \ K ⊆ int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

.

Then AGVQEP has at least a solution in K .

Proof Define two set-valued mappings L, Q : E ⇒ E by

L(x) =
{

y ∈ E : ς (x, y) ⊆ C(x)
}

and Q(x) =
{

y ∈ E : ψ(x, y) ⊆ C(x)
}

, ∀x ∈ E.
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Moreover, let us define two set-valued mappings F , G : E ⇒ E by

F(x) =

⎧

⎨

⎩

H(x) ∩ L(x), if x /∈ E∗,

H(x), if x ∈ E∗,

and

G(x) =

⎧

⎨

⎩

H(x) ∩ Q(x), if x /∈ E∗,

H(x), if x ∈ E∗.

By (ii), we have F(x) ⊆ G(x) for every x ∈ E. Since each Q(x) is convex by (iv) and each
H(x) is convex by the definition of a Fan-Browder mapping, it follows that G(x) is convex
for every x ∈ E.

For each y ∈ E, we have

G–(y) =
{

x ∈ E∗ : y ∈ H(x)
} ∪ {

x /∈ E∗ : y ∈ H(x) ∩ Q(x)
}

=
(

E∗ ∩ H–(y)
) ∪ ((

E \ E∗) ∩ (

H–(y) ∩ Q–(y)
))

=
(

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ Q–(y)
)

=
(

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
})

.

We claim that
⋃

y∈E G–(y) =
⋃

y∈E int G–(y). In fact, it is clear that
⋃

y∈E int G–(y) ⊆
⋃

y∈E G–(y). In order to prove that
⋃

y∈E G–(y) ⊆ ⋃

y∈E int G–(y), we take x ∈
⋃

y∈E G–(y). Then there exists y∗ ∈ E such that

x ∈ G–(y∗) =
(

E∗ ∩ H–(y∗)) ∪ (

H–(y∗) ∩ {

x ∈ E : ψ
(

x, y∗) ⊆ C(x)
})

.

If x ∈ E∗ ∩ H–(y∗), then by (i) and the definition of a Fan-Browder mapping, we have

x ∈ E∗ ∩ H–(y∗) = int
(

E∗ ∩ H–(y∗)) ⊆ int G–(y∗).

We notice that, according to (v) and the definition of Q, one has

⋃

y∈E

(

H–(y) ∩ Q–(y)
)

=
⋃

y∈E

int
(

H–(y) ∩ Q–(y)
)

.

So, if x ∈ H–(y∗) ∩ {x ∈ E : ψ(x, y∗) ⊆ C(x)} = H–(y∗) ∩ Q–(y∗), then there exists ỹ ∈ E
such that

x ∈ int
(

H–(̃y) ∩ Q–(̃y)
) ⊆ int G–(̃y).

Combining these two cases, we can conclude that
⋃

y∈E G–(y) ⊆ ⋃

y∈E int G–(y). There-
fore, we have

⋃

y∈E G–(y) =
⋃

y∈E int G–(y).
Now, we show that x /∈ G(x) for every x ∈ E. Indeed, if x ∈ E∗, then by the definition of

E∗, we have x /∈ H(x) = G(x); if x /∈ E∗, then by (iii), x /∈ Q(x) and so, x /∈ H(x) ∩ Q(x) = G(x).
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By (vi) and the above fact, we can see that one of the following conditions holds:
• for each N ∈F (E), there exists a nonempty compact convex subset EN of E

containing N such that

EN \ K ⊆
⋃

y∈EN

int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

=
⋃

y∈EN

int G–(y);

• there exists a point y ∈ E such that

K ⊇ E \ int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

= cl
(

E \ G–(y)
)

.

Therefore, by Lemma . and Remark ., there exists x̂ ∈ K such that G(̂x) = ∅. Since
H(x) �= ∅ for every x ∈ E, it follows that x̂ /∈ E∗ and G(̂x) = H (̂x) ∩ Q(̂x) = ∅; i.e., x̂ ∈ H (̂x)
and ψ (̂x, y) � C(̂x) for every y ∈ H (̂x). Thus, the conclusion of Theorem . holds and the
proof is complete. �

Corollary . Let K ⊆ E be a nonempty compact set and W be a nonempty set. Let ψ :
E × E ⇒ W , C : E ⇒ W be two set-valued mappings and H : E ⇒ E be a Fan-Browder
mapping. Assume that

(i) the set E∗ = {x ∈ E : x /∈ H(x)} is open in E;
(ii) for each x ∈ E, ψ(x, x) � C(x);
(iii) for each x ∈ E, the set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex;
(iv)

⋃

y∈E{x ∈ H–(y) : ψ(x, y) ⊆ C(x)} =
⋃

y∈E int{x ∈ H–(y) : ψ(x, y) ⊆ C(x)};
(v) one of the following conditions holds:
(v) for each N ∈ F (E), there exists a nonempty compact convex subset EN of E containing

N such that

EN \ K ⊆
⋃

y∈EN

int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

;

(v) there exists a point y ∈ E such that

E \ K ⊆ int
((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

.

Then AGVQEP has at least a solution in K .

Proof Let ς = ψ . It is easy to see that all the conditions of Theorem . are satisfied. There-
fore, it follows from Theorem . that AGVQEP has at least a solution in K . Thus, the result
holds and the proof of Corollary . is complete. �

Corollary . Let K ⊆ E be a nonempty compact set and W be a nonempty set. Let ψ :
E × E ⇒ W , C : E ⇒ W be two set-valued mappings and H : E ⇒ E be a Fan-Browder
mapping. Assume that
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(i) the set E∗ = {x ∈ E : x /∈ H(x)} is open in E;
(ii) for each x ∈ E, ψ(x, x) � C(x);
(iii) for each x ∈ E, the set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex;
(iv) for each y ∈ E, the set {x ∈ E : ψ(x, y) ⊆ C(x)} is open in E;
(v) one of the following conditions holds:
(v) for each N ∈ F (E), there exists a nonempty compact convex subset EN of E containing

N such that

EN \ K ⊆
⋃

y∈EN

((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

;

(v) there exists a point y ∈ E such that

E \ K ⊆ ((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : ψ(x, y) ⊆ C(x)
}))

.

Then AGVQEP has at least a solution in K .

Proof By (iv), (v), and the fact that H–(y) is open in E for every y ∈ E, we can see that (iv)
and (v) of Corollary . hold. Therefore, by Corollary ., AGVQEP has at least a solution
in K . This completes the proof. �

Remark . Corollary . extends Theorem . of Batista et al. [] in the following as-
pects: (a) concerns the more general abstract generalized vector quasi-equilibrium prob-
lems instead of the generalized vector equilibrium problems; (b) from one coercivity con-
dition to two alternative coercivity conditions; (c) since W in Corollary . does not need
to be a real Hausdorff topological vector space, it is not required for each C(x) to be a
closed and convex cone; (d) (iii) is weaker than h of Theorem . of Batista et al. [];
(e) by the fact that W in Corollary . may be any nonempty set without topological
structure, we adopt the assumption that the set {x ∈ E : ψ(x, y) ⊆ C(x)} is open in E for
every y ∈ E, which is weaker than h of Theorem . of Batista et al. []. In addition, the
proof of Corollary . originates from the existence of maximal elements in noncompact
Hadamard manifolds, while the authors of [] used the KKM property to prove their re-
sult. Therefore, the proof technique of Corollary . is different from that of Theorem .
of Batista et al. [].

By using Corollary ., we can prove the existence of an equilibrium for the generalized
water market game model under the condition that there are a river structure, water bal-
ances, and heterogeneous water users via a water delivery infrastructure. We would like to
point out that our convex and continuous conditions are weaker than the corresponding
conditions in Proposition . due to Ansink and Houba [].

Corollary . Let K ⊆ E be a nonempty compact set, W be a nonempty set, and let C :
E ⇒ W , ψ : E × E ⇒ W be two set-valued mappings. Assume that

(i) for each x ∈ E, ψ(x, x) � C(x);
(ii) for each x ∈ E, the set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex;
(iii) for each y ∈ E, the set {x ∈ E : ψ(x, y) ⊆ C(x)} is open in E;
(iv) one of the following conditions holds:
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(iv) for each N ∈F (E), there exists a nonempty compact convex subset EN of E containing
N such that EN \ K ⊆ ⋃

y∈EN
{x ∈ E : ψ(x, y) ⊆ C(x)};

(iv) there exists a point y ∈ E such that E \ K ⊆ {x ∈ E : ψ(x, y) ⊆ C(x)}.

Then AVQEP has at least a solution in K .

Proof The conclusion of Corollary . follows from Corollary . by letting H(x) ≡ E for
every x ∈ E. This completes the proof. �

Remark . Let us give the following items:
() If W is a real Hausdorff topological vector space and {C(x) : y ∈ E} is a family of

nonempty convex cones, then (iv) of Theorem ., (iii) of Corollaries .-., and (ii) of
Corollary . can be replaced by one of the following conditions:

• for each x ∈ E, ψ(x, ·) is convex with respect to C(x);
• for each x ∈ E, ψ(x, ·) is quasiconvex-like with respect to C(x).
In fact, we consider the first assumption. Let x ∈ E be any given. In order to prove that

the set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex, we assume that y, y ∈ {y ∈ E : ψ(x, y) ⊆ C(x)}
and t ∈ [, ]. Applying this assumption and the fact that each C(x) is a convex cone, we
have

ψ
(

x, expy t exp–
y y

) ⊆ tψ(x, y) + ( – t)ψ(x, y) + C(x)

⊆ tC(x) + ( – t)C(x) + C(x)

⊆ C(x),

which implies that expy t exp–
y y ∈ {y ∈ E : ψ(x, y) ⊆ C(x)} for every t ∈ [, ] and so, the

set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex for every x ∈ E. Now, we prove that the desired con-
clusion holds under the condition that the second assumption is satisfied. Indeed, let x ∈ E
be fixed and then let y, y ∈ {y ∈ E : ψ(x, y) ⊆ C(x)} and t ∈ [, ] be any given. By the def-
inition of a quasiconvex-like mapping, we have

ψ
(

x, expy t exp–
y y

) ⊆ ψ(x, y) + C(x),

or

ψ
(

x, expy t exp–
y y

) ⊆ ψ(x, y) + C(x).

Since y, y ∈ {y ∈ E : ψ(x, y) ⊆ C(x)}, we have ψ(x, y) ⊆ C(x) and ψ(x, y) ⊆ C(x). There-
fore, given C(x) + C(x) ⊆ C(x), which is obtained by using the property of a convex cone, it
follows from the above formulas that ψ(x, expy t exp–

y y) ⊆ C(x), and this shows that the
set {y ∈ E : ψ(x, y) ⊆ C(x)} is convex for every x ∈ E.

() If W is a Hausdorff topological space, then (iv) of Corollary . and (iii) of Corol-
lary . can be replaced by the following conditions:

• for each y ∈ E, ψ(·, y) is upper semicontinuous on E with compact values;
• the graph Gr(C) of C; i.e., {(x, w) ∈ E × W : w ∈ C(x)} is an open set in E × W .
Indeed, it suffices to prove that the set {x ∈ E : ψ(x, y) � C(x)} is closed in E for every

y ∈ E. Let {xα} be a net in {x ∈ E : ψ(x, y) � C(x)} such that xα → x. Since ψ(xα , y) � C(xα),
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there exists zα ∈ ψ(xα , y) such that zα /∈ C(xα). Hence, we have zα ∈ W \C(xα). By the upper
semicontinuity and compact values of ψ on E, it follows from Proposition  in [] that
there exists a subnet of {zα} with limit z and z ∈ ψ(x, y). Without loss of generality, let
us assume that zα → z ∈ ψ(x, y). On the other hand, since the graph Gr(C) of C is an
open set in E × W , the set-valued mapping x ⇒ W \ C(x) has a closed graph in E × W . It
follows that z ∈ W \ C(x) and so, z /∈ C(x). Thus, x ∈ {x ∈ E : ψ(x, y) � C(x)}, which
implies that the set {x ∈ E : ψ(x, y) � C(x)} is closed in E for every y ∈ E. Therefore, the set
{x ∈ E : ψ(x, y) ⊆ C(x)} is open in E for every y ∈ E.

() If (iv) of Corollary . holds, then the solution set of AVQEP is a nonempty compact
set, which can be written as follows:

⋂

y∈E

{

x ∈ E : ψ(x, y) � C(x)
}

.

In fact, by the conclusion of Corollary ., we can see that the above set is nonempty.
Furthermore, it follows from (iv) of Corollary . that

∅ �=
⋂

y∈E

{

x ∈ E : ψ(x, y) � C(x)
} ⊆ {

x ∈ E : ψ(x, y) ⊆ C(x)
} ⊆ K .

Together with (iii) of Corollary ., we can see that the solution set of AVQEP is a
nonempty closed subset of K . Therefore, the solution set of AVQEP is a nonempty com-
pact set.

If W = R, C(x) ≡ (–∞, ) for every x ∈ E and F = f , where f : E × E →R is a bifunction,
then Corollaries . and . reduce to the following existence results of solutions to GSEP
and SEP, respectively.

Corollary . Let K ⊆ E be a nonempty compact set, H : E ⇒ E be a Fan-Browder map-
ping, and f : E × E →R be a bifunction. Assume that

(i) the set E∗ = {x ∈ E : x /∈ H(x)} is open in E;
(ii) for each x ∈ E, f (x, x) ≥ ;
(iii) for each x ∈ E, the set {y ∈ E : f (x, y) < } is convex;
(iv) for each y ∈ E, the set {x ∈ E : f (x, y) ≥ } is closed in E;
(v) one of the following conditions holds:
(v) for each N ∈ F (E), there exists a nonempty compact convex subset EN of E containing

N such that

EN \ K ⊆
⋃

y∈EN

((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : f (x, y) < 
}))

;

(v) there exists a point y ∈ E such that

E \ K ⊆ ((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : f (x, y) < 
}))

.

Then GSEP has at least a solution in K .
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Corollary . Let K ⊆ E be a nonempty compact set and f : E × E → R be a bifunction.
Assume that

(i) for each x ∈ E, f (x, x) ≥ ;
(ii) for each x ∈ E, {y ∈ E : f (x, y) < } is convex;
(iii) for each y ∈ E, the set {x ∈ E : f (x, y) ≥ } is closed in E;
(iv) one of the following conditions holds:
(iv) for each N ∈F (E), there exists a nonempty compact convex subset EN of E containing

N such that EN \ K ⊆ ⋃

y∈EN
{x ∈ E : f (x, y) < };

(iv) there exists a point y ∈ E such that E \ K ⊆ {x ∈ E : f (x, y) < }.

Then SEP has at least a solution in K .

Remark . Corollary . improves Theorem . of Colao et al. [] because there are
two alternative coercivity conditions in Corollary ., while there is only one coercivity
condition in Theorem . of Colao et al. []. Furthermore, the coercivity condition (iv)

of Corollary . is weaker than the coercivity condition (iv) of Theorem . of Colao et
al. []. To see this, we can consider K in Theorem . of Colao et al. [] as a Hadamard
submanifold, and then let L′ = L ∩ K , which is a nonempty compact subset of K . Then it
follows from K \ L = K \ L′ and y ∈ L ∩ K ⊆ K that (iv) of Theorem . of Colao et al. []
implies (iv) of Corollary ..

As an application of Corollary ., we have the following perturbed saddle point theorem
in noncompact Hadamard manifolds.

Theorem . Let K, K ⊆ E be two nonempty compact sets and f , g : E × E → R be two
bifunctions. Assume that

(i) for each x ∈ E, f (x, x) – g(x, x) = ;
(ii) for each x ∈ E, {y ∈ E : f (x, y) < g(x, y)} is convex;
(iii) for each y ∈ E, {x ∈ E : f (x, y) > g(x, y)} is convex;
(iv) the bifunction E × E � (x, y) �→ f (x, y) – g(x, y) is continuous;
(v) one of the following conditions holds:
(v) for each N ∈ F (E), there exist two nonempty compact convex subsets EN , ˜EN of E con-

taining N such that EN \ K ⊆ ⋃

y∈EN
{x ∈ E : f (x, y) < g(x, y)} and ˜EN \ K ⊆ ⋃

x∈˜EN
{y ∈

E : f (x, y) > g(x, y)};
(v) there exist two points y, x ∈ E such that E \ K ⊆ {x ∈ E : f (x, y) < g(x, y)} and E \

K ⊆ {y ∈ E : f (x, y) > g(x, y)}.

Then f has a perturbed saddle point (̂x, ŷ) ∈ K × K; i.e.,

f (x, ŷ) +
[

g (̂x, ŷ) – g(x, ŷ)
] ≤ f (̂x, ŷ) ≤ f (̂x, y) +

[

g (̂x, ŷ) – g (̂x, y)
]

, ∀(x, y) ∈ E × E.

In particular, infy∈E supx∈E[f (x, y) – g(x, y)] = supx∈E infy∈E[f (x, y) – g(x, y)].

Proof Define a bifunction h : E×E →R by h(x, y) = f (x, y)–g(x, y) for every (x, y) ∈ E×E.
By (i), (ii), (iv) and the first parts of (v) and (v), we can see that all the conditions of
Corollary . are satisfied. Thus, by Corollary ., there exists x̂ ∈ K such that h(̂x, y) ≥ 
for every y ∈ E. Define a bifunction h : E × E → R by h(y, x) = g(x, y) – f (x, y) for every
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(y, x) ∈ E × E. Then it follows from (i), (iii), (iv), and the second parts of (v) and (v) that
all the hypotheses of Corollary . are fulfilled. Thus, by Corollary . again, there exists
ŷ ∈ K such that h(̂y, x) ≥  for every x ∈ E. Therefore, we have f (̂x, ŷ) – g (̂x, ŷ) =  and

f (x, ŷ) – g(x, ŷ) ≤  = f (̂x, ŷ) – g (̂x, ŷ) ≤ f (̂x, y) – g (̂x, y), ∀(x, y) ∈ E × E.

It follows from the above inequality that

f (x, ŷ) +
[

g (̂x, ŷ) – g(x, ŷ)
] ≤ f (̂x, ŷ) ≤ f (̂x, y) +

[

g (̂x, ŷ) – g (̂x, y)
]

, ∀(x, y) ∈ E × E,

and

inf
y∈E

sup
x∈E

[

f (x, y) – g(x, y)
] ≤ sup

x∈E
inf
y∈E

[

f (x, y) – g(x, y)
]

.

Since infy∈E supx∈E[f (x, y) – g(x, y)] ≥ supx∈E infy∈E[f (x, y) – g(x, y)] is always true, we get

inf
y∈E

sup
x∈E

[

f (x, y) – g(x, y)
]

= sup
x∈E

inf
y∈E

[

f (x, y) – g(x, y)
]

.

This completes the proof. �

By setting g(x, y) ≡  for every (x, y) ∈ E × E, we obtain the following saddle point theo-
rem from Theorem ..

Theorem . Let K, K ⊆ E be two nonempty compact sets and f : E × E → R be a bi-
function. Assume that

(i) for each x ∈ E, f (x, x) = ;
(ii) for each x ∈ E, {y ∈ E : f (x, y) < } is convex;
(iii) for each y ∈ E, {x ∈ E : f (x, y) > } is convex;
(iv) the bifunction E × E � (x, y) �→ f (x, y) is continuous;
(v) one of the following conditions holds:
(v) for each N ∈ F (E), there exist two nonempty compact convex subsets EN , ˜EN of E con-

taining N such that EN \ K ⊆ ⋃

y∈EN
{x ∈ E : f (x, y) < } and ˜EN \ K ⊆ ⋃

x∈˜EN
{y ∈ E :

f (x, y) > };
(v) there exist two points y, x ∈ E such that E \ K ⊆ {x ∈ E : f (x, y) < } and E \ K ⊆

{y ∈ E : f (x, y) > }.

Then f has a saddle point (̂x, ŷ) ∈ K × K; i.e.,

f (x, ŷ) ≤ f (̂x, ŷ) ≤ f (̂x, y), x ∀(x, y) ∈ E × E.

In particular, infy∈E supx∈E f (x, y) = supx∈E infy∈E f (x, y).

4 Weakly mixed variational inequality problem
In this section, inspired by the idea due to Colao et al. [], we introduce WMVIP in
Hadamard manifolds and present a sufficient condition for the existence of solutions
to WMVIP. Let H : E ⇒ E be a set-valued mapping, σ : E → TE be a vector field, and
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ϕ : E → R be a real-valued function. We consider the following WMVIP: find x̂ ∈ E such
that

x̂ ∈ H (̂x) and
〈

σ (̂x), exp–
x̂ y

〉

+ ϕ(y) – ϕ (̂x) ≥ , ∀y ∈ H (̂x).

Remark . WMVIP contains the mixed variational inequality problem (for short, MVIP)
considered by Colao et al. []. In fact, let H(x) ≡ E for every x ∈ E. Then WMVIP collapses
to MVIP in []. Furthermore, if ϕ(y) ≡  for every y ∈ E, then WMVIP coincides with the
following variational inequality problem.

Find x̂ ∈ E such that
〈

σ (̂x), exp–
x̂ y

〉 ≥ , ∀y ∈ E,

which was introduced and studied by Németh [].

By Corollary ., we have the following existence theorem of solutions to WMVIP in
noncompact Hadamard manifolds.

Theorem . Let K ⊆ E be a nonempty compact set, H : E ⇒ E be a Fan-Browder map-
ping, ϕ : E →R be a lower semicontinuous function, and σ : E → TE be a continuous vector
field. Assume that

(i) the set E∗ = {x ∈ E : x /∈ H(x)} is open in E;
(ii) for each x ∈ E, the function E � y �→ 〈σ (x), exp–

x y〉 + ϕ(y) is convex;
(iii) one of the following conditions holds:
(iii) for each N ∈F (E), there exists a nonempty compact convex subset EN of E containing

N such that

EN \ K ⊆
⋃

y∈EN

((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E :
〈

σ (x), exp–
x y

〉

< ϕ(x) – ϕ(y)
}))

;

(iii) there exists a point y ∈ E such that

E \ K ⊆ ((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E :
〈

σ (x), exp–
x y

〉

< ϕ(x) – ϕ(y)
}))

.

Then WMVIP has at least a solution in K .

Proof Define a bifunction f : E × E → R by

f (x, y) =
〈

σ (x), exp–
x y

〉

+ ϕ(y) – ϕ(x), ∀(x, y) ∈ E × E.

It is clear that f (x, x) ≥  for every x ∈ E. Thus, (ii) of Corollary . is satisfied. By
Lemma . and the continuous properties of σ and ϕ, one can see that the function
E � x �→ f (x, y) is upper semicontinuous. Therefore, the set {x ∈ E : f (x, y) ≥ } is closed in
E for every x ∈ E, which implies that (iv) of Corollary . holds. Moreover, it follows from
(iii) and the definition of f that one of the following conditions holds:
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• for each N ∈F (E), there exists a nonempty compact convex subset EN of E
containing N such that

EN \ K ⊆
⋃

y∈EN

((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : f (x, y) < 
}))

;

• there exists a point y ∈ E such that

E \ K ⊆ ((

E∗ ∩ H–(y)
) ∪ (

H–(y) ∩ {

x ∈ E : f (x, y) < 
}))

.

Thus, (v) of Corollary . is satisfied. Now, in order to show that (iii) of Corollary . holds,
we are ready to prove that {y ∈ E : f (x, y) < } is convex for every x ∈ E. Indeed, let x ∈ E
be fixed and let y, y ∈ {y ∈ E : f (x, y) = 〈σ (x), exp–

x y〉 + ϕ(y) – ϕ(x) < }, t ∈ [, ]. By (ii),
we get

f
(

x, expy t exp–
y y

)

=
〈

σ (x), exp–
x

(

expy t exp–
y y

)〉

+ ϕ
(

expy t exp–
y y

)

– ϕ(x)

≤ t
(〈

σ (x), exp–
x y

〉

+ ϕ(y)
)

+ ( – t)
(〈

σ (x), exp–
x y

〉

+ ϕ(y)
)

– ϕ(x)

= t
(〈

σ (x), exp–
x y

〉

+ ϕ(y) – ϕ(x)
)

+ ( – t)
(〈

σ (x), exp–
x y

〉

+ ϕ(y) – ϕ(x)
)

< ,

which implies that the set {y ∈ E : f (x, y) < } is convex for every x ∈ E. As a consequence
of Corollary ., there exists a point x̂ ∈ K such that x̂ ∈ H (̂x) and f (̂x, y) = 〈σ (̂x), exp–

x̂ y〉 +
ϕ(y) – ϕ (̂x) ≥  for every y ∈ H (̂x); that is, WMVIP has at least a solution in K . This com-
pletes the proof. �

Remark . The following two conditions are stronger than (iii) and (iii) of Theo-
rem ., respectively.

(iii)′ For each N ∈ F (E), there exists a nonempty compact convex subset EN of E con-
taining N such that for all x ∈ EN \ K , there exists y ∈ EN such that y ∈ H(x) and
〈σ (x), exp–

x y〉 < ϕ(x) – ϕ(y);
(iii)′ There exists a point y ∈ E such that y ∈ H(x) and 〈σ (x), exp–

x y〉 < ϕ(x) – ϕ(y) for
every x ∈ E \ K .

If H(x) ≡ E for every x ∈ E, then we can obtain the following corollary from Theorem ..

Corollary . Let K ⊆ E be a nonempty compact set, ϕ : E →R be a lower semicontinuous
function, and σ : E → TE be a continuous vector field. Assume that

(i) for each x ∈ E, the function E � y �→ 〈σ (x), exp–
x y〉 + ϕ(y) is convex;

(ii) one of the following conditions holds:
(ii) for each N ∈ F (E), there exists a nonempty compact convex subset EN of E containing

N such that EN \ K ⊆ ⋃

y∈EN
{x ∈ E : 〈σ (x), exp–

x y〉 < ϕ(x) – ϕ(y)};
(ii) there exists y ∈ E such that E \ K ⊆ {x ∈ E : 〈σ (x), exp–

x y〉 < ϕ(x) – ϕ(y)}.

Then MVIP has at least a solution in K .
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Remark . Corollary . extends Theorem . of Colao et al. [] in the following as-
pects: (a) from one coercivity condition to two coercivity conditions; (b) the coercivity
condition (ii) of Corollary . is weaker than the coercivity condition (C) of Theorem .
of Colao et al. [] in view of the same argument as in Remark .; (c) by Lemma . and
the proof of Theorem . of Colao et al. [], we can see that the sectional curvature of
the Hadamard manifold in Theorem . of Colao et al. [] is identically zero, while it is
not required for the sectional curvature of the Hadamard manifold in Corollary . to be
identically zero; (d) the convexity of the function f in Theorem . of Colao et al. [] is
dropped.

Corollary . Let ϕ : E → R be a convex lower semicontinuous function and σ : E → TE
be a continuous vector field such that the function E � y �→ 〈σ (x), exp–

x y〉 + ϕ(y) is convex
for every x ∈ E. Suppose that one of the following conditions holds:

(i) E is compact;
(i) there exists y ∈ E such that, for each u ∈ Ty E, the following condition holds:

lim
d(y,x)→+∞

〈σ (y), exp–
y x〉 + 〈σ (x), exp–

x y〉
d(y, x)

< –
(∥

∥σ (y)
∥

∥ + ‖u‖).

Then MVIP has at least a solution.

Proof Suppose that (i) holds. For each N ∈ F (E), let EN = E = K . Thus, both (ii) and
(ii) of Corollary . are satisfied automatically. Therefore, MVIP has at least a solution
in E. Now, we suppose that (i) is satisfied. Let y ∈ E satisfy (i). Since ϕ is convex, it
follows from Lemma . that D(∂ϕ) = E. Thus, we may choose u ∈ ∂ϕ(y) ⊆ Ty E; i.e., the
subdifferential of ϕ at y. For each x ∈ E, by the generalized Cauchy-Schwarz inequality,
we have

ϕ(y) – ϕ(x) ≤ –
〈

u, exp–
y x

〉 ≤ ‖u‖
∥

∥exp–
y x

∥

∥ = ‖u‖d(y, x).

It follows from the above relation that

–
〈

σ (y), exp–
y x

〉

+ ϕ(y) – ϕ(x) ≤ (∥

∥σ (y)
∥

∥ + ‖u‖
)

d(y, x), ∀x ∈ E.

By (i), there exists λ ∈ R such that

lim
d(y,x)→+∞

〈σ (y), exp–
y x〉 + 〈σ (x), exp–

x y〉
d(y, x)

< –λ < –
(∥

∥σ (y)
∥

∥ + ‖u‖
)

.

We can choose r >  large enough such that, for each x /∈ B(y, r) = {x ∈ E : d(x, y) ≤ r},
we have 〈σ (y), exp–

y x〉 + 〈σ (x), exp–
x y〉 ≤ –λd(y, x). Then, for each x ∈ E \ B(y, r), we

have the following:

〈

σ (x), exp–
x y

〉

+ ϕ(y) – ϕ(x) ≤ –
〈

σ (y), exp–
y x

〉

– λd(y, x) + ϕ(y) – ϕ(x)

≤ (∥

∥σ (y)
∥

∥ + ‖u‖ – λ
)

d(y, x)

< .
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Let K = B(y, r). Since K is a bounded closed set in E, it follows from the Hopf-Rinow
theorem that K is a compact subset of E. Thus, by the above inequality, one can see that
(ii) of Corollary . holds. Therefore, by Corollary ., MVIP has at least a solution. This
completes the proof. �

Remark . Corollary . generalizes Corollary . of Colao et al. [] in the following
two aspects: (a) from the Hadamard manifold with its sectional curvature being identi-
cally zero to the Hadamard manifold with its sectional curvature being nonpositive. This
fact can be deduced from Lemma .; (b) (ii) of Corollary . is weaker than (ii) of Corol-
lary . of Colao et al. [].

5 Conclusions
In this paper, we introduce and study AGVQEP in noncompact Hadamard manifolds. By
means of a maximal element theorem, we establish an existence theorem for a solution
to AGVQEP in noncompact Hadamard manifolds. Moreover, we provide applications to
AVQEP, GSEP, SEP, and the perturbed saddle point problem. Finally, WMVIP in non-
compact Hadamard manifolds is introduced, and by applying our results, a weakly mixed
variational inequality and two mixed variational inequalities are established.
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