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Abstract
In this paper, a parallel multisplitting iterative method with the self-adaptive
weighting matrices is presented for the linear system of equations when the
coefficient matrix is an H-matrix. The zero pattern in weighting matrices is
determined in advance, while the non-zero entries of weighting matrices are
determined by finding the optimal solution in a hyperplane of α points generated by
the parallel multisplitting iterations. Especially, the nonnegative restriction of
weighting matrices is released. The convergence theory is established for the parallel
multisplitting method with self-adaptive weightings. Finally, a numerical example
shows that the parallel multisplitting iterative method with the self-adaptive
weighting matrices is effective.

Keywords: linear systems; self-adaptive weightings; convergence; parallel
multisplitting; H-matrix

1 Introduction and preliminaries
To solve the large sparse linear system of equations

Ax = b, A ∈ Rn×n nonsingular and b ∈ Rn, (.)

O’Leary and White [] first proposed parallel methods based on multisplittings of matri-
ces in , where several basic convergence results may be found. A multisplitting of A
is a collection of triples of n × n matrices (Mi, Ni, Ei)αi= (α ≤ n, a positive integer) with
Mi, Ni, Ei ∈ Rn×n, and then the following method for solving system (.) was given:

A = Mi – Ni, i = , , . . . ,α,

Mix(k)
i = Nix(k–) + b, i = , , . . . ,α; k = , , . . . ,

x(k) =
α∑

i=

Eix(k)
i ,

where Mi, i = , , . . . ,α, are nonsingular and Ei = diag(e(i)
 , e(i)

 , . . . , e(i)
n ), i = , , . . . ,α, satisfy

∑α
i= Ei = I (I ∈ Rn×n is the identity matrix). By the way, x() is an initial vector of x∗ = A–b.
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There has been a lot of study (see [–]) on the parallel iteration methods for solving
the large sparse system of linear equations (.). In particular, when the coefficient matrix
A is an M-matrix or an H-matrix, many parallel multisplitting iterative methods (see, e.g.,
[–, ]) were presented, and the weighting matrices Ei, i = , , . . . ,α, were generalized
(see, e.g., [, , –])

α∑

i=

E(k)
i = I (or �= I), E(k)

i ≥ , diagonal, i = , , . . . ,α; k = , , . . . , (.)

but these weighting matrices were preset as multi-parameter.
As we know, the weighting matrices play an important role in parallel multisplitting

iterative methods, but the weighting matrices in all the above-mentioned methods are
determined in advance, they are not known to be good or bad, and this influences the
efficiency of parallel methods. Recently, Wen and co-authors [] discussed self-adaptive
weighting matrices for a symmetric positive definite linear system of equations; Wang and
co-authors [] discussed self-adaptive weighting matrices for non-Hermitian positive def-
inite linear system of equations. In this paper, we focus on the H-matrix, which originates
from Ostrowski []. The H-matrix is a class of the important matrices that has many ap-
plications. For example, numerical methods for solving PDEs are a source of many linear
systems of equations whose coefficients form H-matrices (see [–]). Are self-adaptive
weighting matrices true for the linear system of equations when the coefficient matrix is
an H-matrix? We will discuss this problem in this paper.

Here, we generalize the weighting matrices Ei (i = , , . . . ,α) to E(k)
i (i = , , . . . ,α; k =

, , . . .), which can be divided into two steps: each splitting is first dealt with by a different
processor, the weighting matrices E(k)

i (i = , , . . . ,α; k = , , . . .) will mask large portion of
the matrix, so that each processor deals with a smaller matrix; later, the weighting matrices
E(k)

i (i = , , . . . ,α; k = , , . . .) will be approximated to ‘the best’ choices well for k-step
iteration in the hyperplane generated by {x(k)

i , i = , , . . . ,α}, k = , , . . . . In this paper, we
determine the weighting matrices E(k)

i (i = , , . . . ,α; k = , , . . .) for above reasons. Firstly,
decreasing execution times is completed by the zero-entry’s set in weighting matrices.
Secondly, the self-adaptive weighting matrices are reached by finding the ‘good’ point in
the hyperplane generated by {x(k)

i , i = , , . . . ,α}, k = , , . . . . Thus, the scheme of finding
the self-adaptive weighting matrices is established for the parallel multisplitting iterative
method, it has two advantages as follows:

• The weighting matrices are not necessarily nonnegative;
• Only one splitting of α splittings is required to be convergent.
In the rest of this study, we first give some notations and preliminaries in Section , and

then a parallel multisplitting iterative method with the self-adaptive weighting matrices is
put forward in Section . The convergence of the parallel multisplitting iterative method is
established in Section . Moreover, we give the computational results of the parallel mul-
tisplitting iterative method by a problem in Section . We end the paper with a conclusion
in Section .

Here are some essential notations and preliminaries. Rn×n is used to denote the n × n
real matrix set, and Rn is the n-dimensional real vector set. AT represents the transpose of
the matrix A, and xT denotes the transpose of the vector x. 〈A〉 stands for the comparison
(Ostrowski) matrix of the matrix A, and |A| is the absolute matrix of the matrix A.
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In what follows, when A is a strictly diagonally dominant matrix in column, A is called
a strictly diagonally dominant matrix.

Definition . ([]) The matrix A is an H-matrix if there exists a positive diagonal matrix
D such that the matrix DA is a strictly diagonally dominant matrix.

Property . ([]) The matrix A is an H-matrix if and only if 〈A〉 is an M-matrix.

Definition . ([, ]) Suppose that A is an H-matrix. Let A = M – N , which is called an
H-compatible splitting if 〈A〉 = 〈M〉 – |N |.

Property . ([]) Let A be an H-matrix, then |A–| ≤ 〈A〉–.

2 Description of the method
Here, we present a parallel multisplitting iterative method with the self-adaptive weighting
matrices.

Let

A = Mi – Ni, i = , , . . . ,α. (.)

E(k)
i = diag

(
e(i,k)

 , . . . , e(i,k)
n

)
,

α∑

i=

E(k)
i = I, k = , , . . . . (.)

By introducing

Ti = M–
i Ni, i = , , . . . ,α. (.)

The iteration matrix of kth step

Tk =
α∑

i=

E(k)
i M–

i Ni =
α∑

i=

E(k)
i Ti. (.)

The preset nonzero set

S(i, k) =
{

j|e(i,k)
j �= 

}
, S(k) =

α⋃

i=

S(i, k). (.)

Method .

Step . Given a tolerance ε >  and an initial vector x(). For i = , , . . . ,α; k = , , . . . , give
also the set S(i, k) and for some i, S(i, k) = {, , . . . , n}. The sequence of x(k), k =
, , . . . , until converges.

Step . Solution in parallel. For the ith processor, i = , , . . . ,α: compute x(i,k)
j , j ∈ S(i, k) by

Mix(i,k) = Nix(i,k–) + b, (.)

where x(i,k) = (x(i,k)
 , . . . , x(i,k)

n )T .
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Step . For the ith processor, set

x =
α∑

i=

E(k)
i x(k)

i =

⎛

⎜⎜⎜⎜⎝

∑α
i= e(i,k)

 x(i,k)
∑α

i= e(i,k)
 x(i,k)


...∑α

i= e(i,k)
n x(i,k)

n

⎞

⎟⎟⎟⎟⎠
.

Solve the following optimization problem:

min
e(i,k)

j ∈S(k)
‖Ax – b‖

s.t.
α∑

i=

E(k)
i = I. (.)

Or

‖Ax – b‖ ≤ ∥∥Ax(k)
i – b

∥∥


s.t.
α∑

i=

E(k)
i = I. (.)

Step . Compute

x(k) =
α∑

i=

E(k)
i x(k)

i . (.)

Step . If ‖Ax(k) – b‖ ≤ ε, stop; otherwise, k ⇐ k + , go to Step .

Remark . The implementation of this method is that at each iteration there are α inde-
pendent problems of the kind (.) with x(i,k)

j , j ∈ S(i, k) represents the solution to the local
problem. The work for each equation in (.) is assigned to one processor, and commu-
nication is required only to produce the update given in (.). In general, some (most) of
the diagonal elements in Ei are zero and therefore the corresponding components of x(i,k)

j ,
j ∈ S(i, k) need not be calculated.

Remark . We may use some optimization methods such as the simplex method (see
[]) to solve an approximated solution satisfying inequality (.). Usually, we can compute
the optimal weighting at every two or three iterations to replace at each iteration step.
Hence, the computational complexity of (.) is about n or n flops.

On the other hand, if S(i, k) = n, S(i, k) = , i �= i, let x = ( – t)x(i,k) + tx̄(k), (.) becomes

‖Ax – b‖ =
∥∥Ax(i,k) – b – tA

(
x(i,k) – x̄(k))∥∥

 = ‖b̄ – āt‖.

Now, we consider the following programming:

min
x

n∑

j=

|bj – ajx|. (.)
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Assumptions
(a) bj ≥ , j = , , . . . , n.
(b) b

a
≤ b

a
≤ · · · ≤ bn

an
.

Lemma . Let programming (.) satisfy Assumptions and xj = bj
aj

, j = , , . . . , n. Then
there exists some j such that xj is the solution of programming (.).

Proof As we know, the solution x∗ ∈ [ b
a

, bn
an

]. Let P = { b
a

, b
a

, . . . , bk
ak

, . . . , bn
an

} be a partition
of [ b

a
, bn

an
], it implies that b

a
< b

a
< · · · < bk

ak
< · · · < bn

an
. Thus, we obtain a set of subinterval

induced by the partition P.
In every subinterval, the function

∑n
j= |bj – ajx| is a linear function, then the mini-

mization point of the linear function is just a partition point. Hence, the lemma has been
proved. �

Corollary . Let programming (.) satisfy Assumptions. Then

min

{ n∑

j=

∣∣∣∣bj – aj
bk

ak

∣∣∣∣,
n∑

j=

∣∣∣∣bj – aj
bk+

ak+

∣∣∣∣

}
≤

n∑

j=

bj

with bk
ak

≤  ≤ bk+
ak+

.

From Lemma . we obtain an approximated solution, its complexity is about n flops.

3 Convergence analysis
In this section, we discuss the convergence of Method . under the reasonable assump-
tions.

Lemma . Let A = M – N be H-compatible splitting of the strictly diagonally dominant
matrix A, then

∥∥NM–∥∥
 < . (.)

Proof From the definition of H-compatible splitting, we know that 〈A〉 = 〈M〉 – |N |.
Let N = (NT

 , NT
 , . . . , NT

n )T , Nj = (nj, nj, . . . , njn). From Property ., it holds that

∥∥NM–∥∥
 ≤ ∥∥|N |〈M〉–∥∥

 = max
≤j≤n

∣∣(eT |N |〈M〉–)
i

∣∣.

Let eT |N |〈M〉– = xT , where xT = (x, x, . . . , xn). We have

eT |N | = xT 〈M〉.

Let xj = max≤j≤n xj, which implies

n∑

j=

|njj | = mjj xj –
∑

j �=j

mjj xj ≥
(

mjj –
∑

j �=j

mjj

)
xj , xj ≤

∑n
j= |njj |

mjj –
∑

j �=j mjj
.



Wen and Duan Journal of Inequalities and Applications  (2017) 2017:95 Page 6 of 10

From the H-compatible splitting 〈A〉 = 〈M〉 – |N | and the strict diagonal dominance of
〈A〉, it holds that

∑n
j= |njj |

mjj –
∑

j �=j mjj
< .

Hence, ‖NM–‖ < . �

Lemma . Let A = M – N be H-compatible splitting of the H-matrix A. Then there exists
a positive diagonal matrix D such that

∥∥DNM–D–∥∥
 < . (.)

Proof There is a positive diagonal matrix D such that DA is a strictly diagonally dominant
matrix since A is an H-matrix. Thus

〈DA〉 = 〈DM〉 – |DN |. (.)

Let

〈DA〉 = Ā, 〈DM〉 = M̄, |DN | = N̄ .

Then

Ā = M̄ – N̄

is a regular splitting of the strictly diagonally dominant matrix Ā. From Lemma ., we
know that

∥∥N̄M̄–∥∥
 < .

Hence,

∥∥DNM–D–∥∥
 =

∥∥N̄M̄–∥∥
 < . �

Theorem . Let A = Mi –Ni, i = , , . . . ,α, be α splittings of the H-matrix A, and for some
i, let A = Mi – Ni be H-compatible splitting. Assume that E(k)

i , i = , , . . . ,α; k = , , . . .
are yielded by (.) or (.) in Method .. Then {x(k)} generated by Method . converges
to the unique solution x∗ of (.).

Proof Let ε(k) = x(k) – x∗. We have

ε(k+) = Tkε
(k), ε

(k+)
i = Tiε

(k), i = , , . . . ,α. (.)

On the other hand,

min
e(i,k)

j ∈S(k)
‖Ax – b‖ = min

e(i,k)
j ∈S(k)

∥∥A(x – x∗)
∥∥

. (.)
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Let D be a positive diagonal matrix such that DA is a strictly diagonally dominant matrix.
Thus, from (.) (or (.)) and Lemma . we know that

∥∥DAε(k+)∥∥
 =

∥∥DATkε
(k)∥∥

 ≤ min
≤i≤α

∥∥DATiε
(k)∥∥



≤ ∥∥DATi A–D–∥∥


∥∥DAε(k)∥∥
 =

∥∥DNi M–
i D–∥∥

 · ∥∥DAε(k)∥∥


≤ ∥∥D|Ni |〈Mi〉–D–∥∥
 · ∥∥DAε(k)∥∥

 ≤ r
∥∥DAε(k)∥∥



≤ · · · ≤ rk+∥∥DAε()∥∥
,

where r = ‖D|Ni |〈Mi〉–D–‖ < .
Thus, limk→∞ ‖DAε(k+)‖ = , which implies that

lim
k→∞

ε(k+) = .

We have completed the proof of the theorem. �

4 Numerical experiments
In this section, a test problem to assess the feasibility and effectiveness of Method . in
terms of both iteration number (denoted by IT) and computing time (in seconds, denoted
by CPU) is given. All our tests are started from zero vector and terminated when the cur-
rent iterate satisfied ‖r(k)‖ < –, where r(k) is the residual of the current, say kth iteration
or the number of iterations is up to ,. For the latter the iteration is failing. We solve
(.) or (.) in the optimization step by the simplex method (see []).

Problem Consider the generalized convection-diffusion equations in a two-dimensional
case. The equation is

–
∂u
∂x –

∂u
∂y + q · exp(x + y) · x · ∂u

∂x
+ q · exp(x + y) · y · du

dy
= f (.)

with the homogeneous Dirichlet boundary condition. We use the standard Ritz-Galerkin
finite element method by P conforming triangular element to approximate the following
continuous solutions u = x · y · ( – x) · ( – y) in the domain � = [, ]× [, ], the step-sizes
along both x and y directions are the same, that is, h = 

m , m = , , . Let q = .

After discretization, the matrix A of this equation is given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A B

C A B
. . . . . . . . .

Cp–,p– Ap–,p– Bp–,p

Cp,p– Ap,p

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n,

where Ai,i, i = , . . . , p, are s-by-s nonsymmetric matrices and BT
i,i+ �= Ci+,i. Thus, n = s · p

and s = p = m = , ,  from the above.
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Let

A = D – L – U ,

where D is a block diagonal matrix, L is the strictly block lower triangle matrix, U is the
strictly block upper triangle matrix.

We construct the multisplitting as follows:
(a) The block Jacobi splitting (denoted by BJ)

A = M – N, M = D.

(b) The block Gauss-Seidel splitting I (denoted by BGS-I)

A = M – N, M = D – L.

(c) The block Gauss-Seidel splitting II (denoted by BGS-II)

A = M – N, M = D – U .

The three weighting matrices are chosen as follows:

E = diag(ωI,ωI),

E = diag(βI, ),

E = diag(,γ I),

where I is the n
 × n

 identity matrix.
In the first results presented in Table  we show the spectral radius of the corresponding

iteration matrix for the classical iterative methods (a)-(c). It is well known that an iterative
method is convergent when the spectral radius of the corresponding iteration matrix is less
than one. We can see that the numbers listed in Table  approximate to  such that these
iterative methods converge to the unique solution of (.) slowly. However, the behavior
of the multisplitting method based on three splittings (a)-(c) can be improved by self-
adaptive weightings, and the results are shown in Tables  and .

Here, we denote the basic parallel multisplitting iterative method with fixed weighting
matrix by B-Meth (see []). In Basic Methods, we propose three groups of weighting ma-
trices, which are generated by random selection. Thus, the corresponding parallel multi-
splitting iterative methods are denoted by B-Meth , B-Meth , B-Meth , respectively.

The speed-up is defined in the following:

speed-up =
CPU of the Basic Methods

CPU of Method .
.

Table 1 Radii of the classical iterative methods

n BJ BGS-I BGS-II

32× 32 0.9923 0.984 0.9847
64× 64 0.9980 0.9960 0.9961
128× 128 0.9995 0.9990 0.9991
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Table 2 The comparison of computational results among the BGS-I, BGS-II, Method 2.1

n BGS-I BGS-II Method 2.1

32× 32 IT 866 869 653
CPU(s) 3.465 3.838 2.5130

64× 64 IT 3,353 3,358 2,314
CPU(s) 64.493 78.830 23.2740

128× 128 IT 13,191 13,202 6,799
CPU(s) 1,203.512 1,367.604 365.7850

Note: kopt = 2 can be chosen in Method 2.1.

Table 3 The comparison of computational results between Method 2.1 and Basic Method

n Method 2.1 B-Meth 1 B-Meth 2 B-Meth 3

32× 32 IT 653 1,308 1,226 1,175
CPU(s) 2.5130 4.4435 3.3955 3.1638

64× 64 IT 2,314 4,571 4,601 4,489
CPU(s) 23.2740 57.1624 57.1404 55.3278

128× 128 IT 6,799 17,865 17,662 17,877
CPU(s) 365.7850 1,048.6420 1,047.1182 1,040.2860

From the above numerical experiments, it is obtained that the average speed-up of the
new parallel multisplitting iterative method (Method .) is about . (the average value
of all computational results by Basic Methods).

5 Conclusion
The parallel multisplitting iterative method with the self-adaptive weighting matrices has
been proposed for the linear system of equations (.) when the coefficient matrix is an H-
matrix. The convergence theory is established for the parallel multisplitting method with
self-adaptive weightings. The numerical results show that the new parallel multisplitting
iterative method with the self-adaptive weightings is effective.
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