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Abstract
The eigenvalues of G are denoted by λ1(G),λ2(G), . . . ,λn(G), where n is the order of G.
In particular, λ1(G) is called the spectral radius of G, λn(G) is the least eigenvalue of G,
and the spread of G is defined to be the difference between λ1(G) and λn(G). Let U(n)
be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is
of degree at least three. We characterize the graphs with the kth maximum spectral
radius among graphs in U(n) for k = 1 if n ≥ 6, k = 2 if n ≥ 8, and k = 3, 4, 5 if n ≥ 10,
and the graph with minimum least eigenvalue (maximum spread, respectively)
among graphs inU(n) for n≥ 6.
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1 Introduction
Let G be a simple graph with vertex set V (G) and edge set E(G). Let A(G) be the adja-
cency matrix of G. The characteristic polynomial of G is the characteristic polynomial of
A(G), denoted by φ(G, x). The eigenvalues of G, denoted by λ(G),λ(G), . . . ,λn(G), are the
eigenvalues of A(G), arranged in a non-increasing order, where n is the order of G.

In particular, λ(G) is called the spectral radius of G, and we usually use λn(G) to repre-
sent the least eigenvalue of G. The spread of G, denoted by s(G), is the difference between
the largest and the least eigenvalues, i.e., s(G) = λ(G) – λn(G).

By the Perron-Frobenius theorem [], for a connected graph G, corresponding to λ(G),
there is a unit eigenvector x = (x, x, . . . , xn)T with all positive entries, known as the prin-
cipal eigenvector of G. For a connected graph G, it is well known that []

λ(G) ≥ –λn(G)

with equality if and only if G is bipartite.
A unicyclic graph is a connected graph with a unique cycle. The spectral radius of uni-

cyclic graphs has been studied extensively these years. Guo [] determined the graphs with
the first ten maximum spectral radii among all the n-vertex unicyclic graphs for n ≥ .
Belardo et al. [] determined the maximum spectral radius of unicyclic graphs with given
girth. Yu and Tian [] gave the first two spectral radii of unicyclic graphs with a given
matching number. More results on the spectral radius of unicyclic graphs can be found in
[–].
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The least eigenvalue of graphs is a relatively new topic in spectral graph theory. Fan et
al. [] characterized the graph with minimum least eigenvalue (the graph with maximum
spread, respectively) among all the n-vertex unicyclic graphs for n ≥ . Zhai et al. [] de-
termined the minimum least eigenvalue of unicyclic graphs with given diameter. Du []
presented the first six minimum least eigenvalues of unicyclic graphs. This paper will con-
tinue the research of the spectral properties of unicyclic graphs, such as spectral radius,
the least eigenvalue, and the spread.

A unicyclic graph is called fully loaded if every vertex on its unique cycle has degree
at least three. Let U(n) be the set of n-vertex fully loaded unicyclic graphs, where n ≥ .
In this paper, we characterize the graphs with the kth maximum spectral radius among
graphs in U(n) for k =  if n ≥ , k =  if n ≥ , and k = , ,  if n ≥ , and the graph
with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)
for n ≥ .

2 Preliminaries
We use standard notation from spectral graph theory [].

Let x be a unit eigenvector of G corresponding to λ(G) or λn(G). We say xv is the element
of x corresponding to v ∈ V (G).

Lemma  ([, ]) Let G be a connected graph, rs ∈ E(G) and rt /∈ E(G). Let G′ be the graph
obtained from G by deleting the edge rs and adding the edge rt. Let x and x′ be, respectively,
the principal eigenvectors of G and G′. If xt ≥ xs, then λ(G′) > λ(G) and x′

t > x′
s.

For u ∈ V (G), let dG(u) be the degree of u in G. A pendent vertex is a vertex of degree
one.

Lemma  ([]) Let G be a connected graph with uv ∈ E(G) and dG(u), dG(v) ≥ . Suppose
that u and v have no common neighbor. Let G′ be the graph obtained from G by deleting
the edge uv and identifying u and v, which is denoted by w, and attaching a pendent vertex
to w. Then λ(G′) > λ(G).

For a vertex subset V ′ of G, let G – V ′ denote the graph formed from G by deleting all
the vertices in V ′ and their incident edges. In particular, we write G – u for G – {u}.

Lemma  ([]) Let v be a vertex of a graph G different from a cycle, and let ϕ(v) be the set
of the cycles containing v. Then

φ(G, x) = x · φ(G – v, x) –
∑

vw∈E(G)

φ(G – v – w, x) – 
∑

Z∈ϕ(v)

φ
(
G – V (Z), x

)
.

In particular, if v is a pendent vertex of G with unique neighbor u, then

φ(G, x) = x · φ(G – v, x) – φ(G – v – u, x),

where φ(G – v – u, x) =  if G = P.

Lemma  ([, ]) Let G be a connected non-trivial graph, and let H be a proper spanning
subgraph of G. Then φ(H , x) > φ(G, x) for x ≥ λ(G).
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Lemma  Let G be a connected graph with at least three vertices, where u, v ∈ V (G), and
let H be a connected graph with w ∈ V (H). Let G (G, respectively) be the graph obtained
from G and H by identifying u (v, respectively) with w. Let y (y′, respectively) be a unit
eigenvector of G (G, respectively) corresponding to λn(G) (λn(G), respectively). Suppose
that |yu| ≤ |yv|.

(i) [] λn(G) ≥ λn(G) with equality if and only if yu = yv and
∑

yj = , where the
summation takes over all the neighbors of w in H.

(ii) If λn(G) > λn(G), then |y′
u| < |y′

v|.

Proof We need only to prove (ii). If |y′
u| ≥ |y′

v|, then by (i), λn(G) ≤ λn(G), which is a
contradiction. �

By Lemma (i), we have the following.

Lemma  ([]) Let u be a vertex of a connected graph Q with at least two vertices. For
integer a ≥ , let G be the graph obtained by attaching a star Sa+ at its center v to u
of Q, and G be the graph obtained by attaching a +  pendent vertices to u of Q. Then
λn(G) ≥ λn(G).

For an edge subset M of G, let G – M denote the graph obtained from G by deleting the
edges in M, and for an edge subset M∗ of the complement of G, let G + M∗ denote the
graph obtained from G by adding the edges in M∗.

3 Large spectral radius of graphs in U(n)
In this section, we determine the first five maximum spectral radii of graphs in U(n).

Let Un,m be the unicyclic graph obtained from the cycle Cm = vv · · · vmv by attaching
n – m +  pendent vertices to v and a pendent vertex to each of the other vertices on Cm.
Obviously, Un,m ∈U(n).

Lemma  Let G ∈ U(n) with unique cycle of length m ≥ , where n ≥ m. Then λ(G) ≤
λ(Un,m) with equality if and only if G ∼= Un,m.

Proof Let G be a graph with maximum spectral radius satisfying the given condition. Let
Cm = vv · · · vmv be the unique cycle of G. By Lemma , the vertices of G outside Cm are
all pendent vertices.

Suppose that G � Un,m. Then we may choose two vertices, say vi and vj, on Cm such that
dG(vi), dG(vj) ≥ , where  ≤ i < j ≤ m. Let x be the principal eigenvector of G. Suppose
without loss of generality that xvi ≥ xvj . Consider G = G – vvj + vvi, where v is a neighbor
of vj outside Cm. Obviously, G ∈U(n) and its unique cycle is still of length m. By Lemma ,
λ(G) < λ(G), which is a contradiction. Thus there is at most one vertex on Cm with
degree at least four in G, i.e., G ∼= Un,m. �

Lemma  Let G ∈ U(n) with unique cycle of length m ≥ , where n ≥ m. Then λ(G) ≤
λ(Un,) with equality if and only if G ∼= Un,.

Proof If m ≥ , then applying Lemma  to G = Un,m by setting uv to be an edge on the
cycle incident to the vertex of maximum degree, we have λ(Un,m) < λ(Un,m–), and thus
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λ(Un,m) < λ(Un,). If m = , then by Lemma , λ(G) ≤ λ(Un,) with equality if and only
if G ∼= Un,. �

Let C(T, T, T) be the n-vertex unicyclic graph with the triangle vvvv such that the
deletion of the three edges on the triangle would result in three vertex-disjoint trees T,
T, T, where vi ∈ V (Ti) for i = , , .

Let Sn(a, b, c) = C(T, T, T), where |V (T)| = a – , |V (T)| = b – , |V (T)| = c – ,
a+b+c = n+, a ≥ b ≥ c ≥ , and T, T, T are all stars with centers v, v, v, respectively.
Obviously, Sn(n – , , ) ∼= Un,.

Lemma  Among the graphs Sn(a, b, c) with a + b + c = n +  and a ≥ b ≥ c ≥ , Sn(n –
, , ) ∼= Un, for n ≥ , Sn(n–, , ) for n ≥ , and Sn(n–, , ) for n ≥  are, respectively,
the unique graphs with the first, the second, and the third maximum spectral radii.

Proof Let x be the principal eigenvector of Sn(a, b, c).
Suppose that a > b. If xv < xv , then by Lemma ,

λ
(
Sn(a, b, c)

)
< λ

(
Sn(a – , b + , c)

)
< · · · < λ

(
Sn(b, a, c)

)
,

which is a contradiction. If xv ≥ xv , then by Lemma ,

λ
(
Sn(a, b, c)

)
< λ

(
Sn(a + , b – , c)

)
.

If a = b, then whether xv ≥ xv or xv < xv , we have by Lemma  that

λ
(
Sn(a, b, c)

)
< λ

(
Sn(a + , b – , c)

)
.

Then

λ
(
Sn(a, b, c)

)
< λ

(
Sn(a + , b – , c)

)

for b ≥ . This implies that among the graphs Sn(a, b, ) with a+b+ = n+ and a ≥ b ≥ ,
Sn(n – , , ) ∼= Un, for n ≥ , Sn(n – , , ) for n ≥ , and Sn(n – , , ) for n ≥  are,
respectively, the unique graphs with the first, the second, and the third maximum spectral
radius.

If c ≥ , then by similar arguments as above,

λ
(
Sn(a, b, c)

) ≤ λ
(
Sn(n – , , )

)
< λ

(
Sn(n – , , )

)
.

Now the result follows. �

Let U
n be the unicyclic graph obtained by attaching a path on two vertices to the vertex

of degree n –  of Sn–(n – , , ), where n ≥ . Let U
n be the unicyclic graph obtained

by attaching a path on two vertices to the vertex of degree two of Sn–(n – , , ), where
n ≥ . Let U

n be the unicyclic graph obtained by attaching a path on two vertices to the
vertex of degree n –  of Sn–(n – , , ), where n ≥ .

For u, v ∈ V (G), let dG(u, v) be the distance from u to v in G.
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Let Pn be the path on n vertices. Let G ∪ H be the vertex-disjoint union of graphs G
and H .

Lemma  Let G = C(T, T, T) with |V (T)| = a–, |V (T)| = b–, |V (T)| = , a+b = n,
a ≥ b, b = , , and n ≥ . Suppose that G � Sn(a, b, c), U

n, U
n . Then λ(G) < λ(Sn(n –

, , )).

Proof First suppose that b = . Let r = max{dG(u, v) : u ∈ V (T)}. Obviously, r ≥  as G �

Sn(a, b, c).
If r ≥ , then by Lemma , we may get a unicyclic graph with r =  with a larger spectral

radius.
Suppose that r = .
If there are at least two non-pendent neighbors of v outside the triangle in G, then

by Lemma , we may get a unicyclic graph with exactly one non-pendent neighbor of v

outside the triangle with a larger spectral radius.
Suppose that there is exactly one non-pendent neighbor, say w, of v outside the triangle

of G. Let dG(v) = s and dG(w) = t. Obviously, s ≥ , and t ≥  as G � U
n. If t = , then G

is the graph obtained by attaching a pendent vertex to the vertex of degree two in U
n–,

which is denoted by Ln. If t = n – , then G is the graph obtained by attaching n –  pendent
vertices to a pendent vertex of S(, , ), which is denoted by Hn.

Suppose that  ≤ t ≤ n – . Let x be the principal eigenvector of G. If xw ≥ xv , then by
Lemma , λ(G) < λ(Hn). If xw < xv , then by Lemma , λ(G) < λ(Ln). Thus

λ(G) < max
{
λ(Ln),λ(Hn)

}
.

Now we compare λ(Ln) with λ(Hn). Let rn(x) = φ(Ln, x) – φ(Hn, x). Applying Lemma 
to G = Ln by setting v to be a pendent neighbor of v,

φ(Ln, x) = x · φ(Ln–, x) – xn–φ(P ∪ P, x),

and to G = Hn by setting v to be a pendent vertex whose unique neighbor is of degree n – ,

φ(Hn, x) = x · φ(Hn–, x) – xn–φ
(
S(, , ), x

)
,

which implies that

rn(x) = x · rn–(x) + xn–φ
(
S(, , ), x

)
– xn–φ(P ∪ P, x)

= x · rn–(x) + xn–(x – x – x + x
)

– xn–(x – x
)(

x – x + 
)

= x · rn–(x) + xn–( – x – x).

Note that r(x) =  as L = H, and it is easily seen that  – x – x <  for x > , and thus
rn(x) <  (i.e., φ(Ln, x) < φ(Hn, x)) for x > , which implies that λ(Ln) > λ(Hn). Then

λ(G) ≤ λ(Ln)

if b = .
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Suppose that b = . First suppose that dG(v) = . Note that G � U
n , then by similar

arguments as above, λ(G) ≤ λ(H), where H is the graph obtained by attaching a path on
two vertices to the vertex of degree n– in U

n–. By Lemma , λ(H) < λ(U
n). If dG(v) = ,

then by similar arguments as above, λ(G) ≤ λ(U
n). Thus

λ(G) ≤ λ
(
U

n
)

if b = .
Now we have shown that

λ(G) ≤ max
{
λ(Ln),λ

(
U

n
)}

for b =  or .
To determine max{λ(Ln),λ(U

n )}, we compare λ(U
n) with λ(Ln). Let T () be the (n–)-

vertex tree obtained by attaching n –  pendent vertices to the center of the path on five
vertices. Applying Lemma  to G = U

n by setting v to be a pendent neighbor of v,

φ
(
U

n , x
)

= x · φ(
U

n–, x
)

– x · φ(
T (), x

)
,

and to G = Ln by setting v to be a pendent vertex in T of degree three,

φ(Ln, x) = x · φ(
U

n–, x
)

– x · φ(
Sn–(n – , , ), x

)
.

Note that T () is a proper spanning subgraph of Sn–(n – , , ), and thus by Lemma ,
φ(Sn–(n – , , ), x) < φ(T (), x) for x ≥ λ(Sn–(n – , , )), which implies that φ(U

n , x) <
φ(Ln, x) for x ≥ λ(Sn–(n – , , )), i.e., λ(U

n) > λ(Ln). Thus

λ(G) ≤ λ
(
U

n
)

for b =  or .
Now we are left to compare λ(U

n) with λ(Sn(n – , , )). Let T () be the (n – )-vertex
tree obtained by attaching n –  pendent vertices to an end vertex of the path on three
vertices. Applying Lemma  to G = U

n by setting v to be a pendent vertex whose unique
neighbor is of degree two,

φ
(
U

n , x
)

= x · φ(
Sn–(n – , , ), x

)
– φ

(
Sn–(n – , , ), x

)
,

and to G = Sn(n – , , ) by setting v to be a pendent neighbor of v,

φ
(
Sn(n – , , ), x

)
= x · φ(

Sn–(n – , , ), x
)

– x · φ(
T (), x

)
.

Note that P ∪ P ∪ T () is a proper spanning subgraph of Sn–(n – , , ), and thus by
Lemma , φ(Sn–(n – , , ), x) < x · φ(T (), x) for x ≥ λ(Sn–(n – , , )), which implies
that φ(U

n , x) > φ(Sn(n–, , ), x) for x ≥ λ(Sn–(n–, , )), i.e., λ(U
n) < λ(Sn(n–, , )).

Then the result follows. �
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Lemma  For n ≥ , λ(U
n) < λ(U

n) < λ(Sn(n – , , )), for n = , λ(U
n ) < λ(U

n) <
λ(Sn(n – , , )), for n = , λ(U

n ) < λ(Sn(n – , , )) < λ(U
n), and for n ≥ , λ(Sn(n –

, , )) < λ(U
n ) < λ(U

n).

Proof Let T be the (n – )-vertex tree obtained by attaching n –  pendent vertices to an
end vertex of the path on three vertices.

Applying Lemma  to G = U
n by setting v to be a pendent vertex whose unique neighbor

is of degree two,

φ
(
U

n, x
)

= x · φ(
Sn–(n – , , ), x

)
– φ

(
Sn–(n – , , ), x

)
,

and to G = Sn(n – , , ) by setting v to be a pendent neighbor of v,

φ
(
Sn(n – , , ), x

)
= x · φ(

Sn–(n – , , ), x
)

– x · φ(T , x).

Note that P ∪ T is a proper spanning graph of Sn–(n – , , ), and thus by Lemma ,

x · φ(T , x) > φ
(
Sn–(n – , , ), x

)

for x ≥ λ(Sn–(n – , , )), which implies that

φ
(
U

n, x
)

> φ
(
Sn(n – , , ), x

)

for x ≥ λ(Sn–(n – , , )), i.e., λ(U
n) < λ(Sn(n – , , )).

By Lemma , we have

φ
(
U

n, x
)

= xn–[x – nx – x + (n – )x + x – (n – )x + n – 
]
,

φ
(
U

n , x
)

= xn–[x – nx – x + (n – )x + x – n + 
]
,

φ
(
Sn(n – , , ), x

)
= xn–[x – nx – x + (n – )x – n + 

]
,

and thus

φ
(
U

n, x
)

– φ
(
U

n , x
)

= –xn–(n – )(x + )(x – ),

φ
(
U

n , x
)

– φ
(
Sn(n – , , ), x

)
= xn–(n – )f (x),

where

f (x) = ( – n)x + x – .

Obviously, φ(U
n, x) < φ(U

n , x) for x > , i.e., λ(U
n) > λ(U

n ).
Note that λ(G) >  if G is a unicyclic graph different from a cycle. If n = , then

f (x) = x + x –  > 

for x > . If n = , then

f (x) = x –  > 
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for x > . If n ≥ , then

f (x) = ( – n)x + x – 

< ( – n) +  ·  –  = ( – n) < .

Thus f (x) >  for x >  if n = ,  and f (x) <  for x >  if n ≥ , which implies that
λ(U

n ) < λ(Sn(n – , , )) for n = ,  and λ(U
n ) > λ(Sn(n – , , )) for n ≥ .

By direct calculation, we have λ(U
n) < λ(Sn(n–, , )) for n =  and λ(U

n) > λ(Sn(n–
, , )) for n = .

The result follows easily. �

Now we prove our main result in this section.

Theorem  Among the graphs in U(n),
(i) Un, ∼= Sn(n – , , ) for n ≥  and Sn(n – , , ) for n ≥  are respectively the

unique graphs with the first and the second maximum spectral radii;
(ii) Sn(n – , , ) for n =  and U

n for n ≥  are the unique graphs with the third
maximum spectral radius;

(iii) Sn(n – , , ) for n = , Sn(n – , , ) for n = , and U
n for n ≥  are the unique

graphs with the fourth maximum spectral radius;
(iv) U

n for n = , U
n for n = , and Sn(n – , , ) for n ≥  are the unique graphs with

the fifth maximum spectral radius,
and the spectral radii of Un, ∼= Sn(n – , , ), Sn(n – , , ), Sn(n – , , ), U

n and U
n are,

respectively, the largest roots of the equations on x as follows:

x – nx – x + (n – )x – n +  = ,

x – nx – x + (n – )x – n +  = ,

x – nx – x + (n – )x – n +  = ,

x – nx – x + (n – )x + x – (n – )x + n –  = ,

x – nx – x + (n – )x + x – n +  = .

Proof Let G ∈U(n) with unique cycle of length m ≥ , where n ≥ m.
If m ≥ , then by Lemmas  and ,

λ(G) ≤ λ(Un,) < λ
(
Sn(n – , , )

)
.

Suppose in the following that m = . Then G ∼= C(T, T, T), where |V (T)| = a – ,
|V (T)| = b – , |V (T)| = c – , a + b + c = n + , a ≥ b ≥ c ≥ .

If G ∼= Sn(a, b, c), then by Lemma , Un, ∼= Sn(n – , , ), Sn(n – , , ) and Sn(n – , , )
are, respectively, the unique graphs with the first, the second and the third maximum spec-
tral radii.

Suppose that G � Sn(a, b, c). If c ≥ , then by Lemmas  and , λ(G) < λ(Sn(n – , , )).
Suppose that c = . If b =  or  and G � U

n, U
n , then by Lemma , λ(G) < λ(Sn(n –

, , )). If b ≥ , then by Lemmas  and , λ(G) < λ(Sn(n – , , )). Thus

λ(G) < λ
(
Sn(n – , , )

)
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if G � Sn(n – , , ), Sn(n – , , ), Sn(n – , , ), U
n, U

n for n ≥ .
It follows from Lemma  that

λ
(
U

n
)

< λ
(
U

n
)

< λ
(
Sn(n – , , )

)

for n ≥ , and thus (i) follows.
Suppose that G � Sn(n – , , ), Sn(n – , , ).
Suppose that n = . If m ≥ , then by Lemma  and direct calculation,

λ(G) ≤ λ(U,) < λ
(
U


)
.

Suppose that m = . If G ∼= S(a, b, c), then G ∼= S(, , ) or S(, , ). Suppose that
G � S(a, b, c), U

. If c ≥ , then by Lemmas  and , we may construct another graph
still different from S(a, b, c) and U

 with a larger spectral radius. Suppose that c = . If
b =  or  and G � U

, then similar to the proof of Lemma  and direct calculation,

λ(G) ≤ λ
(
U


)

< λ
(
U


)

< λ
(
U


)
.

If b ≥ , then by Lemmas  and , we may construct another graph still different from
S(a, b, c) and U

 with a larger spectral radius. So if G � S(a, b, c), U
, then

λ(G) < λ
(
U


)
.

Now by direct calculation,

λ
(
U


)

< λ
(
S(, , )

)
< λ

(
S(, , )

)
,

and thus the result for n =  follows.
Suppose that n = . If m ≥ , then by Lemma  and direct calculation,

λ(G) ≤ λ(U,) < λ
(
U


)
.

Suppose that m = . If G ∼= S(a, b, c), then G ∼= S(, , ), S(, , ), or S(, , ). Sup-
pose that G � S(a, b, c), U

, U
. If c ≥ , then by Lemmas  and , either λ(G) < λ(U

),
or we may construct another graph still different from S(a, b, c), U

 and U
 with a larger

spectral radius. Suppose that c = . If b =  or , then similar to the proof of Lemma 
and direct calculation,

λ(G) ≤ λ
(
U


)

< λ
(
U


)

< λ
(
U


)
.

If b ≥ , then by Lemmas  and , either λ(G) < λ(U
), or we may construct another

graph still different from S(a, b, c), U
 and U

 with a larger spectral radius. So if G �

S(a, b, c), U
, U

, then

λ(G) < λ
(
U


)
.
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Now by direct calculation,

λ
(
S(, , )

)
< λ

(
S(, , )

)
< λ

(
U


)

< λ
(
S(, , )

)
< λ

(
U


)
,

and thus the result for n =  follows.
If n ≥ , then the result follows from Lemma . �

4 The least eigenvalue of graphs in U(n)
In this section, we determine the minimum least eigenvalue of graphs in U(n).

Lemma  Let G ∈ U(n) with unique cycle of length m, where n ≥ m ≥ . Then λn(G) ≥
λn(Un,) with equality if and only if G ∼= Un,.

Proof If m ≥ , then by Lemma , the Perron-Frobenius theorem [] and noting that Un,

is a bipartite graph, we have

–λn(G) ≤ λ(G) ≤ λ(Un,) = –λn(Un,),

and thus λn(G) ≥ λn(Un,) with equality if and only if G ∼= Un,. �

Lemma  If G ∼= Sn(a, b, c) with a + b + c = n +  and a ≥ b ≥ c ≥ , then Sn(n – , , ) ∼=
Un, for n ≥  is the unique graph with minimum least eigenvalue.

Proof Let x be a unit eigenvector of Sn(a, b, c) corresponding to λn(Sn(a, b, c)) = λn.
Denote by u, u, u a pendent neighbor of v, v, v in Sn(a, b, c), respectively. It is easily

seen that

xu =
xv

λn
, xu =

xv

λn
, xu =

xv

λn
.

Suppose that xu =  and xv = xv . Then xv = xv = . Since

λnxv = (b – )xu + xv + xv ,

we have xv = , and thus xu = , i.e., x = , which is a contradiction. Then either xu 	= 
or xv 	= xv .

Suppose that a > b. If |xv | < |xv |, then by Lemma ,

λn
(
Sn(a, b, c)

)
> λn

(
Sn(a – , b + , c)

)
> · · · > λn

(
Sn(b, a, c)

)
,

which is a contradiction. If |xv | ≥ |xv |, then by Lemma (i) and noting that either xu 	= 
or xv 	= xv ,

λn
(
Sn(a, b, c)

)
> λn

(
Sn(a + , b – , c)

)
.

If a = b, then whether |xv | ≥ |xv | or |xv | < |xv |, by Lemma (i),

λn
(
Sn(a, b, c)

)
> λn

(
Sn(a + , b – , c)

)
.
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Then

λn
(
Sn(a, b, c)

)
> λn

(
Sn(a + , b – , c)

)

for b ≥ , and thus the result follows easily. �

Lemma  Let G ∼= C(T, T, T) with a + b + c = n + , |V (T)| = a – , |V (T)| = b –
, |V (T)| = c – , a ≥ b ≥ c ≥ , and n ≥ . Suppose that G � Sn(a, b, c). Then λn(G) >
λn(Sn(n – , , )).

Proof If b ≥  or c ≥ , then by Lemmas  and ,

λn(G) ≥ λn
(
Sn(a, b, c)

)
> λn

(
Sn(n – , , )

)
.

Suppose that b = c = . Let r = max{dG(u, v) : u ∈ V (T)}. Obviously, r ≥  as G �

Sn(a, b, c).
If r ≥ , then by Lemma , we may get a graph G′

� Sn(a, b, c) with r =  such that
λn(G) ≥ λn(G′).

Suppose that r = .
If there are at least two non-pendent neighbors of v outside the triangle in G, then by

Lemma , we may get a graph G′′
� Sn(a, b, c) with exactly one non-pendent neighbor of

v outside the triangle in G′′ such that λn(G) ≥ λn(G′′).
Suppose that there is exactly one non-pendent neighbor, say w, of v outside the triangle

in G. Denote by w a pendent neighbor of w in G and by u a pendent neighbor of v in G
if existed.

Let x be a unit eigenvector of G corresponding to λn(G) = λn.
Suppose that xw =  and xw = xv . Then xw = xv = xu = . It is easily seen that

λnxv = xv + xv = ,

i.e., xv = –xv . On the other hand, note that

λnxv =
xv

λn
+ xv =

xv

λn
– xv .

If xv = , then xv = , which implies that x = , which is a contradiction. Suppose that
xv 	= . Then λn = – +

√


 . Let H be the -vertex graph obtained by attaching a path on
two vertices to a vertex of a triangle. Obviously, H is a subgraph of G, and thus by the
interlacing theorem [],

λn ≤ λ(H) = –. < –
 +

√



= λn,

which is a contradiction. Thus either xw 	=  or xw 	= xv .
It follows from Lemma (i) that whether |xv | ≥ |xw| or |xv | < |xw|, we may get λn(G) >

λn(Sn(n – , , )). �
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Let G be a unicyclic graph with at least ten vertices. It was shown in [] that λ(G) <
√

n.
Recall that [] –λn(G) ≤ λ(G), which implies that λn(G) > –

√
n. On the other hand, by the

interlacing theorem [],

λn(G) ≤ λ(P) = –
√

.

Thus

–
√

n < λn(G) ≤ –
√

.

Theorem  Among the graphs in U(n), Un, for n = , ,  and Un, ∼= Sn(n – , , ) for
n = ,  and n ≥  are the unique graphs with minimum least eigenvalue, and the least
eigenvalues of Un, ∼= Sn(n – , , ) and Un, are, respectively, the smallest roots of the equa-
tions on x as follows:

x – nx – x + (n – )x – n +  = ,

x – nx + (n – )x – (n – )x + n –  = .

Proof Let G ∈U(n), where n ≥ . The case n =  is trivial. Suppose that n ≥ .
If the unique cycle of G is of length at least four, then n ≥ , and by Lemma , λn(G) ≥

λn(Un,) with equality if and only if G ∼= Un,.
If the unique cycle of G is of length three, then either G ∼= Sn(a, b, c), and thus by

Lemma , λn(G) ≥ λn(Sn(n – , , )) with equality if and only if G ∼= Sn(n – , , ), or
G � Sn(a, b, c), and thus by Lemma , λn(G) > λn(Sn(n – , , )).

Thus Sn(n – , , ) is the unique graph with minimum least eigenvalue for n = , and

λn(G) ≥ min
{
λn(Un,),λn

(
Sn(n – , , )

)}

for n ≥ .
We are left to compare λn(Un,) and λn(Sn(n – , , )) for n ≥ . By direct calculation,

we have λn(Un,) < λn(Sn(n – , , )) for n = , ,  and λn(Un,) > λn(Sn(n – , , )) for
n = , , , , . Suppose in the following that n ≥ .

Let Gn be the n-vertex unicyclic graph obtained from Un+, by deleting the unique pen-
dent neighbor of v.

By Lemma , λ(Gn) > λ(Un,). Note that both Gn and Un, are bipartite graphs, and thus
λn(Gn) < λn(Un,).

By Lemma ,

φ
(
Sn(n – , , ), x

)
= xn–f (x),

φ(Gn, x) = xn–g(x),

where

f (x) = x – nx – x + (n – )x – n + ,

g(x) = x – nx + (n – )x – n + .
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Obviously, λn(Sn(n – , , )) and λn(Gn) are, respectively, the smallest roots of f (x) =  and
g(x) = .

It is easily seen that f (x) = g(x) + h(x), where

h(x) = –x – (n – )x + n – .

Note that

h() = n –  > ,

h(–
√

) = –n +  + 
√

 < ,

h(–
√

n) = n/ – n + n –  < ,

and thus h(x) <  for –
√

n < x ≤ –
√

.
Let r = λn(Gn). Note that –

√
n < r ≤ –

√
. It follows that h(r) < , and thus

f (r) = g(r) + h(r) = h(r) < ,

which implies that λn(Sn(n – , , )) < λn(Gn).
Now we have λn(Sn(n – , , )) < λn(Un,), and thus the result for n ≥  follows. �

5 The maximum spread of graphs in U(n)
Now we end this paper by determining the graph with maximum spread among graphs in
U(n).

Theorem  Among the graphs in U(n), where n ≥ , Un, for n =  and Un, for n 	=  are
the unique graphs with maximum spread.

Proof By Theorems  and , the results for n 	= , ,  follow.
Suppose in the following that n = , , .
If the unique cycle of G is of length at least four, then by Lemmas  and , s(G) ≤ s(Un,)

with equality if and only if G ∼= Un,.
If the unique cycle of G is of length three, then by Theorem  and the proof of Theorem ,

s(G) ≤ s(Un,) with equality if and only if G ∼= Un,.
Then the results for n = , ,  follow from direct calculations for s(Un,) and s(Un,).

�

6 Results and discussion
In this paper, we mainly focus on the spectral properties of graphs in U(n), including the
spectral radius, the least eigenvalue, and the spread. The main results obtained are as fol-
lows:

(i) the first five maximum spectral radii among graphs in U(n);
(ii) the minimum least eigenvalue among graphs in U(n);

(iii) the maximum spread among graphs in U(n).

7 Conclusions
The spectral radius, the least eigenvalue, and the spread are the most important spectral
properties of graphs, which are also the corn of spectral graph theory. So the research for
such graph-spectrum descriptors is of great importance and value.
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As the simplest connected graphs, the trees and unicyclic graphs are always the focus
of research in graph theory. The investigation of spectral properties of trees has a long
history, and a large number of results have been established. In contrast, the research of
spectral properties of unicyclic graphs is still inadequate.

In this paper, we focus on a type of unicyclic graphs, each of whose vertices on the unique
cycle is of degree at least three, and establish some bounds for their spectral radii, least
eigenvalues, and the spreads. In particular, we determine the first five maximum spectral
radii, the minimum least eigenvalue, and the maximum spread, respectively.
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