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Abstract
In this paper, we find the greatest values α1,α2 and the smallest values β1,β2 such
that the double inequalities Lα1 (a,b) < AG(a,b) < Lβ1 (a,b) and
Lα2 (a,b) < T (a,b) < Lβ2 (a,b) hold for all a,b > 0 with a �= b, where AG(a,b), T (a,b) and
Lp(a,b) are the arithmetic-geometric, Toader and generalized logarithmic means of
two positive numbers a and b, respectively.
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1 Introduction
For p ∈ R, the pth generalized logarithmic mean Lp(a, b) [] of two positive numbers a and
b is defined by

Lp(a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ bp+–ap+

(p+)(b–a) ]/p, a �= b, p �= –, p �= ,

e ( bb

aa )/b–a, a �= b, p = ,
b–a

log b–log a , a �= b, p = –,

a, a = b.

(.)

It is well known that Lp(a, b) is continuous and strictly increasing with respect to p ∈ R

for fixed a, b >  with a �= b. Many remarkable inequalities for the generalized logarithmic
mean can be found in the literature [–].

The classical arithmetic-geometric mean AG(a, b) of two positive numbers a and b is
defined by starting with a = a, b = b and then iterating

an+ =
an + bn


, bn+ =

√
anbn (.)

for n ∈ N until two sequences {an} and {bn} converge to the same number.
The well-known Gauss identity [] shows that

AG(, r)K
(√

 – r
)

=
π


(.)
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for r ∈ (, ), whereK(r) =
∫ π/

 (–r sin t)–/ dt, r ∈ [, ), is the complete elliptic integral
of the first kind.

In [], the Toader mean T(a, b) of two positive numbers a and b was given by

T(a, b) =

π

∫ π/



√
a cos θ + b sin θ dθ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aE(
√

–(b/a))
π

, a > b,
bE(

√
–(a/b))
π

, a < b,

a, a = b,

(.)

where E(r) =
∫ π/

 (– r sin θ )/ dθ , r ∈ [, ] is the complete elliptic integral of the second
kind.

Recently, the bounds for the arithmetic-geometric mean AG(a, b) and Toader mean
T(a, b) have attracted the attention of many mathematicians. The double inequality

L–(a, b) = L(a, b) < AG(a, b) < L/(a/, b/) (.)

holds for all a, b >  with a �= b. The left inequality of (.) was first proposed by Carlson
and Vuorinen [] and also was proved by different methods in [–]. Vamanamurthy
and Vuorinen [] proved that AG(a, b) < (π/)L(a, b) for all a, b >  with a �= b. The second
inequality of (.) was proved by Borwein and Borwein [] and Yang [].

Vuorinen [] conjectured that

M/(a, b) < T(a, b) (.)

for all a, b >  with a �= b, where Mp(a, b) = [(ap + bp)/]/p (p �= ) and M(a, b) =
√

ab is
the power mean of order p. This conjecture was proved by Qiu and Shen [] and Barnard
et al. [].

In [], Alzer and Qiu presented a best possible upper power mean bound for the Toader
mean as follows:

T(a, b) < Mlog / log(π/)(a, b) (.)

for all a, b >  with a �= b.
In [–], the authors proved that

L̂(a, b) < T(a, b) < L̂/(a, b), (.)

Ŝ√
/(a, b) < T(a, b) < Ŝ/(a, b) (.)

for all a, b >  with a �= b, where L̂p(a, b) = (ap+ + bp+)/(ap + bp) denotes the pth Lehmer
mean and Ŝp(a, b) is the generalized Seiffert mean given by Ŝp(a, b) = p(a–b)/ arctan[p(a–
b)/(a + b)] ( < p ≤ , a �= b), Ŝ(a, b) = (a + b)/(a �= b) and Ŝp(a, a) = a.

Very recently, Chu and Wang [] proved that

Sp (a, b) < AG(a, b) < Sq (a, b), (.)



Ding and Zhao Journal of Inequalities and Applications  (2017) 2017:102 Page 3 of 12

Sp (a, b) < T(a, b) < Sq (a, b) (.)

for all a, b >  with a �= b if and only if p ≤ /, q ≥  and p ≤ , q ≥ /. Here the pth
Gini mean of two positive numbers a and b is defined by

Sp(a, b) =

⎧
⎨

⎩

( ap–+bp–

a+b )/(p–), p �= ,

(aabb)/(a+b), p = .
(.)

The main purpose of this paper is to find the greatest values α,α and the smallest val-
ues β,β such that the double inequalities Lα (a, b) < AG(a, b) < Lβ (a, b) and Lα (a, b) <
T(a, b) < Lβ (a, b) hold for all a, b >  with a �= b and give some new bounds for the com-
plete elliptic integrals.

2 Basic knowledge and lemmas
In order to prove our main results, we need several formulas and lemmas, which we
present in this section.

For r ∈ (, ) and r′ =
√

 – r, the well-known complete elliptic integrals of the first and
second kinds are defined by

⎧
⎪⎪⎨

⎪⎪⎩

K = K(r) =
∫ π/

 ( – r sin θ )–/ dθ ,

K′ = K′(r) = K(r′),

K() = π/, K() = +∞,

and

⎧
⎪⎪⎨

⎪⎪⎩

E = E(r) =
∫ π/

 ( – r sin θ )/ dθ ,

E ′ = E ′(r) = E(r′)

E() = π/, E() = ,

respectively, and the following formulas were presented in [], Appendix E, pp.-:

dK
dr

=
E – r′K

rr′ ,
dE
dr

=
E – K

r
,

d(E – r′K)
dr

= rK,
d(K – E)

dr
=

rE
r′ ,

(.)

E
(


√

r
 + r

)

=
E – r′K

 + r
. (.)

In what follows, four special values E(
√

/),K(
√

/) and E(.),K(.) will be used.
By numerical computations, these are given by

E(
√

/) = . · · · , K(
√

/) = . · · · , (.)

E(.) = . · · · , K(.) = . · · · . (.)
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Lemma . (See [], Theorem .) For –∞ < a < b < ∞, let f , g : [a, b] → R be continu-
ous on [a, b] and be differentiable on (a, b), let g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . () The function r → (E –r′K)/r is strictly increasing from (, ) onto (π/, );
() The function r → E – r′K is increasing and log-convex from (, ) onto (π/, );
() The function K/ log(e/r′) is strictly increasing from (, ) onto (π/, );
() The function (K – E)/r is strictly increasing on (, ); in particular, K – E > (π/)r

for all r ∈ (, ).

Proof Parts () and () follow from [], Theorem .() and Exercise .(). �

Lemma . The equation

( + p)/p =
π



has a unique solution p = p = . · · · .

Proof Let

ϕ(p) =

⎧
⎨

⎩

( + p)/p – π/, p ∈ (–, ) ∪ (, +∞),

e – π/, p = .

It is easy to verify that the function ϕ is continuous and strictly decreasing from (–, +∞)
onto (, +∞). Therefore, Lemma . easily follows from the continuity and monotonicity
of ϕ together with the facts that ϕ(.) = .×– and ϕ(.) = –.×
–. �

Lemma . The function

f (r) =
(E – r′K)/π –  – r/

r

is strictly increasing from (, ) onto (/, /π – /).

Proof Let f(r) = (E – r′K)/π –  – r/ and f̂(r) = r, then f() = f̂() =  and f (r) =
f(r)/̂f(r).

A simple calculation yields

f ′
 (r)

f̂ ′
 (r)

=
(E – r′K) – πr

πr � f(r)
f̂(r)

, (.)

f() = f̂(), (.)
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f ′
(r)

f̂ ′
(r)

=
K – π

πr � f(r)
f̂(r)

, (.)

f() = f̂(), (.)

f ′
(r)

f̂ ′
(r)

=


π
· E – r′K

r · 
r′ . (.)

Following from Lemma .() and (.) together with the monotonicity of /r′,
we clearly see that f ′

(r)/̂f ′
(r) is strictly increasing on (, ). Equations (.)-(.) and

Lemma . lead to the conclusion that f (r) is strictly increasing on (, ).
Therefore, Lemma . follows from the monotonicity of f (r) together with the facts that

f (+) = / and f (–) = /π – /. �

The following double inequalities can be obtained from Lemma . immediately.

Corollary . Inequalities

 +
r


+

r


<


π

(
E – r′K

)
<  +

r


+

(

π

–



)

r

hold for  < r < .

Lemma . The inequality

[
( + r)/ – ( – r)/

r

]/

<  +
r


(.)

holds for  < r < .

Proof In order to prove inequality (.), it suffices to prove that

g(r) =
[
( + r)/ – ( – r)/] – r

(

 +
r



)

= ( + r) + ( – r) – r
(

 +
r



)

– 
(
 – r)/

= g(r) – g(r) <  (.)

for  < r < , where

g(r) = ( + r) + ( – r) – r
(

 +
r



)

,

g(r) = 
(
 – r)/.

Observe that

g ′
(r) = –

r


[


(
 – r) + ,r + ,r + r + r] < , (.)

g(.) = . · · · > , g(.) = –. · · · < , (.)
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we conclude, from (.) and (.), that there exists r ∈ (., .) such that g(r) > 
for r ∈ (, r) and g(r) <  for r ∈ (r, ).

In order to prove (.), we divide it into two cases.
Case A r ∈ [r, ). In this case, we clearly see that g(r) ≤  and g(r) > . This implies

that g(r) = g(r) – g(r) < .
Case B r ∈ (, r). In this case, g(r) > . Let g(r) =  – r + 

 r – r, the difference
between g(r) and g(r) yields

g(r) – g(r) = –
r(, + ,r + r + r)

,
< . (.)

We know from (.) that g(r) > g(r) > . Moreover,

g
 (r) – g

 (r) = –
r


[(

 – r)( + r) + r]
[


(

r –



)

+



]

< ,

this in conjunction with g(r) >  implies that

g(r) – g(r) < . (.)

Therefore, we clearly see that g(r) = [g(r) – g(r)] + [g(r) – g(r)] <  from (.) and
(.). �

Lemma . Let η(r) = [( + r)p+ – ( – r)p+]/r and ω(r) = [( – r)p ( + pr) – ( + r)p ( –
pr)]/r, then the functions η(r) and ω(r) both are strictly increasing on (, ).

Proof We assume that

η(r) = ( + r)p+ – ( – r)p+, η(r) = r,

ω(r) = ( – r)p ( + pr) – ( + r)p ( – pr), ω(r) = r,

then η(r) = η(r)/η(r) and ω(r) = ω(r)/ω(r).
A simple calculation yields

η() = η() = ω() = ω() = , (.)

η′
(r)

η′
(r)

= ( + p)
[
( + r)p – ( – r)p

]
, (.)

ω′
(r)

ω′
(r)

=
p(p + )[( + r)p– – ( – r)p–]


. (.)

Lemma . and (.)-(.) lead to the conclusion that η(r) and ω(r) are strictly increas-
ing on (, ). �

Lemma . Let

φp(r) =

π

(
E – r′K

)
–

[
( + r)p+ – ( – r)p+

(p + )r

]/p

,

then φp(r) >  for  < r <  if and only if p ≤ /; φp(r) <  for  < r <  if and only if p ≥ p.
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Proof It is well known that Lp(a, b) is strictly increasing with respect to p ∈ R for fixed
a, b >  with a �= b, then φp(r) is strictly decreasing with respect to p ∈R. In order to prove
Lemma ., we divide it into three cases.

Case  p = /.
From Corollary . and Lemma ., we clearly see that

φ/(r) =

π

(
E – r′K

)
–

[
( + r)/ – ( – r)/

r

]/

>  +
r


+

r


–

[
( + r)/ – ( – r)/

r

]/

>
r


> 

for  < r < .
Case  p = p.
We divide it into two subcases.
Subcase A φp (r) <  for r ∈ (, .).
Since φp(r) is strictly decreasing with respect to p ∈R, we clearly see that φp (r) < φ(r).

It suffices to prove that φ(r) <  for r ∈ (, .).
For r ∈ (,

√
/], it follows from Corollary . that

φ(r) =

π

(
E – r′K

)
–

[
( + r) – ( – r)

r

]/

<  +
r


+

(

π

–



)

r –
(

 +
r


–

r



)

= –
r



[

 –
(


π

–



)

r
]

≤ –
r



[

 –



(

π

–



)]

= –
(π – )r

π
< ,

where the first inequality easily follows from

( + r) – ( – r)

r
–

(

 +
r


–

r



)

=
r


[
 + 

(
 – r) + r] > .

For r ∈ (
√

/, .), taking the derivative of φ(r) yields

φ′
(r) =

(E – r′K)
πr

–
r

( + r)/ = μ(r) + μ(r), (.)

where

μ(r) =
(E – r′K)

πr
–

r


, μ(r) =
r


–
r

( + r)/ .
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From Lemma .(), we clearly see that

dμ(r)
dr

=


πr

(

K – E –
π


r

)

>  (.)

for r ∈ (, ) and

dμ(r)
dr

=
( + r)/ –  + r

( + r)/ >
[ + (/)r] –  + r

( + r)/

=
r – 

( + r)/ >  (.)

for r ∈ (
√

/, .). Equations (.)-(.) lead to the conclusion that φ′
(r) is strictly in-

creasing on (
√

/, .). This in conjunction with (.) implies that

φ′
(r) > φ′

(
√

/) = . · · · >  (.)

for r ∈ (
√

/, /). Therefore, from (.) we clearly see that φ(r) is strictly increasing
on (

√
/, .). This in conjunction with (.) yields φ(r) < φ(.) = –. · · · < 

for r ∈ (
√

/, .).
Subcase B φp (r) <  for r ∈ [., ).
For . ≤ r < , taking the derivation of φp (r) yields

φ′
p (r) =

(E – r′K)
πr

–
ω(r)

p(p + )/pη(r)–/p
, (.)

where ω(r) and η(r) are defined as in Lemma .. From Lemma .(), we clearly see that
(E – r′K)/r is strictly increasing on (, ). Lemma . and (.), (.) lead to the conclu-
sion that

φ′
p (r) ≥ [E(.) – ( – .)K(.)]

.π
–

ω()
p(p + )/pη(.)–/p

= . · · · – . · · · = . · · · > 

for . ≤ r < .
Therefore, it follows from the monotonicity of φ′

p (r) on (/, ) that φp (r) < φp () =
[/π – /( + p)/p ] =  for  < r < .

Case  / < p < p.
Taking the Taylor series of φp(r) at r =  yields

φp(r) =
(




–
p


)

r +
( – p + p + p)r

,
+ o

(
r). (.)

From (.) we clearly see that there exists a sufficiently small δ >  such that φp(r) <  for
r ∈ (, δ) if p > /. If p < p, then φp() = [/π –/(+p)/p] > . By the continuity of φp(r)
with respect to r, there exists a sufficiently small δ >  such that φp(r) >  for r ∈ (δ, ). �
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3 Main results
Theorem . Inequality L–(a, b) < AG(a, b) < L–/(a, b) holds for all a, b >  with a �= b,
where L–(a, b) and L–/(a, b) are the best possible lower and upper generalized logarithmic
mean bounds for the arithmetic-geometric mean AG(a, b), respectively.

Proof Firstly, from (.) we clearly see that L–(a, b) < AG(a, b) for all a, b >  with a �= b.
Next, we prove that AG(a, b) < L–/(a, b) for all a, b >  with a �= b. Since AG(a, b) and

Lp(a, b) are symmetric and homogeneous of degree , without loss of generality, it suffices
to give an assumption that a =  > b. Let t = b ∈ (, ), r = ( – t)/( + t), then (.) and (.)
lead to

AG(a, b) – L–/(a, b) =
π

K(
√

 – t)
–

[
 – t

( –
√

t)

]

=


 + r

[
π

K –
(

r√
 + r –

√
 – r

)]

=
h(r)

( + r)K(r)
, (.)

where

h(r) = π –
(
 + r′)K(r).

We can rewrite h(r) as

h(r) = π – λ
(
r′) · K

log(e/r′)
, (.)

where λ(r′) = ( + r′) log(e/r′).
A simple calculation yields

λ′(r′) =  –

r′ – log r′, (.)

λ′() = , (.)

λ′′(r′) =
 – r′

r′ > . (.)

Equations (.)-(.) lead to the conclusion that λ(r′) is strictly decreasing on (, ) with
respect to r′. Moreover, the function r′ =

√
 – r is strictly decreasing on (, ). Hence

the function λ(r′) is strictly increasing on (, ) with respect to r. It follows from (.) and
Lemma .() that h(r) is strictly decreasing on (, ). This implies that h(r) <  for  < r < 
together with h() = .

Therefore, AG(a, b) < L–/(a, b) for all a, b >  with a �= b follows from (.) and h(r) < .
Finally, we prove that L–(a, b) and L–/(a, b) are the best possible lower and upper gen-

eralized logarithmic mean bounds for the arithmetic-geometric mean AG(a, b).
For any  < ε < / and  < x < , it follows from (.) and (.) that

lim
x→

[
AG(, x) – L–+ε(, x)

]
= lim

x→

{
π

K(
√

 – x)
–

[
 – xε

ε( – x)

] 
ε–

}

= –ε


–ε (.)
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and making use of the Taylor expansion as x → , one has

AG(,  – x) – L–/–ε(,  – x)

=
π

K(
√

x – x)
–

[
 – ( – x)/–ε

(/ – ε)x

]– 
+ε

=
[

 –
x


–
x


+ o

(
x)

]

–
[

 –
x


–
 + ε


x + o

(
x)

]

=
ε


x + o

(
x). (.)

Equations (.) and (.) imply that for any  < ε < / there exist δ = δ(ε) ∈ (, )
and δ = δ(ε) ∈ (, ) such that AG(, x) < L–+ε(, x) for x ∈ (, δ) and AG(,  – x) >
L–/–ε(,  – x) for x ∈ (, δ). �

Theorem . Inequality L/(a, b) < T(a, b) < Lp (a, b) holds for all a, b >  with a �= b,
where p is defined as in Lemma . and L/(a, b), Lp (a, b) are the best possible lower and
upper generalized logarithmic mean bounds for the Toader mean T(a, b), respectively.

Proof From (.) and (.) we clearly see that both T(a, b) and Lp(a, b) are symmetric and
homogeneous of degree . Without loss of generality, we assume that a =  > b. Let t = b ∈
(, ), r = ( – t)/( + t), then from (.) and (.) together with (.) we have

T(a, b) – Lp(a, b) =

π
E
(√

 – t
)

–
[

 – tp+

(p + )( – t)

]/p

=

π
E
(


√

r
 + r

)

–


 + r

[
( + r)p+ – ( – r)p+

(p + )r

]/p

=


 + r

[

π

(
E – r′K

)
–

(
( + r)p+ – ( – r)p+

(p + )r

)/p]

=
φp(r)
( + r)

, (.)

where φp(r) is defined as in Lemma ..
Therefore, Theorem . follows from (.) and Lemma .. �

4 Corollaries and remarks
From Theorem . we get a lower bound for the complete elliptic integral of the first kind
K(r) as follows.

Corollary . Inequality

K(r) >
π [ +

√
 – r – ( – r)/]

( –
√

 – r)
(.)

holds for all r ∈ (, ).

Remark . We define H(r) = π [ +
√

 – r – ( – r)/]/( –
√

 – r). Computational
and numerical experiments show that the lower bound in (.) can be regarded as an ap-
proximation of K(r) for some r ∈ (, ), refer to Table  for numerical values.
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Table 1 Comparison of K(r) with H(r) for some r ∈ (0, 1)

r K(r) H(r)

0.1 1.5747455615 · · · 1.5747455614 · · ·
0.2 1.5868678474 · · · 1.5868678471 · · ·
0.3 1.608048619 · · · 1.608048612 · · ·
0.4 1.63999986 · · · 1.63999977 · · ·
0.5 1.68575035 · · · 1.68574965 · · ·
0.6 1.75075380 · · · 1.75074958 · · ·
0.7 1.84569400 · · · 1.84567106 · · ·
0.8 1.99530278 · · · 1.99517293 · · ·

Theorem . enables us to give new bounds for the complete elliptic integrals of the
second kind E(r).

Corollary . Inequality

π



[
( – ( – r)/)
( –

√
 – r)

]/

< E(r) <
π



[
 – ( – r)(p+)/

(p + )( –
√

 – r)

]/p

(.)

holds for all r ∈ (, ), where p = . · · · is defined as in Lemma ..
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